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Derangements in normal cellular homeostasis at the protein level
can cause or be the consequence of initiation and progression of
pulmonary diseases related to genotype, infection, injury, smoking,
toxin exposure, or neoplasm. We discuss one of the fundamental
mechanisms of protein homeostasis, the ubiquitin proteasome
system (UPS), as it relates to lung disease. The UPS effects selective
degradation of ubiquitinated target proteins via ubiquitin ligase
activity. Important pathobiological mechanisms relating to the UPS
and lung disease have been the focus of research, with inappropriate
cellular proteolysis now a validated therapeutic target. We review the
contributions of this system in various lung diseases, and discuss the
excitingareaofUPS-targetingdrugdevelopmentforpulmonarydisease.
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INTRODUCTION

Normal pulmonary physiology can be disrupted by direct contact
with the environment, exposure to potentially noxious inhalants,
and infectionwith ensuing inflammatory cell activation. This delicate
balance from normal homeostasis is tipped toward inflammatory in-
jury in patientswith chronic obstructive pulmonary disease (COPD),
cystic fibrosis, acute respiratory distress syndrome (ARDS), acute
lung injury (ALI), and pneumonia. Insights into the molecular path-
ophysiology of these diseases have greatly increased. In this review,
we highlight emerging discoveries regarding selective regulation of
protein degradation in the lung by the ubiquitin (Ub)–proteasome
system (UPS), and how this regulation at the protein level affects
critical functions of lung cells with ramifications that can main-
tain or threaten the vitality of the organism.

Selective Protein Degradation and Cellular Function:

E3 Ubiquitin Ligase as a Physiological Switch

Maintenance of any healthy tissue requires stringent quality control
at the protein level. All cellular proteins undergo tightly regulated
turnover in the cell to prevent improper activity or unnecessary ac-
cumulation of dysfunctional proteins. Protein degradation also

changes critical cellular protein concentrations in response
to chemical signals or for important cellular events such as mitosis.
Major protein regulatory systems include the autophagic/lysosomal
pathways and the more prevalent UPS (1). Ubiquitin covalently
interacts with other proteins whereby a single ubiquitin attaches
to one lysine (monoubiquitination) or to multiple lysine residues
on the target (multimonoubiquitination), or a ubiquitin chain can
be produced at a single lysine residue (polyubiquitination). Ubiq-
uitin contains seven lysine residues, which results in eight differ-
ent interubiquitin linkage types, in turn leading to binding sites
for other ubiquitin molecules and distinct branched ubiquitin
chains that determine function. Substrate ubiquitination occurs
in an ATP-dependent fashion, through an elaborate enzymatic
cascade that adds the ubiquitin protein to, first, a ubiquitin-
activating enzyme (E1), and then to a ubiquitin-conjugating en-
zyme (E2), and last to a specific target protein, a critical event
that is catalyzed by a ubiquitin E3 ligase. One or more Ub mol-
ecules are thus added to the substrate, with monoubiquitination
usually tagging the substrate for endocytic sorting, whereas poly-
ubiquitination tags the substrate for recognition by the protea-
some, often resulting in target protein degradation by the 26S
proteasome protein complex, which is composed of one 20S
and two 19S proteolytic subunits (2) (Figure 1). Overall, this
process consumes large amounts of cellular energy, is represented
by the largest family of enzymes present in eukaryotes, and
accounts for about 5% of the genome. Given the physiological
importance of the UPS system to cellular and tissue physiology,
failure of the UPS is only rarely seen, but some mutations in
proteins identified as UPS E3 ligases result in human familial dis-
eases including Angelman syndrome, Parkinson’s disease, and von
Hippel–Lindau (vHL) syndrome (3), and changes in UPS function
have been implicated in disorders of the cardiovascular (4), neuro-
logical (5), and pulmonary (6) systems.

