
In silico method for modelling metabolism and gene product
expression at genome scale

Joshua A. Lerman1,*, Daniel R. Hyduke1,*, Haythem Latif1, Vasiliy A. Portnoy1, nathan E.
Lewis1, Jeffrey D. Orth1, Alexandra C. Schrimpe-Rutledge2, Richard D. Smith2, Joshua n.
Adkins2, Karsten Zengler1, and Bernhard O. Palsson1

Bernhard O. Palsson: palsson@ucsd.edu
1Department of Bioengineering, University of California–San Diego, PFBH Room 419, 9500
Gliman Drive, La Jolla, California 92093-0412, USA
2Biological Sciences Division, Pacifc Northwest National Laboratory, Richland, Washington
99352, USA

Abstract
Transcription and translation use raw materials and energy generated metabolically to create the
macromolecular machinery responsible for all cellular functions, including metabolism. A
biochemically accurate model of molecular biology and metabolism will facilitate comprehensive
and quantitative computations of an organism's molecular constitution as a function of genetic and
environmental parameters. Here we formulate a model of metabolism and macromolecular
expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our
model accurately simulates variations in cellular composition and gene expression. Moreover,
through in silico comparative transcriptomics, the model allows the discovery of new regulons and
improving the genome and transcription unit annotations. Our method presents a framework for
investigating molecular biology and cellular physiology in silico and may allow quantitative
interpretation of multi-omics data sets in the context of an integrated biochemical description of an
organism.

A goal of systems biology is to provide comprehensive biochemical descriptions of
organisms that are amenable to mathematical enquiry1. These models may then be used to
investigate fundamental biological questions1, guide industrial strain design2 and provide a
systems perspective for analysis of the expanding ocean of omics data3. Over the past
decade, there has been steady progress in developing genome-scale models of metabolism
(M-Models) for basic research and industrial applications4–6. M-Models are stoichiometric
representations of the enzymatic and spontaneous biochemical reactions associated with an
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organism's metabolic network at the genome scale; however, M-Models do not
quantitatively describe gene expression (Fig. 1a). The lack of an explicit representation for
enzyme production precludes quantitative interpretation of omics data and can result in
biologically implausible predictions7,8. Because M-Models do not contain chemical
representations of transcription and translation, to date, it has only been possible to use
omics data as ad hoc constraints for enzyme activities9–12.

A modelling approach that accounts for the production and degradation of a cell's
macromolecular machinery will provide a full genetic basis for every computed molecular
phenotype (Fig. 1b). Such computations in turn enable the direct comparison of simulation
to omics data and the simulation of variable expression and enzyme activity13,14. In other
words, an integrated model of metabolism and macromolecular expression (ME-Model)
affords a genetically consistent description of a self-propagating organism at the molecular
level and moves us substantially closer to establishing a systems-level quantitative basis for
biology.

Here, we developed an ME-Modelling approach for the relatively simplistic microorganism,
Thermotoga maritima, which metabolizes a variety of feedstocks into valuable products
including H2 (ref. 15). T. maritima possess a number of characteristics conducive to
systems-level investigations of the genotype–phenotype relationship: a compact 1.8-Mb
genome16, wealth of structural proteome data17, a limited repertoire of transcription factors
(TFs)18 and reduced genome organizational complexity compared with other microbes (H.L.
et al., Unpublished data). Taken together, T. maritima's small set of TFs and reduced
genome complexity impose a narrowed range of viable regulatory and functional states
(H.L. et al., unpublished data). The existence of few regulatory states may simplify the
addition of synthetic capabilities and facilitate metabolic engineering efforts by reducing
unexpected and irremediable side-effects arising from genetic manipulation19. A
combination of metabolic versatility and genomic simplicity make T. maritima a promising
candidate for investigating fundamental relationships between molecular and cellular
physiology, both in silico and in vivo, and for the creation of a minimal chassis for chemical
synthesis20. Our T. maritima ME-Model simulates changes in cellular composition with
growth rate, in agreement with previously reported experimental findings21,22. We observed
positive correlations between in silico and in vivo transcriptomes and proteomes for the 651
genes in our ME-Model with statistically significant (P < 1 × 10−15 t-test) Pearson
correlation coefficients (PCC) of 0.54 and 0.57, respectively. And, when we used our ME-
Model as an exploratory platform for an in silico comparative transcriptomics study, we
discovered putative TF-binding motifs and regulons associated with L-arabinose (L-Arab)
and cellobiose metabolism, and improved functional and transcription unit (TU) architecture
annotation. Overall, ME-Models provide a chemically and genetically consistent description
of an organism, thus they begin to bridge the gap currently separating molecular biology and
cellular physiology.

Results
Genome-scale modelling of metabolism and expression

We developed a network reconstruction and modelling method that includes
macromolecular synthesis and post-transcriptional modifications in addition to metabolism
(Fig. 1c; Supplementary Methods). Specifically, our method accounts for the production of
TUs, functional RNAs (that is, transfer RNAs (tRNAs), ribosomal RNAs (rRNAs) and so
on) and peptide chains, as well as the assembly of multimeric proteins and dilution of
macromolecules to daughter cells during growth. Based on available genomic, structural
proteomic and biochemical literature we constructed an ME-Model for T. maritima that
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accounts for the functional activities of 50% of the annotated gene products and, more
importantly, mechanistically links these enzyme activities to the genome.

