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Abstract

High phosphate intake is known to aggravate renal osteodystrophy along various pathogenetic pathways. Recent
studies have raised the possibility that dysregulation of the osteocyte Wnt/B-catenin signaling pathway is also
involved in chronic kidney disease (CKD)-related bone disease. We investigated the role of dietary phosphate and its
possible interaction with this pathway in an experimental model of adynamic bone disease (ABD) in association with
CKD and hypoparathyroidism. Partial nephrectomy (Nx) and total parathyroidectomy (PTx) were performed in male
Wistar rats. Control rats with normal kidney and parathyroid function underwent sham operations. Rats were divided
into three groups and underwent pair-feeding for 8 weeks with diets containing either 0.6% or 1.2% phosphate: sham
0.6%, Nx+PTx 0.6%, and Nx+PTx 1.2%. In the two Nx+PTx groups, serum creatinine increased and blood ionized
calcium decreased compared with sham control group. They also presented hyperphosphatemia and reduced serum
parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) levels. Fractional urinary excretion of phosphate
increased in Nx+PTx 1.2% rats despite lower PTH and FGF23 levels than in sham group. These biochemical
changes were accompanied by a decrease in bone formation rates. The Nx+PTx 1.2% group had lower bone volume
(BV/TV), higher osteoblast and osteocyte apoptosis, and higher SOST and Dickkopf-1 gene expression than the Nx
+PTx 0.6% group. Nx+PTx 0.6% rat had very low serum sclerostin levels, and Nx+PTx 1.2% had intermediate
sclerostin levels compared with sham group. Finally, there was a negative correlation between BV/TV and serum
sclerostin. These results suggest that high dietary phosphate intake decreases bone volume in an experimental
model of CKD-ABD, possibly via changes in SOST expression through a PTH-independent mechanism. These
findings could have relevance for the clinical setting of CKD-ABD in patients who low turnover bone disease might be
attenuated by optimal control of phosphate intake and/or absorption.
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Introduction

The chronic kidney disease associated mineral and bone
disorder (CKD-MBD) is characterized by complex endocrine
and metabolic disturbances, with a wide variability in terms of
bone turnover, ranging from extremely low to extremely high
bone formation rates [1]. Adynamic Bone Disease (ABD) as
one extreme of the different forms of renal osteodystrophy has
become an increasingly common manifestation of bone
abnormalities in CKD patients. ABD may be associated with
serious clinical consequences such as fractures [2,3] and
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vascular calcification [4,5], which in turn may contribute to the
high mortality rates of patients with CKD.

The hallmark of ABD is a decrease in bone turnover together
with normal or low osteoid surface [1,6—-10]. The pathogenesis
of ABD linked to CKD is multifactorial, including old age,
diabetes mellitus, uremic toxins, and excessive suppression of
secondary hyperparathyroidism by high calcium input via the
dialysate  or  calcium-containing phosphate  binders,
pharmacological doses of active vitamin D sterols or
parathyroidectomy [11,12]. At the cellular level, resistance to
parathyroid hormone (PTH) secondary to PTH receptor
downregulation and decreased osteoblast number and activity
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are prevalent features. The latter results from reduced
osteoblast proliferation and enhanced apoptosis, which are
important factors in the determination of bone formation rates
[11]. However, a clear understanding of the molecular
mechanisms that lead to ABD, as well as the potential role of
other bone cell types, in particular the osteocyte, is still lacking.

Osteocytes synthesize bone remodeling factors including the
receptor activator of nuclear factor kappa-B ligand (RANKL),
osteoprotegerin (OPG) and sclerostin and thus participate in
the control of osteoclast and osteoblast activity [13—16]. Recent
studies have suggested that the Wnt/B-catenin signaling
pathway, which is expressed not only in the osteoblast, but
also in the osteocyte, plays a role in the regulation of normal
bone turnover [17] and in renal osteodystrophy [18].

Whnt/B-catenin pathway inhibitors such as sclerostin, encoded
by SOST gene and produced by mature osteocytes, and
Dickkopf-1 (Dkk-1), encoded by Dkk-1 gene and expressed by
a variety of cells [19], antagonize Wnt/B-catenin canonical
signaling and thereby lead to decreased bone formation [20]. A
recent study has shown that the serum levels of both inhibitors
are elevated in hemodialysis patients, with an inverse
correlation of serum sclerostin with serum PTH and bone
formation rate [21].