The system is hierarchical, with one or two E1 enzymes de-
scribed in mammalian cells, about 40 E2 enzymes, andmore than
1,000 E3 ligases described. The targeting, ubiquitination, and
degradation of proteins occur in a highly regulated and specific
manner, with the E3 ligase usually binding target proteins with
some post-translational modification that harbors a specific struc-
tural motif, termed a “degron” (7). Two major families of E3
ligases orchestrate ubiquitin addition to target proteins and ulti-
mately determine substantial shifts in cellular behavior. The
RING (really interesting new gene) finger and RING-related pro-
teins comprise the largest E3 family, whose members function
either independently as monomers or dimers, or in a multisubunit
complex to ubiquitinate a broad range of substrates. The HECT
(homologous to the E6-AP carboxy terminus) domain–containing
proteins are a smaller E3 ligase family whose members are im-
portant for regulating many proteins, some of which include the
transmembrane surface proteins. There is also a family of “U-
box” E3 ligases, which do not have enzymatic activity and mostly
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bridge catalytically active E2 enzymes, facilitating the transfer of
ubiquitin to the target protein. The linear ubiquitination complex
(LUBAC) is another multisubunit E3 ligase that polyubiquitinates
substrates for sorting and/or degradation by adduction of chains of
Ub monomers joined end-to-end (8). LUBAC contains three
important components: HOIL-1L (heme-oxidized IRP2 [iron-
responsive element–binding protein-2] ubiquitin ligase-1), HOIP
(HOIL-1–interacting protein), and SHARPIN (SHANK [SH3
and multiple ankyrin repeat domains-2]–associated RH [RBCK1
homology] domain-3–interacting protein). The E3 ligases are
diverse, represented by hundreds of genes in humans, and are
highly represented in all eukaryotes (9).

SCF Ligase and the Role of F-Box Proteins

Among RING E3 multisubunit ligases, the Cullin–RING fam-
ily and anaphase-promoting complex/cyclosome (APC/C) are
the best characterized. The largest family of Cullin–RING E3
ligases is the Skp1–Cullin–F-box protein (SCF) family, a ca-
nonical multimodule E3 ubiquitination complex often causing
target proteasomal degradation. The F-box proteins (FBPs)
are interchangeable and confer substrate specificity through
recognition of post-translationally modified degron motifs
within substrates via target-binding domains, and tether sub-
strate proteins to the Cullin protein of the SCF complex via F-
box domains (10). Each FBP causes degradation of a specific
set of target proteins by unique degron recognition. Sixty-
eight FBPs have been identified in humans, designated FBXL
(containing a leucine-rich domain), FBXW (containing a
WD-40 domain), or FBXO (containing neither leucine-rich

nor WD-40 domains) (11). Overall, only a small fraction of
FBP biology is known, and multiple laboratories are describ-
ing the diverse and critical activities of FBPs in physiology
and disease.

IMPORTANCE OF THE PROTEASOME AND UBIQUITIN
E3 LIGASES IN LUNG HOMEOSTASIS AND DISEASE

Oxygen Sensing and Pulmonary Vascular Disease

One example of E3 ligase molecular regulation related to respi-
ration is the oxygen-sensing role of hypoxia-inducible factor
(HIF)-1a, a stress response transcriptional activator of chemo-
kines, growth factors, and proteases. In normoxia, HIF-1a
is hydroxylated through the action of prolyl hydroxylase domain
protein-2 (PHD2), using oxygen as substrate, and the hydroxyl-
ated HIF-1a is bound by the vHL protein, which recruits a ubiq-
uitin ligase for HIF-1a polyubiquitination and proteasomal
degradation (12). During hypoxia, however, PHD2 activity (and
therefore HIF-1a hydroxylation) is decreased, and vHL no longer
prevents HIF-1a activation of transcription. Such molecular oxy-
gen sensing is important for normal embryonic development and
growth but is a major pathway “hijacked” by cancer cells with
limited local oxygen supply to stabilize HIF-1a and augment local
tumor growth and metastatic potential (13). In translational bio-
medical research, the vHL protein and HIF-1a signaling axis was
described initially in vHL disease, caused by ineffective vHL;
affected patients have polycythemia, pulmonary arterial hyperten-
sion, and respiratory insufficiency, attributed to increased HIF-1a
signaling.

Figure 1. Schematic of the

ubiquitin (Ub)–proteasome sys-
tem. Protein degradation is a

regulated, multistep process.