To accurately model self-replicating cells at the molecular level, it is necessary to account
for material dilution during cell division as a result of volume doubling, and to provide
limits on the number of proteins that may be translated from an messenger RNA before the
mRNA decays or is transmitted to a daughter cell. To approximate dilution of transcripts and
proteins to daughter cells and prevent infinite translation of peptides from an mRNA, we
devised a series of coupling constraints (Fig. 1d; Supplementary Methods). These
constraints effectively provide upper limits on enzyme expression and activity and are a
function of the organism's doubling time (Td). These coupling constraints may be tuned for
specific mRNAs or enzymes if their, respective, degradation rates or catalytic turnover
constants (kcat) are known.

Applications of M-Models often involve simulating log-phase cellular growth using flux
balance analysis (FBA)23,24. The organism's gross lipid, nucleotide, amino acid (AA) and
cofactors, as well as growth-associated and maintenance ATP usage, are experimentally
measured. Then, these measurements are integrated with the organism's Td to define a
biomass reaction that approximates the dilution of cellular materials during formation of
daughter cells. However, cellular composition is known to vary as a function of Td and
medium21—with Schaechter et al. indicating that Td is more influential than growth
medium.

Our ME-Model explicitly describes transcription, translation and the dilution of gene
products to daughter cells, thus it is unnecessary to use a gross biomass production reaction
when simulating growth. Instead, ME-Models contain a structural reaction that accounts for
the dilution of structural materials (that is, DNA, cell wall, lipids and so on) during division
and the energy cost associated with cellular maintenance of the structure (Supplementary
Table S1). Conceptually, this structural reaction approximates the production of a cell whose
composition varies as a function of environment and growth rate (Fig. 2a).

Molecularly efficient simulation of cellular physiology
The RNA-to-protein mass ratio (r) has been observed to increase as a function of specific
growth rate (μ)21,22 and decreases as a function of translation efficiency22. Schaechter et al.
also observed an increase in the number of ribonucleoprotein particles with increasing μ,
whereas the translation rate per ribonucleoprotein particle was relatively constant21.
Theincrease in r and ribonucleoproteins may be due to the reduced number of translation
events mediated by a ribosome as Td decreases.

To ascertain whether our ME-Model recapitulated the observed increases in r, ribosomal
RNA and proteins with increasing μ, we simulated a range of growth rates in a defined
minimal medium25 (Supplementary Table S2). To simulate the molecular physiology of T.
maritima for a particular μ, we used FBA24 subject to linear programming optimization26 to
identify the minimum ribosome production rate required to support a given μ (Fig. 2b).
Ribosome production has been shown to be linearly correlated with growth rate in
Escherichia coli22,27,28. Assuming that efficient use of enzymes contributes to the fitness of
an evolutionarily adapted lineage29, we would expect a successful organism to produce the
minimal amount of ribosomes required to support expression of the proteome.

Consistent with experimental observations21,22, our ME-Model simulated an increase in r
with increasing μ and with decreasing translation efficiency (Fig. 3a). We observed that the
fraction of the transcriptome associated with ribosomal RNA in silico increased with μ (Fig.
3b). In addition, the ribosomal proteins account for a larger proportion of the total proteome
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as μ increases (Fig. 3c). These results indicate that it is possible to mechanistically model
changes in cellular physiology that have only recently yielded to phenomenological
modelling22.

With M-Models, the cellular macromolecular composition is constant, ergo they cannot
reproduce the observed increases in r or ribosomes with increasing μ. Although it is possible
to empirically determine a relationship between gross biomass composition and μ and then
use this relationship to study variable composition in M-Models30, the M-Models will
compute a solution space where the range of activity for a number of enzymes may be rather
broad and even infinite7, if not specifically constrained. The biologically implausible
sections of the M-Model solution space are due, in large part, to unconstrained
thermodynamically infeasible internal loops that can operate at an arbitrary flux level8.
These arbitrary activities contradict previous observations that efficient organisms should
maintain a minimal total flux through their biochemical network29,31.

By explicitly accounting for enzyme expression and activity, ME-Model simulations should
identify the set of proteins that will result in optimally efficient conversion of growth
substrates into cells. To determine whether our ME-Model was more economic in terms of
enzyme usage than the M-Model, we compared our ME-Model simulation to a random
sampling of the M-Model solution space7. After we fit a normal distribution to the sampled
M-Model space, we found that there is a small (2.1 × 10−5) probability of finding an M-
Model solution as efficient as the ME-Model solution (Fig. 3d). Because ME-Models
explicitly account for the costs of enzyme expression and dilution to daughter cells, the most
efficient growth simulations will minimize the materials required to assemble the cell; that
is, ME-Models will efficiently use enzymes when simulating a μ.

To compare the range of permissible, that is, computationally feasible, activity for each
metabolic enzyme in the ME-Model versus the M-Model, we performed flux variability
analysis. Flux variability analysis identifies the flux range that each reaction may carry
given that the model must also simulate the specified objective value, such as μ, with a set
tolerance. The permissible enzyme activities for simulating efficient growth with a 1%
tolerance tended to have smaller ranges in the ME-Model compared with the M-Model (Fig.
3e; Supplementary Data 1), highlighting the sharply reduced flexibility in the ME-Model
solution space when simulating optimal growth.