The effects of PTH on bone may be mediated, at least partly,
by changes in sclerostin expression. Exogenous administration
of PTH has been shown to result in downregulation of
osteocytic sclerostin expression, both in vivo and in vitro
[22,23]. In addition to PTH, other factors are possible
regulators of SOST gene expression, like decreased
mechanical loading [24].

Whether suppression of PTH secretion contributes to CKD-
associated ABD via changes in Wnt/B-catenin pathway activity
has not been investigated. Although ABD in CKD patients
occurs most frequently in the context of low or normal serum
PTH levels it can also be observed in presence of high PTH
levels [25]. Therefore, factors other than PTH clearly play a role
as well, including calcium and phosphate overload. In order to
gain a more detailed insight into the pathogenesis of this
disease, we induced ABD in an experimental rat model of
hypoparathyroidism combined with chronic kidney failure. Our
main purpose was to examine the influence of the uremic state
itself and the importance of phosphate overload.

Materials and Methods

This study was carried out in strict accordance with the
recommendations in the Guidelines of the standing Committee
on Animal Research of University of Sdo Paulo. The protocol
was also approved by the Committee on the Ethics of Animal
Experiments of University of Sado Paulo (Permit Number:
0962/08). All surgery was performed under pentobarbital
anesthesia, and all efforts were made to minimize suffering.

Experimental protocol

Male Wistar rats, initial body weight 300-350 g, were
obtained from our local breeding colony for use in this study.
They were housed in individual cages in a light-controlled
environment (12 h on/12 h off), at constant temperature (25°C)
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and humidity (25%) and fed a standard diet (Lab Diet 5002,
Purina Mills, USA), containing phosphate (0.6%), Ca (0.8 %),
protein (20%) and vitamin D3 2.2 |U/g, for one week.
Thereafter, they were anesthetized with pentobarbital (50
mg/kg I.P.) and divided into three groups. Two groups
underwent  total  parathyroidectomy  (PTx), involving
microsurgical technique using electrocautery, and 5/6
nephrectomy (5/6 Nx) as described previously [26]. A third
group underwent sham operation (sham Nx+sham PTx). One
day after surgery, animals were divided into three groups and
allocated to different diets: Nx+PTx 0.6%, which received a
0.6% phosphate diet (Lab Diet 5002, Purina Mills, USA); Nx
+PTx 1.2% which received a 1.2% phosphate diet (Modified
Lab Diet 5002 w/1.2% P, USA) and sham group (sham Nx
+PTx), which received a 0.6% phosphate diet (Lab Diet 5002,
Purina Mills, USA). Thus all diets had same composition of Ca,
protein and vitamin D, except for phosphate content. A pair-
feeding protocol was used, where the amount of feed provided
to the pair of animals was determined by the animal of the pair
that had eaten less food. Weight measurements and tail cuff
plethysmography recordings were performed weekly. Water
access was ad libitum. The study duration was 8 weeks. A
fluorochrome bone marker (Terramycin®) at a dose of 25
mg/kg was injected I.P. on days 11 and 12, as well as on days
4 and 5 before sacrifice. For the last two days of the study, the
rats were held in metabolic cages and 24 h urine samples were
collected. Eight weeks after surgery, rats were anesthetized
and sacrificed through aortic puncture exsanguination. Serum
samples were frozen at - 20°C for later biochemical evaluation.
The heart was excised and left ventricle dissected for weight.
Femurs were removed for bone histomorphometry and tibiae
were removed for evaluation of osteoblast and osteocyte
apoptosis and gene expression.

Biochemical analysis

Serum and urinary creatinine and phosphate (colorimetric
assay, Labtest, Lagoa Santa/MG, Brazil), blood ionized calcium
(iCa) (AVL-9140 Autoanalyzer AVL Scientific Corporation,
Roswell, GA, USA), urinary calcium (colorimetric assay, Cobas,
Roche, Indianapolis, IN, USA), serum immunoreactive PTH
(iPTH, ELISA, Immutopics, San Clemente, CA, USA), fibroblast
growth factor 23 (FGF23) (ELISA assay, Kainos Laboratories,
Tokyo, Japan), serum sclerostin (ELISA, ElAab Science Co.
Ltd., China) and serum calcitriol (1,25 OH, vitamin D;) (1,25-
Dihydroxy Vitamin D RIA, Immunodiagnostic Systems, Boldon,
United Kingdom) were measured. Albuminuria was determined
by radial immunodiffusion method [27].