Ubiquitin is loaded onto an E1

activating enzyme in an ATP-
dependent fashion, and then

transferred to an E2 conjugating

enzyme. The same E2 can bind

many E3 ligases, which in turn
can ubiquitinate several target

substrate proteins. E3 ligases

bind specific substrate pro-

teins based on substrate degron
motifs usually consisting of

a post-translational modification,

such as phosphorylation. Ad-
duction via the K48 residue

on Ub tags the substrate for sort-

ing, lysosomal destruction, or

proteolytic cleavage and degra-
dation by the 26S ubiquitin

proteasome. Linear ubiquitination

via the M1 residue by the linear

ubiquitination complex (LUBAC)
(HOIL-1L, HOIP, and SHARPIN)

changes the cellular localiza-

tion and activity of substrates,
including RIP and NEMO for

NF-kB signaling. HOIL-1L ¼
heme-oxidized IRP2 (iron-

responsive element–binding
protein-2) ubiquitin ligase-1;

HOIP ¼ HOIL-1L–interacting

protein; NEMO ¼ nuclear factor-kB essential modulator; NF-kB ¼ nuclear factor-kB; P ¼ phosphate; RIP ¼ receptor-interacting protein; SHARPIN ¼
SHANK (SH3 and multiple ankyrin repeat domains-2)–associated RH [RBCK1 homology] domain–interacting protein; Ub ¼ ubiqutin.
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Host Defense

Immunoproteasome and extracellular alveolar proteasomes. The
proteasome becomes more specialized in the setting of infection
or inflammation. For example, tumor necrosis factor (TNF) or
IFN release from proinflammatory cells leads to the conversion
of 19S elements in the proteasomal machinery to form an “immu-
noproteasome,” which generates peptides that are trafficked pref-
erentially through antigen-processing machinery and ultimately to
the type I major histocompatibility complex to be presented to
T lymphocytes that bolster immunity to pathogens (14).

Studies demonstrate the presence of proteasomes outside the
cellular environment, such as lung alveolar fluid. Proteasomes in
lung fluid are only shown to have the 20S subunit and cleave pro-
teins without requirement for E3 ligases for protein-specific rec-
ognition or ubiquitination. It has been proposed that extracellular
proteasomes are a consequence of cell lysis and spillage of cellular
contents; alternatively, there may be packaging and exocytosis
(i.e., active secretion) of intact 20S proteasomes. Regardless of
the mechanisms of release, extracellular proteasomes are in-
creased in the setting of acute infection and inflammation, and

TABLE 1. E3 LIGASES AND THEIR TARGETS RELEVANT TO LUNG DISEASE

Disease/Condition E3 Ligase/Subunit Target Biological Effect

Pulmonary hypertension vHL HIF-1a Prevents HIF-1a transcription of proliferative and invasive/

angiogenic genes

Legionella pneumonia Lpp2082* ParvB Prevents ParvB degradation and establishes permissive cellular

environment for bacteria

Adenoviral respiratory infection E4orf6 and E1B55K† p53 Disrupts p53 quality control mechanisms to enhance viral

replication

Cystic fibrosis CHIP and RMA1 CFTR DF508 Premature UPS degradation of CFTR, preventing surface

expression

C-CBL CFTR WT Endosomal internalization and UPS destruction of CFTR

NEDD4-2 ENaC Normal ENaC degradation; NEDD4-22/2 mice develop CF

phenotype; overexpression impairs fluid clearance

Pulmonary edema

vHL Na-K-ATPase Decreased Na-K-ATPase activity; impaired sodium and fluid

clearance from epithelia and interstitiumHOIL-1L PKCz

Airway inflammation b-Trcp (FBXW1)‡ IkB De-repression of NF-kB and production of multiple

proinflammatory cytokines

FBXL2‡ TRAFs 1–6 Decreased inflammatory signal transduction and decreased

NF-kB activity

FBXO3‡ FBXL2 Increased TRAF activity and inflammatory signal transduction

Itch JunB, c-Jun, Notch, PKC, PLCg, ErbB Decreased Th2 cytokine production and immunological