Our ME-Model contains gene products that carry out 142 of the 206 functions estimated as
essential for a minimal organism32, whereas the M-Model contains only 65 of these core
functions. With the ME-Model, 120 of the 142 functions were essential for ribosome
production, whereas only 23 of the 65 functions in the M-Model were essential for biomass
production (Supplementary Data 2). This broader coverage of cellular functions means that
ME-Models may be used for in silico investigations of phenotypic states that are
inaccessible to M-Models.

Gene product production and turnover alters pathway activity
In addition to simulating variable cellular composition and effectively eliminating the
infinite catalysis problem, there are a number of metabolic activities that are required for
optimally efficient growth with the ME-Model but not with the M-Model (Fig. 4). These
differences are due to the ME-Model producing small metabolites as by-products of gene
expression and explicitly accounting for the material and energy costs of macromolecule
production and turnover. The ME-Model includes metabolic activities for recycling S-
adenosylhomocysteine, which is a by-product of rRNA and tRNA methylation, and guanine,
which is a by-product of queuosine modification of various tRNAs (Fig. 4a). The ME-
Model, also, produces CTP from CMP that is produced during mRNA degradation (Fig. 4b).
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Interestingly, the M-Model does not require CDP production to simulate growth, whereas
CDP production is essential in the ME-Model. The ME-Model exhibits frugality with
respect to central metabolic reactions (Fig. 4c) and proposes the canonical gylcolytic
pathway during efficient growth, whereas the M-Model indicates that alternate pathways are
as efficient. When the efficiency requirement is relaxed these less-efficient pathways may be
active in the ME-Model solution space (Supplementary Data 1). The genes associated with
optimal activities tended to be strongly expressed (approximately 60th–90th percentile) in
transcriptome data.

These differences highlight the interplay between macromolecular synthesis and
degradation, metabolism and salvage, and optimal use of the proteome. The ME-Models
allow a fine resolution view of these processes and their simultaneous reconciliation. Not
only can one analyse specific pathways in isolation, such as the three examples given above,
but it is now possible to investigate in detail the coordination of functions within an
organism's biochemical repertoire.

Simulation of systems-level molecular phenotypes
To assess our ME-Model's ability to simulate systems-level molecular phenotypes, we
compared model predictions to substrate consumption, product secretion, AA composition,
transcriptome and proteome measurements. With the only external constraints for the ME-
Model being the experimentally determined μ during log-phase growth in maltose minimal
medium at 80 °C, our model accurately predicted maltose consumption and acetate and H2
secretion (Fig. 5a; Supplementary Table S3). Predicted AA incorporation was linearly
correlated (0.79 PCC; P < 4.1 × 10−5 t-test) with measured AA composition (Fig. 5b).

FBA simulates reaction fluxes, whereas transcraiptomics and proteomics technologies
provide semiquantitative measurements of expressed gene product abundance. Thus, the
simulated fluxes through the transcriptome and proteome do not directly approximate the
respective omics measurements; however, for macromolecules there should be a positive
correlation between gene and protein synthesis fluxes and the respective gene product
abundances during log-phase growth. In other words, proteins and genes are relatively stable
and when an organism is growing at steady state a relative increase in expression rate for a
protein will effectively increase the quantity of that protein.

Interestingly, when we compared the simulated transcriptome and proteome fluxes to
transcriptome and proteome measurements, respectively, there were statistically significant
(P < 2.2 × 10−16 t-test) positive correlations for both the transcriptome (0.54 PCC; Fig. 5c)
and the proteome (0.57 PCC; Fig. 5d). This degree of concordance was unexpected because
the model does not account for transcriptional regulation or transcript-specific RNA
degradation rates. However, this concordance may be the result of our simulation objective
being aligned with T. maritima's regulatory programme, whereas a decreased concordance
would be expected if the regulatory network was responding to a stress. We have previously
observed a tendency to increase the expression of metabolically efficient pathways, and
decrease inefficient alternatives, by E. coli After adaptive evolution under growth selection
pressure31. Also, we have observed that T. maritima's genome is highly active with > 89%
of the protein-coding genes expressed in diverse conditions (H.L. et al., Unpublished data),
which could indicate a general eschewal of complex and expensive circuitry within the
global regulatory strategy.

Approximately 30% of T. maritima's genome is not functionally annotated and 50% of the
functionally annotated genes fall outside of the scope of our ME-Model. A number of genes
not accounted in our model were expressed in vivo (Supplementary Fig. S1), and the costs
of their expression as well as their functional activities may contribute to the differences

Lerman et al. Page 5

Nat Commun. Author manuscript; available in PMC 2013 November 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between simulation and measurement. In addition, unknown regulatory features might be
responsible for irregularities observed when comparing simulation to the measurement. For
instance, ribosomal RNAs and proteins are expected to be expressed at stoichiometric ratios,
as occurs with the simulation, yet there is sizable variability in their measured values (Fig.
5c,d, blue colouring). These results illustrate that it is possible to sketch a molecular
description of a replicating organism solely from simple, but stoichiometrically accurate,
chemical equations represented on a genome scale.