Bone histomorphometry

At sacrifice, the left femur of each rat was removed,
dissected free of soft tissue, immersed in 70% ethanol, and
processed as described previously [28]. Static, structural and
dynamic parameters of bone formation and resorption were
measured in distal metaphyses (magnification, 250x; 30 fields),
195 um from the epiphyseal growth plate, using an
Osteomeasure image analyzer (Osteometrics, Atlanta, GA,
USA). Structural parameters included trabecular thickness,
trabecular separation (expressed in pm) and trabecular number
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(expressed as number/mm). Static parameters included ratios
of trabecular volume/bone volume, osteoid volume/bone
volume, osteoid surface/bone volume, osteoblast surface/bone
volume, fibrosis volume, eroded surface/bone surface,
osteoclast surface/bone surface, all expressed as percentages,
and osteoid thickness, expressed in pym. Mineral apposition
rate was determined from the distance between the two
terramycin labels, divided by the time interval between the two
terramycin  administrations and expressed in um/day.
Mineralization lag time was expressed in days. The percentage
of double terramycin-labeled (mineralizing) surface per bone
surface and bone formation rate completed the dynamic
evaluation. Histomorphometric indices were reported using
nomenclature recommended by the American Society of Bone
and Mineral Research [29]. All animal data were obtained
through with the examiners blinded to the study protocol.

Osteoblast and osteocyte apoptosis

Apoptosis was determined in the left tibia by TUNEL
technique (TdT-mediated X-dUTP Nick end labeling, using the
instructions provided by Apoptag plus Peroxidase in Situ
Apoptosis Detection Kit. To evaluate the percentage of
apoptotic osteoblasts and osteocytes in the cortical and
trabecular areas as well as in bone marrow, we used the
counting points method. Each cell type was analyzed in 60
fields, with a magnification of 1.000x, to obtain final values
expressed as percent apoptotic cells.

Gene expression analysis

The right tibia of each rat was used to measure gene
expression of SOST, Dkk-1, B-catenin, glycogen synthase
kinase 3 beta (Gsk3b), lymphoid enhancer-binding factor 1
(Lef1), low density lipoprotein receptor-related protein 5 (Lrp5),
low density lipoprotein receptor-related protein 6 (Lrp6),
secreted related-frizzled protein 1 (Srfp1), secreted related-
frizzled protein 4 (Srfp4), transforming growth factor beta 1
(TGF-B1), Wnt 7b, Wnt 10b, OPG, RANKL, Receptor activator
of nuclear factor kappa B (RANK), and RANKL/OPG, as
analyzed by TagMan Low Density Array (TLDA) technique.
These genes are related to the activity of osteoblasts and
osteoclasts and the Wnt/B-catenin pathway, Srfp1 and Srfp4
being inhibitors of this pathway.

For these analyses, bones were harvested and snap frozen
in Trizol (Sigma, St. Louis, MO, USA). Bone shafts were
collected, epiphyses removed, bone marrow separated via
centrifugation, and the shafts placed in Trizol (Sigma, St. Louis,
MO, USA). RNA was extracted using the chloroform and
isopropanol precipitation method. The extracted RNA was
treated with DNase, purified on a Qiagen (Valencia, CA, USA)
column and eluted in RNAse free water. A reverse
transcriptase reaction was performed subsequently. The
generated cDNA was used in single Tagman assays or
Tagman low density arrays (Applied Biosystems, Carlsbad, CA,
USA) containing genes of interest and assayed according to
the manufacturer’'s protocol. The difference in expression was
calculated using 18S as the control gene.
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Table 1. General data.

Sham Nx+PTx 0.6% Nx+PTx 1.2%
(n=10) (n=9) (n=9)
Initial BW (g) 253 + 33 247 +13 273+ 29
Final BW (g) 378 £ 10 320+352 312+£322
Food intake (g/day) 19 (18-20) 17 (14-18) @ 18 (17-18) @
TCP (mmHg) 114+ 6 143+£82 137+£102
HW/BW 0.17 (0.17-0.19)  0.21(0.18-0.26)@  0.25(0.21-0.26) @

TCP: Tail cuff pressure. HW/BW: heart weight/100 g body weight; Nx+PTx: 5/6
nephrectomy and total parathyroidectomy. a: p <0.05 vs. sham.
doi: 10.1371/journal.pone.0079721.t001

Statistical analysis

Results are presented as mean +* standard deviation (SD) or
as median (interquartile ranges). One-Way ANOVA and
Kruskal Wallis test were used for parametric and
nonparametric data respectively. A linear regression test
(Spearman) was used to assess the correlation between two
variables. GraphPad Prism software, version 4.0 (GraphPad,
San Diego, CA, USA) was used. P values <0.05 were
considered statistically significant.