tolerance; Itch KO results in loss of tolerance; nonfunctional

SNP causes lung and multiorgan inflammatory syndrome

Mule Miz1 Disinhibits TNF induced inflammatory signaling

Asthma Cbl-b Uncharacterized Decreased Th1 cytokine production and immunological

tolerance; Cbl-b KO results in loss of tolerance

MID1 PP2A Increased NF-kB activity after antigen exposure

COPD RLIMx HDAC2 Acetylated histones leave chromatin open for transcription of

inflammatory genes

ALI Cbl-b Uncharacterized Decreased ALI inflammatory response; Cbl-b KO results in

increased inflammation and TLR expression

FBXL19‡ ST2 (IL-33R) Decreased IL-33 signaling and inflammation in ALI and

pneumonia

Lung disease–associated myopathy MuRF1 Myosin Skeletal muscle wasting; MuRF1 knockdown in ALI prevents

associated muscle wasting

Lung cancer b-Trcp (FBXW1)‡ IkB NF-kB derepression with increased cellular activation,

proliferation, and invasion

b-Catenin Impaired cell differentiation through Wnt signaling

SKP2 (FBXL1)‡ p27, Fox01, p21, and p57 Loss of tumor suppressor protein activity

FBXW7‡ Cyclin E1, c-Myc, c-Jun, Notch Tumor suppression via degradation of oncoproteins

c-CBL Receptor tyrosine kinases Reduced proliferation; c-CBL overexpression decreased tumor

burden

FBXL2‡ Cyclin D2, cyclin D3, Aurora B Reduced proliferation; FBXL2 overexpression decreased tumor

burden

Surfactant homeostasis NEDD4-2 SP-C Normal protein sorting and processing; SP-C disease mutants

are ubiquitinated but form aggregates in familial ILD

FBXL2 CCTa Reduced membrane/surfactant phospholipid synthesis

b-Trcp (FBXW1)‡ LPCAT1 Impaired surfactant phospholipid remodeling

Definition of abbreviations: ALI ¼ acute lung injury; C-CBL ¼ C-casitas B-lineage lymphoma E3 ligase; CCT ¼ CTP:phosphocholine cytidylyltransferase; CF ¼ cystic

fibrosis; CFTR ¼ cystic fibrosis transmembrane regulator; CHIP ¼ C terminus of Hsc70-interacting protein; COPD ¼ chronic obstructive pulmonary disease; ENaC ¼
epithelial sodium channel; FBXL, FBXW, FBXO ¼ F-box protein containing a leucine-rich domain, a WD-40 domain, or neither a leucine-rich nor WD-40 domain,

respectively; HDAC2 ¼ histone deacetylase-2; HIF-1a ¼ hypoxia-inducible factor-1a; HOIL ¼ heme-oxidized IRP2 ubiquitin ligase-1; IkB ¼ inhibitor of NF-kB; IL-33R ¼
IL-33 receptor; ILD ¼ interstitial lung disease; KO ¼ knockout; LPCAT1 ¼ lysophosphatidylcholine acyltransferase-1; Lpp2082 ¼ Legionella pneumophila (strain Paris)

F-box protein; MID1 ¼ E3 ubiquitin ligase midline-1; MuRF1 ¼muscle RING finger-1; NEDD ¼ neural precursor cell expressed developmentally down-regulated protein;

NF-kB ¼ nuclear factor-kB; ParvB ¼ parvin B; PKC ¼ protein kinase C; PLC ¼ phospholipase C; RLIM ¼ RING finger LIM domain–binding protein; RMA1 ¼ RING finger

protein with membrane anchor-1; SKP2 ¼ S-phase kinase-associated protein-2; SNP ¼ single-nucleotide polymorphism; SP-C ¼ surfactant protein C; Th2 ¼ helper T-cell

type 2; TNF ¼ tumor necrosis factor; TRAF ¼ TNF receptor–associated factor; UPS ¼ ubiquitin proteasome system; vHL ¼ von Hippel–Lindau protein; WT ¼ wild type.

* Legionella bacteria–derived F-box protein.
yAdenovirus-derived E3 ligase.
z Part of the SCF (Skp1–Cullin–F-box protein) multisubunit Cullin–RING E3 ligase.
x Specific mechanism not fully characterized in lung disease.
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may play a role in antigen presentation to activate immunity
against extracellular microbes the host encounters (15).
Proteasome dysregulation as a microbial pathogenic mechanism.

