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Glycosylation changes on serum
glycoproteins in ovarian cancer may
contribute to disease pathogenesis
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Abstract. Ovarian cancer is the most lethal of all gynaecological cancers among women. Serum CA125 is the only biomarker
that is used routinely and there is a need for further complementary biomarkers both in terms of sensitivity and specificity.
N -glycosylation changes in ovarian cancer serum glycoproteins include a decrease in galactosylation of IgG and an increase in
sialyl Lewis X (SLex) on haptoglobin β-chain, α1-acid glycoprotein and α1-antichymotrypsin. These changes are also present in
chronic inflammation but not in malignant melanoma, where there are low levels of inflammatory processes. Acute phase proteins
carrying increased amounts of SLex have an increased half-life. Sialylation of acute phase proteins also decreases apoptosis
favouring survival of cancer cells. Cancer cells produce inflammatory cytokines which influence glycosylation processing in
liver parenchymal cells. Altered glycosylation of the acute phase protein transferrin plays an important role in iron homeostasis.
Glycosylated transferrin and its glycans have anti-apoptotic properties and many transferrin receptors in carcinoma could play a
role in development of anaemia. Decreased galactosylation and sialylation of IgG increases the cytotoxicity of natural killer cells
and complement activation via mannose-binding lectin (MBL). Altered glycosylation of acute phase proteins and IgG suggests
that cancer regulates certain pathways favouring cancer cells survival.
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1. Introduction

Ovarian cancer is the most lethal of all gynaecolog-
ical cancers among women, according to UK cancer
mortality statistics [1]. Most patients are diagnosed in
an advanced stage of the disease [34]. Patients with
early diagnosed ovarian cancer have a 90% 5-year-
survival rate, whereas in advanced stages III and IV,
this decreases to 30% [34].

The majority of ovarian cancers develop on the ovar-
ian surface [105]. Factors which increase the risk of
ovarian cancer include: (i) More years of ovulation (no
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children, no usage of contraceptive pills, early menar-
che and late menopause); (ii) Inflammation of the re-
productive organs; (iii) Talc and asbestos exposure; (iv)
Endometriosis [96]; (v) A family history of ovarian,
breast (mutation of genes BRCA1 and BRCA2) or oth-
er gynaecological cancer; (vi) For a small percentage
of patients, colon cancer [78]; (vii) Use of oestrogen
for more than 10 years after the menopause in hormone
replacement therapy [111].

Ovarian cancer is usually diagnosed by ultrasonog-
raphy, the serum biomarker CA125 or a combination of
both [34]. CA125 is currently the best marker for ovar-
ian cancer. It is elevated in 80–90% of ovarian cancer
patients and the level correlates with the stage of the
disease. However, CA125 is not reliable for detecting
early stage cancers. It is also higher in non-mucinous
tumours than in mucinous ones and can lead to a false
positive response in benign conditions, pregnancy and
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Fig. 1. Tumour antigens – sialyl Lewis x (SLex), sialyl Lewis a (SLea), sialyl Tn, Lewis y (Ley), polysialic acid (PSA) and globo H [149]
R indicates where carbohydrate is linked to the polypeptide chain and Cer is where carbohydrate is linked to the glycolipid chain.

other cancers [34]. CA125 is elevated in most advanced
adenocarcinomas, especially those with distant metas-
tases e.g. breast, lung, endometrial, cervix, fallopian
tube, and pancreatic [34]. CA125 is also elevated in
chronic pancreatitis [50] but not in sepsis [103].

Therefore, additional biomarkers are required for this
lethal cancer to complement CA125. Several other po-
tential markers include tissue polypeptide specific anti-
gen (TPS), lysophosphatic acid, inhibin, kallikreins,
macrophage-colony-stimulating factor (M-CSF) and
OVX1 [13,34]. In addition, proteomics-based ap-
proaches may be useful in discovering new ovarian
cancer biomarkers [3,16,69,146].

Changes in glycosylation of the acute phase proteins
haptoglobin,α1-antitrypsin [131] alpha 2-macroglobu-
lin, transferrin [62] and IgG [44] have been reported
in ovarian cancer. Furthermore, glycosylated forms
of eosinophil-derived neurotoxin and C-terminal pep-
tides from osteopontin are elevated in ovarian cancer
patients [146].