Results

General data

Initial body weight was comparable among the 3 rat groups.
Nx+PTx groups had lower food intake, lower final body weight,
higher tail cuff pressure (TCP) and higher heart weight
compared to sham group. We did not observe differences in
food intake, final body weight, TCP or heart weight between Nx
+PTx 0.6% and Nx+PTx 1.2% groups (Table 1).

Laboratory findings

As shown in Table 2, Nx+PTx rats had lower creatinine
clearance (Ccreat), with correspondingly higher serum
creatinine, and phosphate levels and higher albuminuria, as
well as markedly lower blood iCa and serum FGF23 levels than
sham group. Fractional excretion of phosphate phosphate FE
was higher in Nx+PTx 1.2% than in the other groups. Serum
calcitriol and calciuria did not differ between the three groups.
Nx+PTx groups had 4-10 times lower median PTH levels than
sham group but the differences did not reach statistical
significance. There were no differences between Nx+PTx
groups in regards to serum creatinine, phosphate, FGF23 and
PTH, blood iCa, Ccreat, and albuminuria. Finally, serum
sclerostin was lower in Nx+PTx 0.6% group than Nx+PTx
0.12% and sham groups, despite similar serum phosphate
levels in Nx+PTx groups.

Bone histomorphometry

As shown in Table 3, both Nx+PTx rat groups showed lower
osteoid volume, osteoid surface, osteoblastic and osteoclastic
surfaces, eroded surface, mineralization surface, mineral
apposition rate, and bone formation rate relative to control
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Table 2. Biochemical data.
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Table 3. Rat bone static and dynamic histomorphometry.

Sham Nx+PTx 0.6% Nx+PTx 1.2% Bone Parameters Sham Nx+PTx 0.6% Nx+PTx 1.2%
(n=10) (n=9) (n=9) (n=10) (n=9) (n=9)
Serum creatinine (mg/dl) 0.6 + 0.1 14+092 1.3+022 BV/TV (%) 24.2 +5.01 33.60+4.423P 26.81 £ 5.53
Ccreat (ml/min) 25+0.7 1.0+062 08+0.22 OV/BV (%) 0.54 + 0.47 0.09+0.042 0.14+0.09 2
Albuminuria (mg/24h) 0.4 (0.3-3.2) 47 (17-147)2 61(11-104) 2 O.Th (um) 1.30 £0.45 1.13+0.18 1.44 £0.36
Serum phosphate OS/BS (%) 8.15(3.71-25.57) 2.32(1.93-2.76) @ 2.45 (0.85-6.55) @
55+0.6 122+192 11.7+192
(mg/dl) ES/BS (%) 14.70 £ 5.35 6.45+2.602 510+2.382
b 42.4 (32.1-54.3) Ob.S/BS (%) 7.07 (4.0-16.75) 1.9 (1.35-2.38) 2 2.21(0.75-5.03) @
Phosphate FE (%) 7.6(36-102)  1.0(0.3-9.8)
a Oc.S/BS (%) 2.92 (1.97-5.11)  1.05(0.53-1.55) @ 0.91 (0.40-1.07) @
. 0.50 (0.41-0.60) Fb.V (%) 0 0 0
Blood iCa (mmol/L) 1.16 (1.07-1.22) 0.46 (0.40-0.52) @
a Tb.Sp (um) 190.38 + 46.02 120.14 + 18.89 a0 161.60 + 38.95
Calciuria (mg/24h) 1.4 (0.6-5.6) 5.1(2.7-5.8) 1.5 (1.1-2.2) Tb.N (/mm) 4.13+£0.73 5.59 +0.522ap 4.70 £0.85
Serum FGF23 (pg/ml) 286 +92.2 192+41.82 137.5+111.72 Tb.Th (um) 58.71 + 18.66 60.18 £ 5.49 57.19+9.12
Serum 1,25(OH)avitamin MAR (um/day) 1.1£0.30 0.20+0.122 0.68+0.352
16.1 £ 9.0 54.6+0.0 23.3+16.9
D3 (pg/ml) MS/BS (%) 5.33+3.11 0.75+0.252 2.08+0.752
Serum PTH (pg/ml) 124 (88-199) 26 (19-117) 16 (5-224) BFR/BS (um3/um2/
0.054 + 0.041 0.0016 +0.0013 @ 0.014 £ 0.0091 @
. 0.15 (0.07-0.43) day)
Serum sclerostin (ng/ml) 1.71 (0.71-3.35) b 1.10 (0.51-2.66)
a MLT (day) 3.0(1.5-3.9) 18.85 (18.7-18.9)3P 1.9 (1.4-11.8)
Ccreat: creatinine clearance; P: phosphate; phosphate FE: urinary fractional Aj.AR (um/day) 0.53+0.28 0.08 +0.052, 0.68 + 0.48