Pathogens can exploit host cell UPS machinery to their advantage.
For example, Legionella pneumophila bacteria produce their own
FBP, Lpp2082, which is required for infection. This FBP binds
and competes the substrate ParvB away from degradation,
apparently creating a permissive cellular environment (16).
Human adenovirus creates two E3 ligase proteins that cause
degradation of the p53 protein, allowing production of viral
proteins and genetic material without p53-mediated host cell
apoptosis (17). Pseudomonas aeruginosa secretes a toxin, Cif,
in vesicles that increases ubiquitination and degradation of
cystic fibrosis transmembrane regulator (CFTR) (18), thus
making the airway secretions more tenacious. The coronavirus
that causes severe acute respiratory syndrome possesses a Ub-like
protein that increases pathogenicity; also, proteasome inhibitor
pretreatment reduced viral replication and improved survival in
mice (19), implicating some role for the UPS in severe acute
respiratory syndrome.

Pulmonary Ion Transport and Fluid Balance

Cystic fibrosis. Cystic fibrosis is due to insufficient CFTR cell sur-
face expression, causing impaired chloride secretion in the airway
lumen, with reduced airway surface liquid, conglomeration of pro-
teins, impaired ciliary clearance, and enhanced susceptibility to
infection. Cystic fibrosis is most commonly due to CFTRmutation
at the position 508 phenylalanine residue (DF508); this mutant
protein is translated, but intercepted in the endoplasmic reticu-
lum by E3 ligases CHIP and RMA1, ubiquitinated, and degraded
by the proteasome before reaching the cell surface (20).
C-terminal CFTR deletions are processed normally, but rap-
idly shuttled to the proteasome for degradation (21), while nor-
mal CFTR membrane expression is regulated by E3 ligase
C-CBL, mediating ubiquitination and endosomal internaliza-
tion (22).
Pulmonary edema. In pulmonary edema, epithelial sodium chan-

nel activity regulates apical Na1 entry into the cell, from where it is
actively transported out of the cell via the Na-K-ATPase as the
critical mechanism for fluid balance in the lungs (23). In addition
to its regulation of HIF-1a protein concentrations discussed pre-
viously, vHL protein also controls edema clearance during hyp-
oxia, where it mediates degradation of Na-K-ATPase (24). Here,
it appears that reactive oxygen species participate in the regulation
of the Na-K-ATPase via PKCz and a member of the LUBAC,
HOIL-1L, which leads to impaired lung fluid clearance. Thus,
the steady state of both the epithelial sodium channel and
Na-K-ATPase are highly regulated by the UPS to critically
maintain epithelial function to effect lung fluid balance and
normal breathing.

Airway Inflammation

Perhaps the most prominently implicated signal in pulmonary
inflammation is the activity of the nuclear factor of k light poly-
peptide gene enhancer in B cells, NF-kB (25). When active, this
transcription factor master regulator of inflammation leads to
expression of cytokines, chemokines, adhesion molecules, ma-
trix metalloproteases, and leukocyte growth factors, among
others. The negative regulator of NF-kB is IkB, which usually
binds and sequesters NF-kB in the cytosol (26). IkB is degraded
by the ubiquitin proteasome via the FBP b-transducin repeat–
containing protein (b-Trcp, now designated FBXW1). When
IkB is phosphorylated, it is recognized by SCFFBXW1 for ubiq-
uitination and degradation, leaving NF-kB unrestricted to initiate

the inflammatory cascade. IkB phosphorylation is in turn regu-
lated by kinases, which are each activated by ligation of recep-
tors, or the activity of protein second messengers, such as the
TNF receptor–associated factor (TRAF) proteins.

LUBAC has been described to have an important role in reg-
ulating inflammation (27). LUBAC is now known to be part of
the TNF receptor signaling complex and participates in signal-
ing processes by end-to-end polyubiquitination of TNF receptor
signal modulators RIP1 and NEMO, apparently increasing sig-
nal transduction by this particular ubiquitination scheme (28).
LUBAC also targets IL-1b, CD40 ligand, and several Toll-like
receptors (TLRs). SHARPIN mutant mice develop a prolifera-
tive dermatitis, and patients with mutations of HOIL-1L and
thus LUBAC deficiency have protracted inflammatory disor-
ders and invasive bacterial infections (29).