2. Changes in glycosylation in cancer

Changes in glycosylation occur in immune deficien-
cy, cancer and autoimmune diseases. In cancer this in-
cludes under- and over-expression of naturally occur-
ring glycans and also neoexpression of glycans, nor-
mally restricted to embryonic tissues [33]. These struc-
tures are mostly derived from changes in the expres-
sion levels of glycosyltranferases in the Golgi com-
partment of cancerous cells [33]. Changes in glyco-
syltransferase levels can lead to modifications in the
core structure of N -linked and O-linked glycans [33].
One of the most common changes is an increase in
the size and branching of N -linked glycans [33]. The

enzyme responsible for increased branching is N -
acetylglucosaminyltransferase V (GlcNAc-TV), which
leads to β1, 6GlcNAc branching [32]. Increased
branching creates more sites for terminal sialic acid
residues and together with upregulation of sialyltrans-
ferase results in increased sialylation [68]. These
changes reflect differences in expression levels of sia-
lyltransferase and fucosyltranferases in the Golgi [33]
and they correlate with advanced cancer stage, tumour
progression and metastasis [68].

Also, levels of specific terminal residues are changed
in cancer as a result of over-expression of some glyco-
syltransferases [23]. In general, there are changes in
the levels of certain glycans, rather than in the process-
ing of new structures [114]. Changes in branching and
increased sialylation have also been identified in chron-
ic inflammatory conditions [29]. As chronic inflam-
mation is often observed in cancer [80], these glycan
changes may be associated with the inflammation.

The most common terminal glycan epitopes found on
glycoproteins on cancer cell surfaces are; sialyl Lewis
x (SLex), sialyl Lewis a (Lea), sialyl Tn, Globo H,
Lewis y and polysialic acid (PSA) [23,48,88,119,123,
125,132,149] (Fig. 1). Tumour metastasis is facilitated
by adhesion between tumour cells and platelets in the
bloodstream to remote endothelial cells [124]. The
selectins (E-selectin, P-selectin and L-selectin) bind to
SLex on tumour cells and contribute to tumour-cell
migration to distant tissues [93].

Notably, no change was detected in the serum gly-
come from malignant melanoma patients, where there
are low levels of inflammatory processes [114].

2.1. Sialyl Lewis x expression in cancer

In cancer, several changes in glycosylation have been
described, including the presence of SLex in human car-
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Fig. 2. Typical NPHPLC chromatograms of glycans from the trisialylated fraction previously separated by charge on WAXHPLC from A) pooled
control, B) ovarian, C) breast, D) prostate, E) pancreatic and F) uveal cancer patient serum samples.

cinomas [88] (Fig. 2). The name is derived from Le x,
which was originally known as the X-structure [49].
Lex is a positional isomer of the Lewis blood group
structure, Lea [49]. The SLex epitope consists of a
sialic acid α2,3 linked to galactose β1–4 linked to Glc-
NAc, to which a fucose is also α1, 3 linked. SLex

was first described in a ganglioside fraction of human
kidney [107] and trace amounts were found in human
milk [142]. SLex is also expressed on haptoglobin,
α1-acid glycoprotein, α1-antichymotrypsin [22] and in
neutrophilic granulocytes [39] during inflammation.

Increased levels of SLex suggest a change in regula-
tion of fucosyltransferases in the liver hepatocytes. To
form SLex structures, the precursor core structure has
to be sialylated first and then fucosylated by α(1, 3/1,
4) fucosyltransferases [8,88]. Increased levels of SLex

correlate with decreased expression of α1, 2 fucosyl-
transferase, an enzyme which competes with α2, 3 sia-
lyltransferase for the same substrate [9] and increased
expression of α(1, 3/1, 4) fucosyltransferases [8,145].

2.2. Changes in overall N-glycosylation in ovarian
cancer serum

Branching and sialylation increases in ovarian can-
cer [114]. More specific changes in ovarian cancer
serum include increases in the amount of agalactosy-
lated biantennary glycans (arising predominantly from

IgG) and SLex (from haptoglobin β-chain, α1-acid
glycoprotein and α1-antichymotrypsin) [114]. These
changes reflect the chronic inflammation observed in
cancer. It was shown that peritoneal inflammation en-
hances the ovarian cancer metastatic potential [110].
Consequently, increases in levels of SLex are not spe-
cific for cancer, as they have also been found in in-
flammatory conditions [22,29,47]. However, measur-
ing levels of SLex in longitudinal studies of individual
patients (personalized medicine) would be beneficial to
monitor progression of the disease.

Furthermore, a shift in sialic acid linkage from α2, 3
to α2, 6 has been observed in ovarian cancer serum gly-
coproteins [114]. This shift is consistent with previous
findings of decreased mRNA expression of α2, 3 sia-
lyltransferases and increased α2, 6 sialyltransferase in
tumour tissues of ovarian cancer patients [141]. Ovar-
ian tumour cells secrete cytokines [58,97] that can in-
fluence glycan processing in both tumour cells and sur-
rounding tissue [59,102] and may also affect the glyco-
sylation processes of liver hepatocytes, causing shifts
in serum glycoforms. This suggests that glycans from
shed, secreted and on membrane glycoproteins from
tumour tissue, contribute to the altered glycosylation
in serum. These changes may provide insight into the
cytokines to which the tumour has been exposed, since
they may produce a similar shift in the glycoform pop-
ulations on the tumour cells.
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2.3. N-glycosylation on CA125 does not contribute to
the major changes in glycan levels in ovarian
cancer patient serum