excretion of phosphate; iCa: blood ionized calcium; FGF23: fibroblast growth factor
23; PTH: Nx+PTx: 5/6
parathyroidectomy; a: p <0.05 vs. sham; b: p<0.05 vs. Nx+PTx 1.2%.
doi: 10.1371/journal.pone.0079721.t002

parathyroid hormone; nephrectomy and total

sham animals, and there was no fibrosis. These findings
confirmed the achievement of a low bone remodeling status.

Nx+PTx 0.6% group had higher bone volume with a
corresponding lower trabecular separation and higher
trabecular number than Nx+PTx 1.2% group and sham group,
respectively. In addition, Nx+PTx 0.6% animals also showed
higher mineralization lag time and lower adjusted apposition
rate than the two other animal groups (Table 3).

We did not observe any differences in eroded surface or
osteoclastic surface between Nx+PTx groups (Table 3).
Interestingly, a negative correlation between bone volume and
serum sclerostin was found (Figure 1).

Osteoblast and osteocyte apoptotic rate

Nx+PTx 0.6% rats had a lower osteoblastic and osteocytic
apoptotic rate compared to sham group. The percentage of
apoptotic osteocytes and osteoblasts was higher in Nx+PTx
1.2% than in Nx+PTx 0.6% group (Table 4).

Gene expression analysis

As shown in Table 5, Nx+PTx 1.2% group had higher SOST
and Dkk-1 mRNA levels relative to Nx+PTx 0.6% and sham
animals. There were no significant differences in gene
expression of B-catenin, Lef1, Lrp6, Srfp1, TGF-f1, OPG,
RANKL and RANKL/OPG across any groups. Gsk3b and
RANK expression was reduced in Nx+PTx 0.6% relative to Nx
+PTx 1.2% and sham groups. Nx+PTx 0.6% also showed
lower Lrp5, Srfp4 and Wnt 10b expression than sham group.
Nx+PTx 1.2% showed higher Wnt 7b expression than sham
animals.
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BV/TV: trabecular bone/total volume; OV/BV: Osteoid volume/ bone volume; O.Th:
Osteoid thickness; OS/BS: osteoid surface/bone surface; ES/BS: eroded surface/
bone surface; Ob.S/BS: osteoblast surface/bone surface; Oc.S/BS: osteoclast
surface/bone surface; Fb.V: fibrosis volume; Tb.Sp: trabecular separation; Tb.N:
trabecular number; Tb.Th: trabecular thickness; MAR: mineral apposition rate;
MS/BS: mineralization surface/bone surface; BFR/BS: bone formation rate/bone
surface; MLT: mineralization lag time; Aj.AR: Adjusted apposition rate; Nx+PTx:
5/6 nefrectomy and total parathyroidectomy. Nx+PTx: 5/6 nephrectomy and total
parathyroidectomy; a: p <0.05 vs. sham; b: p<0.05 vs. Nx+PTx 1.2%.

doi: 10.1371/journal.pone.0079721.t003
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Figure 1. Correlation of serum sclerostin and bone volume
(BV/TV) among sham, Nx+PTx 0.6% and Nx+PTx 1.2%
groups. Nx+PTx: 5/6 nephrectomy and total
parathyroidectomy.

doi: 10.1371/journal.pone.0079721.g001
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Table 4. Osteoblastic and osteocytic apoptotic rates (%).