Studies indicate that TRAFproteins are targets of the SCFFBXL2

E3 ligase (30). TRAF degradation after overexpression of FBXL2
globally suppresses inflammatory responses in response to endo-
toxin. Interestingly, another E3 ligase, SCFFBXO3, targets FBXL2
for its degradation; FBXO3 depletion in cells increases FBXL2
and decreases TRAF protein levels, blunting inflammatory cyto-
kine release in vitro. A human FBXO3 polymorphism with a rel-
atively high (z6%) frequency among individuals of European
descent exists, and this mutant FBXO3 decreases FBXL2 ubiq-
uitination; humans with this polymorphism hospitalized with sepsis
have lower serum concentrations of inflammatory cytokines (30).

TheE3 ligase Itch causes degradation ofmultiple inflammatory
transcription factors and signaling molecules (31), and Itch muta-
tions in mice cause multiorgan inflammatory disease with pulmo-
nary interstitial inflammation (32). A 2010 study of an Amish
family with a multiorgan inflammatory–autoimmune syndrome
characterized by severe pneumonitis and premature death iden-
tified an autosomal recessive mutation in the Itch E3 ligase (33),
almost completely recapitulating the disease phenotype initially
observed in knockout mice. Miz1 appears to have checkpoint
function in the regulation of LPS-induced inflammation where
the cytoplasmic Miz1 suppresses LPS- or TNF-induced production
of proinflammatory cytokines through inhibition of JNK (c-Jun
N-terminal kinase) activation (34). It has been reported that the
HECT domain–containing E3 ligase Mule catalyzes TNF-a–
induced Miz1 K48-ubiquitination degradation, which is of impor-
tance in TNF-a–induced JNK activation and cell death (35).
Interestingly, the interaction between Mule and Miz1 occurred
TNF-a independently of the pox virus and zinc finger domain of
Miz1, which is of potential relevance in the inflammatory path-
ways during pulmonary infections.
Asthma. In allergic asthma, an antigen-specific hyperactive

helper T-cell type 2 (Th2) immune response causes airway ob-
struction and hyperresponsiveness. Bronchodilators or immuno-
modulators including steroids represent the initial therapy, with
allergen-specific immunotherapy used to promote immunologi-
cal tolerance and durable symptom relief. Immune tolerance is
mediated, in part, by the Ub E3 ligase Itch, which degrades the
phosphorylated JunB, a Th2-specific transcription factor. Itch
deficiency causes high JunB levels with increased production
of the Th2 cytokines (36). In asthma animal models, Itch knock-
out mice fail to develop tolerance to ovalbumin antigen–specific
immunomodulatory therapy. Likewise, in another ovalbumin-
induced asthma study of mice lacking the E3 ligase Cbl-b, im-
mune tolerance was disrupted, although with increased airway
neutrophils and Th1 cytokines IL-12 and IFN-g (37). Itch and
Cbl-b therefore each seem to play a role in maintaining immune
tolerance in different effector arms of the T-cell system. Another
E3 ligase, Midline 1 (MID1), is up-regulated after antigen stim-
ulation with the common asthma allergen house dust mite (38).
MID1 targets protein phosphatase-2A (PP2A), an endogenous
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inhibitor of cytokine signaling that deactivates NF-kB; hence
small inhibitory RNA MID1 knockdown suppressed allergic in-
flammation in vivo in mice and in vitro in human lung cells.
COPD. With tobacco exposure, some smokers have a sustained

inflammatory phenotype, and many develop COPD. UPS activity
is dysregulated in this setting, with increased UPS components
(39) and impairment of proteasome activity after cigarette
smoke administration (40, 41). The epigenetic regulator, histone
deacetylase-2 (HDAC2), is degraded by the UPS after cigarette
smoke exposure secondary to HDAC2 phosphorylation (42). Al-
though the E3 ligase RING finger LIM domain–binding protein
has been shown to target HDAC2 in other systems (43), its role in
the lung has not been described; regardless, loss of HDAC2 causes
aberrant inflammatory gene transcription and feed-forward inflam-
mation in some smokers, with HDAC2 levels correlating inversely
with COPD severity (44).