In silico gene expression profiling drives discovery
With our ME-Model it is now possible to compute the gene expression profile associated
with growth in a specific condition or for a specific mutant. These gene expression profiles
may then be compared to identify genes that are likely differentially regulated. The set of
differentially expressed in silico genes may then be used to drive biological discovery or
improve our model (Fig. 6).

Towards this end, we computed the transcriptome profiles for T. maritima grown in a
minimal medium with either L-Arab or cellobiose as the sole carbon source (Fig. 6a). Our
computations identified genes that were exclusively expressed and essential for growth with
each carbon source. Because these genes are essential for growth on the respective substrate
they are conditionally essential genes. Conditionally essential genes are often subject to
transcriptional regulation, however, they may be constitutively expressed. To assess whether
the genes were differentially expressed in vivo, we measured the transcriptome of T.
maritima growing in minimal medium with L-Arab or cellobiose as the carbon source. The
genes with the strongest differential expression in vivo were among the set of differentially
expressed genes in silico (Fig. 6b) providing supporting evidence for the presence of
transcriptional regulation.

Conditionally expressed genes may be regulated by the same TF33. Thepresence of a
common motif in the promoter regions of a set of genes may indicate regulation by a
common TF. To identify potential TF-binding motifs, we scanned the promoter and
upstream regions of the in silico differentially expressed genes with MEME (Multiple
Expectation Maximum for Motif Elicitation)34. Surprisingly, there was a high-scoring motif
for the genes essential for growth on L-Arab and a high-scoring motif for the genes essential
for growth on cellobiose (Fig. 6c). The motif found upstream of the L-Arab upregulated
genes is similar to the AraR motif from Bacillus subtilis35 (Supplementary Fig. S2). Also,
the motif upstream of the cellobiose upregulated genes bears resemblance to catabolite-
responsive elements (cres), known to have an important global role in catabolite repression
through the binding of the CcpA protein in B. subtilis36. Here, we term the motif the CelR
motif, as the regulated genes are involved in cellobiose metabolism. These discoveries
highlight how ME-Model simulations can guide discovery of new regulons.

After identifying the putative AraR and CelR motifs, we scanned T. maritima's genome for
the presence of other members of the putative regulons. For the nondegenerate AraR motif
5′-GTACG TAC-3′, we identified a single additional instance in an intergenic region
upstream of the TU-containing genes TM0277, TM0278 and TM0279 (Fig. 6d). These
genes were induced when L-Arab was the carbon source, but not when cellobiose or maltose
serves as the carbon source (Supplementary Fig. S3). L-Arab transport is an orphaned
activity in our model, which means that T. maritima may import L-Arab, however, the
responsible loci are not known. When we examined these genes using the SEED RAST
server37, TM0278 and TM0279 were classified as permeases of an ABC transporter
putatively involved in L-Arab utilization, whereas TM0277 was not classified because it was
annotated as containing an authentic frameshift38. Recent resequencing of T. maritima's
genome (H.L. et al., Unpublished data) refute the initial annotation that TM0277 contains a
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frameshift mutation; and the SEED RAST annotation for TM0277 is a predicted sugar-
binding protein for an arabinoside ABC transporter. Interestingly, the TUs containing ABC
transporters for maltose and chitobiose are organized in the same manner: a binding protein
followed by two permeases. The presence of the AraR motif, the strong upregulation of the
TM0277/TM0278/TM0279 TU in response to L-Arab in vivo, the SEED RAST
classification and resequenced genome strongly suggest that we have identified a functional
L-Arab transport system in this organism. This discovery illustrates how in silico molecular
biology at the genome scale can be used to expand regulons and improve genome
annotation.

When we scanned T. maritima's genome for matches to the degenerate CelR motif
TGWAAAYRTTTWCA, the promoter regions of TUs associated with cellobiose
metabolism were identified. Interestingly, the promoter region of the TU-containing
TM1222, TM1221, TM1220, TM1219 and TM1218 did not contain a CelR motif (Fig.
6c,d). TM1222, TM1221, TM1220 and TM1219 encode for a cellobiose ABC transporter,
while TM1218 is annotated as a LacI family transcription regulator. However, the promoter
region of the TU for TM1233, which is directly upstream of TM1222, contains the CelR
motif. TM1233 encodes for the cellobiose-binding protein that facilitates cellobiose
transport. In the TU architecture of our model, there was a predicted Rho-independent
terminator following TM1223 that resulted in a new TU starting with TM1222. However, no
promoter was detected in the intergenic region between TM1223 and TM1222 using
PromBase39. Thisresult leads us to believe that the initial assignment of TM1223 and
TM1222 to separate TUs was incorrect (Fig. 6d). The presence of the cellobiose transport
system in the updated TU, the strong CelR motif and the annotation of TM1218 as a TF
suggest that TM1218 may encode for CelR.

Discussion
Our ME-Modelling approach represents a fundamental advance in the evolution of genome-
scale biochemical models of life and significantly broadens the scope of microbial systems
biology. It is now possible to ask systems-level questions in silico beyond metabolism and
quantitatively analyse, in a bottom-up and mechanistic manner, a variety of omics data in
the context of a growing organism. For instance, we can use a systems perspective to
identify the minimal number of genes required to support homeostasis and replication— 120
of the 142 of the proposed minimal bacterial genome32 were essential for ribosome
production in maltose minimal medium (Supplementary Data 2).