Sham Nx+PTx 0.6% Nx+PTx 1.2%

(n=10) (n=9) (n=9)
Osteoblast apoptosis, % 1.2(0.9-1.8) 0.4(0.3-0.8)2> 1.3 (0.9-1.5)
Osteocyte apoptosis, % 0.5(0.3-1.0) 0.2 (0.15-0.25)2P 0.4 (0.3-0.5)

Nx+PTx: 5/6 nephrectomy and total parathyroidectomy a: p < 0.05 vs. sham; b: p <
0.05 vs. Nx+PTx 1.2%.
doi: 10.1371/journal.pone.0079721.t004

Table 5. Gene expression analysis.

Sham Nx+PTx 0.6% Nx+PTx 1.2%

(n=4) (n=6) (n=3)
SOST 1.2+0.85P 0.53 +0.24P 4.1+0.60
Dkk-1 1.18 £ 0.73P 0.86 + 0.35P 29+0.72
B-catenin 1.06 + 0.38 1.26 + 0.52 0.94 +0.06
Gsk3b 1.01+0.17 0.64 +0.222ap 1.17 £ 0.02
Lef1 1.07 £ 0.45 0.72 +0.52 0.69 + 0.04
Lrp5 1.06 + 0.40 0.45+0.122 0.75 +0.02
Lrp6 1.02+0.22 0.77 £+ 0.24 1.15+0.14
Srfp1 1.02+0.23 0.69 + 0.36 0.90 + 0.07
Srfp4 1.11+0.62 0.24 +0.082 0.34 +0.04
Wnt 7b 1.18 £ 0.74 0.11 + 0.06 0.08 +0.042
Wnt 10b 1.22+0.73 0.26 +0.142 0.64 +0.16
TGF-B1 1.03+0.29 1.25+0.84 1.13+0.04
OPG 1.09+ 0.45 0.52 +0.30 0.65 + 0.09
RANKL 1.09 + 0.49 0.61+0.12 0.71 +£0.12
RANK 1.02+0.24 0.62+02323P 1.1+0.04

Data are expressed as X control gene and as mean + SD. Dkk-1: dickkopf-1;
Gsk3b: glycogen synthase kinase 3 beta; Lef1: lymphoid enhancer-binding factor
1; Lrp5: low density lipoprotein receptor-related protein 5; Lrp6: low density
lipoprotein receptor-related protein 6; Srfp1: secreted related-frizzled protein 1;
Srfp4: secreted related-frizzled protein 4; Wnt 7b: wingless-type MMTV integration
site family, member 7B; Wnt 10b: wingless-type MMTV integration site family,
member 10B; TGF-B1: transforming growth factor beta 1; OPG: Osteoprotegerin;
RANKL: Receptor activator of nuclear factor kappa B ligand; RANK: Receptor
activator of nuclear factor kappa B; RANKL/OPG rate: Receptor activator of
nuclear factor kappa B ligand/ Osteoprotegerin rate. Nx+PTx: 5/6 nephrectomy
and total parathyroidectomy. a: p <0.05 vs. sham; b: p<0.05 vs. Nx+PTx 1.2%.

doi: 10.1371/journal.pone.0079721.t005

Discussion

In this study, we evaluated the effects of dietary phosphate
on ABD in rats with CKD and hypoparathyroidism. Compared
to sham group, Nx+PTx rats had higher serum creatinine, lower
Ccreat, and hyperalbuminuria consistent with the induction of
CKD. Importantly, both Nx+PTx groups had
hyperphosphatemia, with no differences between them.
However, Nx+PTx 1.2% rats had an increase in phosphate FE
subsequent to the higher phosphate load. PTx resulted in blood
iCa levels which were reduced by more than half, and was
effective in  preventing the usual CKD-associated
hyperparathyroidism. Hypocalcemia was taken as evidence of
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successful extirpation of the parathyroid glands, as already
described by other authors [30,31]. However, the
inhomogeneous reduction of serum PTH levels in the PTx+Nx
animals is probably due to low sensitivity of the PTH assay in
the hypoparathyroid range, or it is due to hypocalcemia, that
may have stimulated some small remnant gland in some
animals, since PTH levels were measured after 8 weeks of
PTx. Nevertheless, histomorphometry demonstrated low bone
remodeling, dismissing any possibility of bone effects of
hyperparathyroidism. Decreased levels of serum FGF23
resulted from PTx and this observation is in agreement with
previously reports [32,33]. Our results show that dietary
phosphate overload, can stimulate phosphate FE even when
both PTH and FGF23 levels are decreased. It suggests that a
different renal tubule regulation may exist, separate from a
change in luminal phosphate delivery, in a situation of ABD,
hypoparathyroidism and phosphate overload. Certainly, future
studies are needed to evaluate this mechanism, since little is
known about the crosstalk between intestine and other organs,
in the setting of ABD.