Acute Respiratory Distress Syndrome

In ALI, many physiological changes involve the UPS (45). TLRs
sense pathogen-associated molecular patterns and initiate in-
flammatory responses. E3 ligase Cbl-b down-regulates TLR sig-
naling, with Cbl-b deficiency potentiating the inflammatory
response (46).

IL-33 is a strong inflammatory activator during asthma and
ALI through the receptor ST2L. Phosphorylated ST2 is bound
and ubiquitinated by SCFFBXL19, causing UPS degradation. Ec-
topically expressed FBXL19 decreased ST2 and reduced inflam-
mation while improving survival in animal models of ALI (47). In
other work, depletion of the proinflammatory FBP FBXO3, which
targets the TRAF inhibitor FBXL2 for its disposal, restores FBXL2
protein levels, improves survival, lowers cytokine release, and less-
ens inflammation histologically in mice in a Pseudomonas and LPS
model of ARDS (30).

Lung Disease–associated Myopathy

In severe ARDS and COPD, diaphragmatic and peripheral mus-
cle wasting are common (48). In a mouse ALI model displaying
comorbid muscle wasting the E3 ligase muscle RING finger-1
(MuRF1) mediates muscle breakdown as MuRF1 knockdown
prevented ALI-associated muscle wasting (49).

Lung Cancer

Many components within the UPS participate in neoplastic pro-
cesses, including cancer-promoting FBPs b-Trcp (FBXW1) and
SKP2 (S-phase kinase-associated protein-2; also known as FBXL1)
(50). b-Trcp disinhibits inflammatory NF-kB activity, causing ex-
pression of cell-activating cytokines, growth factors, and proteases
that augment tumor proliferation and invasion. b-Trcp also targets
the b-catenin protein, whichmediates cell differentiation through the
Wnt signaling pathway. Loss of b-catenin could impair cell differen-
tiation, typical of aggressive malignancies (51). FBXW7, however,
is a p53-dependent tumor suppressor that facilitates degradation of
oncoproteins (52). FBXL2 destabilizes proteins critical to cell cycle
progression, thereby inhibiting lung tumor cell growth (53–55).

In lung cancer, SKP2 is considered a proneoplastic factor that
degrades protective p27 and increases tissue invasiveness (56).
Studies show that increased SKP2 protein levels in biopsy speci-
mens are associated with increased metastasis. Moreover, de-
creased p27 in SKP2hi specimens is robustly correlated with
shorter survival (57, 58).

Surfactant Metabolism

Pulmonary surfactant is composed of key surfactant-associated
proteins and phospholipids, the components of which participate

in the innate immune response and maintenance of alveolar sta-
bility by lowering surface tension. Mutations of the surfactant
protein C (SP-C) gene have been associated with a familial form
of usual interstitial pneumonia and pulmonary fibrosis (59, 60).
SP-C processing and cell secretion require distinct steps, includ-
ing ubiquitination by the E3 ligase NEDD4-2 (61, 62); many
familial ILD-associated SP-C alleles involve the C terminus
of the protein, with ubiquitinated and aggregated SP-C within
perinuclear inclusions of one such mutation (63), demonstrating
defective trafficking after E3 ligase association.

CTP:phosphocholine cytidylyltransferase (CCTa) is an essen-
tial lipogenic enzyme needed for surfactant phospholipid synthe-
sis. CCTa ubiquitination is catalyzed by the SCFFBXL2 E3 ligase
complex (64), and FBXL2 depletion stabilizes CCTa levels and
stimulates surfactant biosynthesis. Another surfactant enzyme,
lysophosphatidylcholine acyltransferase (LPCAT1), is targeted
for ubiquitination and degradation by b-Trcp (65). Thus, it is
likely that the Ub E3 ligases regulate surfactant components to
modulate lung homeostasis.