Not only can ME-Models predict global phenotypes that are traditionally employed with M-
Models, such as maximal growth rate in a defined medium, but they can also be used to
calculate whether the system has any material and energy reserves available for ancillary
functions. For example, the measured maltose consumption rate was greater than the one
that we calculated for economically efficient growth (Fig. 5a). This discrepancy between
measurement and simulation could indicate that T. maritima does not strive for economic
efficiency or represent the portion of sugar used to support the activities of the unannotated
genes or regulatory circuitry. Given that the expression levels for the gene products
associated with the more efficient pathways were highly expressed (Fig. 4c), we are
disposed towards the latter. Although the ME-Model does not account for regulatory events,
the presence of a strong discordance between simulation and measurement would indicate
that factors other than economic efficiency are influencing the expressome, thus informing
hypothesis generation. For example, if a more expensive isozyme was expressed in vivo
than in silico, then it would be possible to estimate the improvement in kcat required for the
expensive isozyme to offset its higher materials and energy costs.
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Technological advances have contributed to an expanding ocean of omics data that has been
under-explored3. Omics data have been under-analysed, in part, due to the lack of a
mechanistic systems-level framework for analysing myriad molecular components in the
context of cellular physiology. To date, with the notable exception of C13 metabolic flux
analysis, it has only been possible to perform indirect comparative analysis between omics
data and M-Models31 or to neglect the complexity of the genotype–phenotype relationship
and use omics data as ad hoc constraints for M-Model enzyme activities9–12. Because ME-
Models explicitly represent gene expression, directly investigating omics data in the context
of the whole is now feasible.

Viewing multi-omics data in the context of biochemically and genomically consistent ME-
Models may allow us to extract more value from legacy and future omics data. Comparing
in silico and in vitro transcriptomes, or proteomes, can highlight under-explored areas of
molecular biology. For example, a set of genes highly expressed in silico but not expressed
in vivo may indicate the presence of transcriptional regulation. Differential expression of a
class of genes may indicate incompleteness in our knowledge of how those gene products
interact or allude to, heretofore unknown, moonlighting functions. For instance, in the case
of ribosomal proteins (Fig. 5c,d, blue) the model predicts uniform expression, whereas
omics measurements exhibit variability. The model was designed based on evidence that
ribosomal protein synthesis is highly coordinated40, and does not account for feedback
circuits affecting degradation rates that have yet to be fully elucidated40,41.

Although there is a positive correlation between the simulated transcriptome fluxes and
semiquantitative transcriptome data there was still a substantial amount of dispersion (Fig.
5c). When comparing in silico and in vivo transcriptome measurements it is important to
realize that both are approximations of the transcript levels in an organism, and that omics
technologies have been inherently noisy to date42. Incomplete knowledge, such as a lack of
specific translation efficacy for each protein and degradation rates for each mRNA, and lack
of signalling and regulatory circuitry will contribute to deviations from reality by ME-Model
simulations. Similarly, probe-binding and sample-labelling efficacies, as well as other
technical issues, serve as barriers to absolute quantitative transcriptome measurements43.

Although it is a non-trivial endeavour to identify the source of all variation between the
simulated and measured transcriptomes, it is possible to use the ME-Model for comparative
transcriptomics approaches similar to two-channel DNA microarray studies. Despite the
early technological limitations of DNA microarrays, biological discovery was enabled by
performing comparative transcriptomics44–47. Transcriptome profiling has been used
extensively to identify genes that are differentially regulated as a function of genetics and
environment44. Analysis of differentially expressed genes has contributed to the
identification of gene products responsible for unannotated enzymatic activities45. In
combination with sequence analysis, differential gene expression data can be used to
investigate transcriptional regulation46,47.

We devised and implemented a workflow for in silico comparative transcriptomics, which
resulted in the discovery of new regulons and improved both genome and TU annotation
(Fig. 6a–d). The similarities between the comparative transcriptomics in silico (Fig. 6a) and
in vivo (Fig. 6b) studies are striking, given the variation observed between the simulated and
measured transcriptomes (Fig. 5c)—this emphasizes that, in spite of its shortcomings, the
ME-Modelling framework is a powerful tool for biological research.

Finally, ME-Models enable integrated molecular biology on a genome scale while
accounting for the metabolic requirements, which partially fulfills the challenge of Project
K48 and moves us one step closer to a molecular representation of CellMap1.
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Methods
Network reconstruction procedure

The detailed procedure and formalism are described in detail in the Supplementary Methods.
Our method accounts for biochemical reactions associated with transcription of TUs, TU
degradation, translation, protein maturation, RNA processing, protein complex formation,
ribosomal assembly, rRNA modification, tRNA modification, tRNA charging, aminoacyl-
tRNA synthetase charging, charging EF-TU, cleavage of polycistronic TUs to release stable
RNA products, sources, sinks and tRNA activation (EF-TU) as well as metabolism. In our
formalism, metabolic reactions are represented as multi-step processes including substrate
binding by the enzyme and dissociation of substrate–enzyme complex to enzyme and
products. The metabolic content for our reconstruction was based on the previously
published model17, with updates to correct errors and incorporate new data (Supplementary
Data 3).