The two Nx+PTx rat groups presented lower bone turnover.
However, Nx+PTx 1.2% group had reduced bone volume
compared to Nx+PTx 0.6% group. Induction of bone loss by
high phosphate intake has been described in normal
individuals [34,35] and animals [36]. In CKD patients, studies
did not have shown association between P and osteoporosis.
Tani et al. [37] demonstrated in mature rats that prolonged
exposure to dietary phosphate excess induces bone loss
associated with secondary hyperparathyroidism. However, we
have previously reported lower bone volume in Nx+PTx rats
fed with high P diet (1.2%) that developed hyperphosphatemia
in presence of normal PTH. These findings suggest that PTH
elevation is not absolutely necessary for phosphate-associated
reductions in bone volume [26]. Furthermore, the phosphate
effect on bone was independent of PTH infusion rate [38].

In addition, the increase in bone volume observed in Nx+PTx
0.6% group, as compared to Nx+PTx 1.2% group, may be
secondary to surgical hypoparathyroidism, which leads to an
imbalance between resorption and formation in favor of the
latter, resulting in increased bone mass at both cortical and
trabecular sites, in humans [39]. However, such findings may
only partially apply to the present animal study because of the
concomitant presence of CKD.

An alternative mechanism may be the involvement of Wnt/B-
catenin pathway in the pathogenesis of CKD-MBD. Because of
low PTH levels in the present study, we expected to observe
high serum sclerostin levels in both Nx+PTx groups. However,
only when the phosphate intake was very high, namely in the
Nx+PTx 1.2% group, did SOST mRNA expression increase to
higher values than normal and did serum sclerostin levels
return to the normal range. The differences between the two
CKD rat groups were observed despite similar serum
phosphate, PTH and creatinine levels, suggesting that dietary
phosphate directly or indirectly regulates B-catenin activity, at
least partially through modulation of SOST gene activity. The
observed inverse correlation between serum sclerostin and
bone volume is consistent with the well-known role of 3-catenin
in bone mass regulation. Supporting our results, a recent study
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with predialysis CKD patients showed that phosphate FE and
serum Sclerostin levels were elevated at baseline. After
therapy with the phosphate binder sevelamer, a decrease in
serum Sclerostin was seen despite a significant decrease in
serum PTH, suggesting the role of dietary phosphate in the
modulation of sclerostin production [40].

The increase in osteoblast and osteocyte apoptosis in Nx
+PTx rats in response to high phosphate intake confirms a
previous in vitro study by Meleti et al [41] in osteoblast-like
cells. However, apoptosis could also be mediated by SOST
since canonical Wnt signaling appears to protect against
programmed cell death through B-catenin dependent
mechanisms.

As regards the other analyses of changes in skeletal gene
expression higher Dkk-1 mRNA levels in Nx+PTx 1.2% relative
to Nx+PTx 0.6% and sham animals. We still do not know the
real role of Dkk-1 on renal osteodystrophy. Another interesting
finding was that Gsk3b, which leads to phosphorylation of B-
catenin and stimulates B-catenin degradation was lower in CKD
animals fed 0.6% phosphate than those fed 1.2% phosphate
diet, again suggesting that dietary phosphate is involved in the
regulation of Wnt/B-catenin signaling. In addition, phosphate
was also shown to increase RANK gene expression, which
could equally have contributed to the observed lower bone
volume.

Our study has several limitations. First, we did not evaluate
inflammatory markers, which could have influenced serum
sclerostin levels. Second, serum phosphate levels and
phosphate FE were only in fasting state. Third, there was no
correlation between the serum levels of sclerostin and SOST
gene expression values. A longer observation time might have
been necessary to observe increased circulating sclerostin
resulting from the increase in SOST mMRNA. Another possibility
is that there are still technical problems with the determination
of serum sclerostin, both in humans and in animals. Fourth, for
the analyses of gene expression in bone, a small number of
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