PHARMACOLOGICAL TARGETING OF
THE PROTEASOME

Bortezomib and Nonselective Proteasome Inhibitors

The first U.S. Food and Drug Administration (FDA)–approved
drug that targets the proteasome is bortezomib (Velcade), a re-
versible 20S proteasome inhibitor. Bortezomib has emerged as
an effective agent in the treatment of multiple myeloma, a ma-
lignancy previously linked with a dismal prognosis (66, 67).
Only one other proteasome inhibitor has been approved by
the FDA for use in humans, carfilzomib, as second-line therapy
for multiple myeloma and for non-Hodgkin’s lymphoma.

New Proteasome Inhibitors

The success of bortezomib has established the proteasome as a vi-
able target in the current era of drug development, with reports
on five “second-generation” proteasome inhibitors that target
overlapping aspects of cell signaling in vitro. The preclinical and
in vivo targets of these drugs include hematologic malignancies
as well as the solid tumors (68). Four of these agents have
entered into phase 1 and 2 clinical trials in subjects with solid
tumors as well as hematologic malignancies. Neuropathy is
a class-wide side effect of proteasomal inhibitors, likely from
accumulation of ubiquitin-laden proteins in dorsal root ganglia
of patients receiving therapy. This effect could be avoided by
targeting factors upstream of the proteasome (Figure 2). The first
such compound to be tested in humans is MLN4924, which targets
the NEDD8 activating enzyme required for activation of the
Cullin–RING proteins (69); this drug globally suppresses ubiq-
uitination through Cullin–RING ligases, which includes all SCF
E3 ligase family members and others. In vitro activity of this agent
reduces tumor burden in multiple models via tumor cell apoptosis
or autophagy. Four phase 1 clinical trials for MLN4924 safety
testing are now underway.

Another newly characterized drug is CC0651, the first small-
molecule E2 ligase inhibitor, with high potency and specificity
for the E2 ligase Cdc34 (70). This drug suppresses ubiquitination
through Cullin–RING E3 ligases that depend on Cdc34. CC0651
and MLN4924 would therefore theoretically have highly over-
lapping pharmacology, and may have synergistic effects.

The small molecule tosyl-L-arginine methyl ester (TAME)
was described as an inhibitor of the APC E3 ligase required for
dismantling the spindle assembly checkpoint and completion
of mitotic division (71). TAME prevents depletion of cyclin
B1, thereby leading to mitotic arrest in metaphase. The next
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putative selective target of the ubiquitination–proteasome path-
ways is to target individual subunits of the E3 ligases. Although
no drugs with this activity have entered clinical trials, there is
significant research in this area.
FBP-specific inhibitors. The first report of an E3 ligase–targeting

drug identified SCF-I2, discovered by small-molecule interrogation
of the SCFCdc4 complex by its ability to displace the SCF from its
phosphodegron in a yeast system. This molecule antagonized
SCFCdc4, but not SCF complexes with related FBPs nor the
human ortholog, FBXW7 (72).

Another small molecule inhibits SCFFBXO3 by targeting the
FBXO3 C-terminal ApaG domain, a bacteria-like domain found
in only two other genes in humans. This compound, BC1215,
shows potent blockade of FBXO3 activity with a robust decrease
in TRAFs and downstream inflammatory mediators released
from endotoxin-stimulated human blood monocytes. BC-1215
effectively reduced inflammation and lung injury in preclinical
models of sepsis and ALI (30). This demonstration of a targeted,
and specific inhibitor to a single FBP requires further testing, but
if successful, has far-reaching implications and may set the stage
for a new genus of antiinflammatory drugs.

CONCLUSIONS

In summary, the UPS in lung biology is a fundamental area of re-
search and discovery. The activities of many E3 ligases and FBPs
remain unknown, andmanymore discoveries await us in the years
to come. However, it is becoming clear that protein processing via
the UPS plays a central role in most of the principal types of lung
disease (Table 1). Along with these newly described mechanisms
of pathobiology come significant advances in our strategies for
intervention to expand our arsenal of potential therapies. Al-
though treatment with UPS-targeting medications has thus far
been limited to hematologic malignancy, antiinflammatory agents

that act on some UPS component may become commonplace in
the next decade, especially as more selective compounds with
fewer side effects are identified. It is difficult to ascertain how
these innovations will impact medicine in the evolution of
UPS-targeting therapy; however, it seems that new genera-
tions of drugs acting on this important system will become
the mainstay of therapy for some diseases.
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