Te molecular machinery (for example, proteins, genes, RNAs) involved in macromolecular
synthesis were identified from the genome annotation16, SEED subsystem analysis49,
comparative genomics analysis of the E. coli model28 and KEGG38. Thefunctions of each of
the 159 proteins associated with macromolecular synthesis in T. maritima were determined
by primary literature when available. When no primary literature was available, the
Uniprot50 and SEED49 databases were used to infer function by homology. All proteins
currently believed to be used for macromolecular synthesis by T. maritima are enumerated
in Supplementary Data 4, and 93% of these genes are mechanistically linked in our ME-
Model.

Te reactions associated with transcription and translation, including initiation,
biopolymerization and termination, were generated from the genome sequence and a set of
T. maritima template reactions (Supplementary Methods). In our modelling formalism,
reversible reactions were represented as two unique reactions: one for the forward direction
and one for the reverse.

Protein complexes
For each functional protein, we used primary literature and the RCSB Protein Data Bank51
to determine whether the machine was a monomer or oligomer. The Protein Data Bank
entries provided an opportunity to integrate 3D structural data into our reconstruction (this
model includes structures for 32 additional open reading frames compared with Zhang et
al.). When data for multimeric state were unavailable for a protein of interest, state data for
orthologs from closely related organisms were used; otherwise, the Uniprot database50 was
consulted. In the absence of data providing insight into the multimeric state of the protein,
we assumed that the functional protein was a monomer.

Genetic code determination
From inspection of tRNA sequences and structures downloaded from the transfer RNA
database52, we determined that T. maritima uses uniform-GUC decoding with only 46 tRNA
genes (see Supplementary Data 5). In both Archaea and Bacteria, but not in Eukarya, the
conversion of C34 of a CAU-anticodon to lysidine (k2C) or analogue generates an anticodon
for isoleucine53. TMtRNA-Met-2 was assigned this role based on a strong sequence
alignment to E. coli tRNAs containing k2C.TheT. maritima genome encodes two additional
tRNA genes with CAU anticodons, TMtRNA-Met-1 and TMtRNA-Met-3. Based on
structural similarity54 to those found in a crystal structure of E. coli's formyl-methionyl-
tRNAfMet55, TMtRNA-Met-1 may be involved in translation initiation, therefore,
TMtRNA-Met-3 was designated to participate in translation elongation.

Lerman et al. Page 9

Nat Commun. Author manuscript; available in PMC 2013 November 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



TU architecture determination
We assembled a draft TU architecture (Supplementary Data 6) for T. maritima based on a
series of rules (Supplementary Methods). In short, we assumed all TUs start with a gene
start and proceed until one of the following conditions is met: (1) two genes are found in
convergent orientation on different strands, (2) two genes are found in divergent orientation
on different strands, (3) a high-confidence Rho-independent transcription terminator is
found separating two genes oriented in series on the same strand, (4) more than 55 base pairs
separate two genes in series on the same strand or (5) experimental evidence indicates a TU
boundary. Finally, to reflect the possibility of internal transcription start sites in TUs
reconstructed using the rules above, we added an additional TU in cases where a high-
confidence promoter was found in the region separating two genes oriented in series on the
same strand.

In silico molecular biology
Log-phase growth simulations were performed using FBA24. Linear programming was used
to identify the maximum μ or minimum ribosome production flux supporting a particular μ
from the components of the in silico minimal media. Because of the presence of fast
(metabolic) and slow (macromolecular synthesis) timescale reactions, the parameters in the
ME-Model span a wide range that can result in inaccurate simulations due to floating point
limitations of currently available floating point linear programming software
(Supplementary Methods). To remove the possibility of simulation results being artefacts
arising from floating point limitations, we used the exact simplex routines available in the
QSopt_ex package26, with default parameter settings for ME-Model simulations. The
predicted transcription level of a gene was determined by summing across the sink fluxes of
TUs containing the gene, which is equivalent to the transcription fluxes less the TU
degradation fluxes. Translation levels were reported as the sum across the relevant
translation initiation fluxes, as many TUs can contribute to the production of a given protein.
These values were compared with each other in the case of simulated nutrient shifts or to the
abundances reported experimentally.

In vivo methods
T. maritima MSB8 (ATCC: 43589) was grown in 500 ml serum bottles containing 200 ml of
anoxic minimal media with 10 mM maltose, l-arabinose or cellobiose as the sole carbon
source at 80 °C. All samples were collected during log-phase growth. Substrate uptake and
by-product secretion rates, compositional analyses, and transcriptome and proteome
measurements were performed as described in the Supplementary Methods. Transcriptome
data have been submitted to the NCBI Gene Expression Omnibus (accession ID:
GSE28822) and processed values are in Supplementary Data 7. Proteomics data are
available through Pacific Northwest National Laboratory (http://omics.pnl.gov) and
processed values are in Supplementary Data 8.

RNA modifications
A variety of post-transcriptional modifications of rRNAs are represented in our model. For
16S rRNA, there was experimental evidence for ten modifications56 in this organism
(Supplementary Table S4). The locations of pseudouridines, which are mass silent, were not
available, but an 11th modification, U to Y at position 516, was included in the
reconstruction based on the fact that it is well conserved in bacteria and the alignment
(Supplementary Data 9) supports its inclusion. An unusual derivative of cytidine-designated
N-330 has been sequenced to position 1,404 (ref. 56) in the decoding region of the 16S
rRNA. This modified nucleoside was excluded from the reconstruction as the exact chemical
composition of the modification is unknown. We were unable to find organism-specific
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literature supporting modifications to the 5S and the 23S rRNA. Modifications to 5S rRNA
are infrequent in bacteria57. Attempting to extrapolate 23S rRNA modifications from E. coli
was relatively unsuccessful as alignment via ClustalW258 showed significant differences
near many of the putative modification sites (Supplementary Data 10). The alignment
reveals that the 23S rRNA of T. maritima is significantly longer (> 100 bp) than that of E.
coli. Only three proteins with annotated roles in modifying the 23S rRNA were added to the
model for a total of six modifications (Supplementary Table S5). Those were TM0940,
TM0462 and TM1715.

Post-transcriptional modification of tRNA also requires a significant investment in genes,
enzymes, substrates and energy59. We included a variety of modifications (Supplementary
Table S6) in our model based on bioinformatics predictions and literature evidence
(Supplementary Table S7).

Sensitivity analysis
To explore the influence of some of the newly introduced parameters on model output, the
bulk parameters used for the coupling constraints (Supplementary Methods) were varied
(two-, four- and eight-fold increases and decreases away from the parameter set used). The
results are summarized in Supplementary Fig. S4.

File formats
Our final model is available as a Systems Biology Markup Language (SBML) XML file
(Supplementary Data 11). The model is also available as an LP file (Supplementary Data 12)
for use with linear programming solvers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-scale modelling of metabolism and expression
(a) Modern stoichiometric models of metabolism (M-Models) relate genetic loci to their
encoded functions through causal Boolean relationships. The gene and its functions are
either present or absent. The dashed arrow signifies incomplete and/or uncertain causal
knowledge, whereas blue arrows signify mechanistic coverage. (b) ME-Models provide
links between the biological sciences. With an integrated model of metabolism and
macromolecular expression, it is possible to explore the relationships between gene
products, genetic perturbations and gene functions in the context of cellular physiology. (c)
models of metabolism and expression (ME-Models) explicitly account for the genotype–
phenotype relationship with biochemical representations of transcriptional and translational
processes. This facilitates quantitative modelling of the relation between genome content,
gene expression and cellular physiology. (d) When simulating cellular physiology, the
transcriptional, translational and enzymatic activities are coupled to doubling time (Td)
using constraints that limit transcription and translation rates as well as enzyme efficiency.
τmRnA, mRnA half-life; kcat, catalytic turnover constant; ktranslation, translation rate; ν,
reaction flux.
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Figure 2. Comparison of M- and ME-Models objective functions and assumptions
(a) M-Models simulate constant cellular composition (biomass) as a function of specific
growth rate (μ), whereas ME-Models simulate constant structural composition with variable
composition of proteins and transcripts. (b) Linear programming simulations with M-
Models are designed to identify the maximum μ that is subject to experimentally measured
substrate uptake rates. only biomass yields are predicted as μ enters indirectly as an input
through the supplied substrate uptake rate (see the measurement column for M-Models).
Importantly, the substrate uptake rate is derived by normalizing to biomass production.
Linear programming simulations with ME-Models aim to identify the minimum ribosome
production rate required to support an experimentally determined μ. μ enters into the
coupling constraints and so it must be supplied (or sampled) as the problem would otherwise
be a nonlinear Program (nLP). As all M-Models reactions are contained within the ME-
Models, ME-Models can simulate all M-Models objectives in addition to the broad range of
objectives associated with macromolecular expression.
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Figure 3. Simulation of variable cellular composition and efficient use of enzymes
(a) With our ME-Model, the RnA/protein ratio increases linearly with growth rate and with
a slope proportional to translational capacity in amino acids per second (circles: 5 AA/s,
squares: 10 AA/s, triangles: 20 AA/s). (b) Ribosomal RNA (rRnA) synthesis increases,
relative to total RNA synthesis, with growth rate (symbols as in a). (c) Ribosomal protein
promoter activity increases, relative to total RNA synthesis, with growth rate (symbols as in
a). (d) Random sampling of the M-Model solution space indicates that the M-Model
solution space contains numerous internal solutions with a broad range of total network flux.
The probability of finding an M-Model solution as efficient as an ME-Model simulation is
2.1 × 10−5; the probability was calculated from a normal distribution constructed from the
M-Model sample space. The M-Model sample contains 5,000 flux vectors randomly
sampled from the M-Model solution space. (e) smooth estimate of the density of the flux
ranges for the metabolic enzymes that may be simulated while maintaining the objective for
efficient growth with a 1% tolerance (M-Model: red line, ME-Model: blue line). The shaded
area denotes biologically unrealistic flux values. All simulations were performed with an in
silico minimal medium with maltose as the sole carbon source.
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Figure 4. Metabolic reactions required for efficient growth with the ME-Model but not the M-
Model
(a) Recycling of by-products of RNA modifications. Adenosylhomocysteinease (SAHase)
hydrolyses S-adenosylhomocysteine (SAH) to L-homocysteine (L-HCys) and adenosine.
Purine nucleoside phosphorylase (PNP) phosphorylases adenosine to adenine and ribose-1-
phosphate (Rib-1-P). Rib-1-P is converted to ribose-5-phosphate (Rib-5-P) by
phosphopentomutase (PPm). Phosphoribosylpyrophosphate synthetase (PRPPs)
phosphorylates Rib-5-P to produce 5-phosphoribosol-1-pyrophosphate (PRPP). Guanine
phosphoribosyltransferase (GPT) produces GMP from the reaction of PRPP and guanine,
which is a by-product of tRnA metabolism. (b) CmP produced during mRnA degradation is
recycled to CTP using cytidylate kinase (CMPK) and nucleoside-diphosphate kinase (NDK-
CDP). (c) The ME-Model uses the canonical glycolytic pathway, whereas with the M-Model
can circumvent portions during optimal growth simulations. The canonical pathway involves
phosphorylation of D-glucose (D-Glc) to glucose-6-phospate (G6P) by hexokinase (HK1).
G6P is isomerized to fructose-6-phosphate (F6P) by phosphoglucose isomerase (PGI). F6P
is phosphorylated to fructose-1,6-bisphosphate (FBP) by phosphofructokinase (PFK). FBP is
metabolized to glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate
(DHAP) by FBP aldolase (FBA). The M-Model can circumvent the HK1/PGI portion with
glucose/xylose isomerase (GXI) and fructokinase (FRK); however, HK1 or PGI must also
be expressed because G6P is an essential metabolite. PFK can be circumvented by
diphosphate-fructose-6-phosphate 1-phosphotransferase (PPi-PFK). FBA can be
circumvented by a pathway using 1-phosphofructokinase (FRUK), fructose-1-phosphate
aldolase (FPA), alcohol dehydrogenase (ADH(glycerol)), glycerol kinase (GLYK),
glycerol-3-phosphate dehydrogenase (GPDH) and triose phosphate isomerase (TPI).
Enzyme commission numbers are provided for each reaction. mRNA and protein expression
(and quantile) values are provided. Flux variability analysis was performed for simulated
growth on maltose minimal medium. Blue arrows: reactions required for optimally efficient
growth with the ME-Model, but not the M-Model. Green arrows: active reactions in a single
maltose minimal medium simulation shown to put results into pathway context. Grey
arrows: alternate optimal pathways in the M-Model.
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Figure 5. The ME-Model accurately simulates molecular phenotypes during log-phase growth
(a) The ME-Model accurately simulates H2 and acetate secretion with maltose uptake when
constrained with a measured growth rate (n = 2). Experiment: grey bars, simulation: black
bars. (b) The in silico ribosome incorporates the 20 amino acids at rates proportional
(Pearson correlation coefficient = 0.79; P < 4.1 × 10−5 t-test) to the bulk amino-acid
composition of a T. maritima cell as measured by high-performance liquid chromatography
(n = 1). (c) simulated transcriptome fluxes are significantly (P < 2.2 × 10−16 t-test) and
positively correlated (Pearson correlation coefficient = 0.54) with semiquantitative in vivo
transcriptome measurements (n = 4). RnAs containing ribosomal proteins (blue) were
expressed stoichiometrically in simulations but exhibited variability in measurements. (d)
simulated translation fluxes are significantly (P < 2.2 × 10−16 t-test) and positively
correlated (Pearson correlation coefficient = 0.57) with semiquantitative in vivo proteomic
measurements (n = 3). Ribosomal proteins (blue) were expressed stoichiometrically in
simulations but exhibited variability in measurements.
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Figure 6. In silico transcriptome profiling drives biological discovery
(a)In silico comparative transcriptomics identifies sets of genes that are differentially
regulated for growth in L-arabinose (L-Arab) versus growth in cellobiose minimal media.
Tm0276, Tm0283 and Tm0284 are essential for metabolizing l-Arab, whereas TM1219–
TM1223, TM1469 and TM1848 are essential for metabolizing cellobiose. (b)In vivo
transcriptome measurements (n = 2) confirm the in silico transcriptomics predictions for
differential expression of genes when metabolizing l-Arab or cellobiose. (c) Two distinct
putative TF-binding motifs are present upstream of the TUs containing genes differentially
expressed in silico when simulating growth in l-Arab versus cellobiose minimal media. The
motif upstream of the genes upregulated during growth in l-Arab medium is termed AraR,
whereas the motif of the genes upregulated during growth in cellobiose medium is termed
CelR. Genes (grey: not in the model, green: upregulated by l-arabinose, red: upregulated by
cellobiose) organized into TUs involved in the shift are shown. Each TU contains a
promoter region (circle) arbitrarily taken to be 75 base pairs upstream of the first gene in the
TU. Promoters found to contain the AraR or CelR motifs are coloured blue and purple,
respectively. (d) searching T. maritima's genome for additional AraR and CelR motifs
results in new biological knowledge. Although T. maritima can metabolize l-Arab, there is
no annotated transporter in the current genome. We identified a putative AraR motif in a
single TU (Tm0277/0278/0279) not contained in the ME-Model. Analysis of the
Tm0277/0278/0279 TU with the SEED RAST server indicated that the genes are likely
components of an ABC transporter that may be associated with l-Arab transport. The CelR
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motif was not present in the promoter region upstream of the cellobiose transporter operon
(Tm1218/1219/1220/1221/1222); however, the CelR motif was present in the promoter of
the TU (TM1223) directly upstream of the cellobiose transport operon. Examination of the
in vivo transcriptome measurement indicates that the cellobiose transporter operon belongs
to the same TU as that of TM1223.
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