CA125 is a mucin, first detected by Bast et al. us-
ing the monoclonal antibody OC125 [14]. CA125 may
be an antigen that can elicit antibody-dependent, cell-
mediated cytotoxicity against ovarian tumour cells. It
may play a key physiological role that promotes tu-
mour development in patients with ovarian cancer [71].
Wong et al. described CA125 major N -glycans on
OVCAR3 cell line, which are 20% high mannose type
and 80% complex type structures [71]. They are most-
ly mono-fucosylated bi-antennary, tri-antennary and
tetra-antennary-bisected structures, with no more then
one sialic acid [71]. CA125 glycans do not contribute
to the major changes in glycan levels in ovarian cancer
patient serum [114].

3. Inflammation

Inflammation is a complex defence mechanism, by
which leucocytes migrate into damaged tissues to de-
stroy the agents that can potentially cause tissue in-
jury [40]. Acute inflammation is a limited short
term response, particularly during infectious challenge,
whereas, chronic inflammation is a persistent phe-
nomenon that can lead to tissue damage [40]. In acute
inflammation, initially the leukocyte infiltrate is mostly
neutrophilic but after 1 to 2 days, monocytic cells pre-
dominate [40]. Chronic inflammation is associated with
the presence of mononuclear cells such as macrophages
and lymphocytes [40]. Cytokines play an important
role in the response to inflammation [40]. Interleukin
6 (IL-6) has a dual effect; at some levels it acts as a
defence mechanism but in chronic inflammation it is an
inflammatory agent [40].

4. The acute phase response leads to substantial
changes in the plasma concentration of acute
phase proteins

The acute phase response, which occurs during in-
fection, trauma, surgery, burns and inflammatory con-
ditions, leads to substantial increases in the plasma con-
centration of acute-phase proteins such as C-reactive
protein, serum amyloid A, haptoglobin, α1-acid glyco-
protein, α1-antitrypsin, α1-antichymotrypsin and fib-
rinogen (positive acute phase proteins) or decreases in

levels of albumin and transferrin (negative acute phase
proteins). Two weeks following the inflammatory stim-
ulus, the plasma concentrations of these proteins return
to normal, with the exception of haptoglobin and fib-
rinogen, which can take three weeks to return to nor-
mal levels [41]. The chronic inflammation associated
with cancer can induce an acute phase response with
the same changes in the serum concentration of these
proteins but these persist longer.

Cytokines are major stimulators of acute phase pro-
tein production [41]. They are produced during in-
flammatory processes by a variety of cells. The most
important sources are macrophages and monocytes at
inflammatory sites [41].

Altered glycosylation on haptoglobin, α1-acid gly-
coprotein, α1-antichymotrypsin and α1-antitrypsin in
advanced ovarian cancer patient sera has been identi-
fied [114].

4.1. Positive acute-phase proteins with altered
N-glycosylation

Positive acute-phase proteins increase in concentra-
tion during the acute immune response [41]. These
are proteins related to the complement, coagulation
and fibrinolytic systems (e.g. fibrinogen), antiproteases
(e.g. α1-antitrypsin, α1-antichymotrypsin), transport
proteins (e.g. haptoglobin, hemopexin), participants in
inflammatory responses (e.g. secreted phospholipase
A2) and others (C-reactive protein, serum amyloid A,
α1-acid glycoprotein, ferritin) [41].

4.1.1. Haptoglobin
Haptoglobin (Hp) is a α2-sialoglycoprotein with

haemoglobin-binding capacity, that is secreted into
plasma by the liver [2,20]. The hepatic synthesis of Hp
is induced by pro-inflammatory cytokines such as IL-6,
IL-1 and tumour necrosis factor (TNF) [20].

Hp forms a complex with haemoglobin (Hb) dur-
ing haemolysis. After destruction of erythrocytes,
free haemoglobin in the circulation passes through the
glomerulus of the kidney. Renal damage is prevented
by the binding of haemoglobin by haptoglobin. There-
fore, this prevents both iron loss and kidney dam-
age during intravascular haemolysis [45]. This acute-
phase protein also has bacteriostatic properties, inhibits
prostaglandin synthesis and angiogenesis [75] and pro-
tects against free radicals [138].

Haptoglobin is important in iron homeostasis [138].
The identification of functional differences in hap-
toglobin molecules results from relatively common
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polymorphisms [138]. There are three major pheno-
types: Hp 1-1, Hp 2-1 and Hp 2-2 [2,20,45].

Human haptoglobin is a tetrameric protein, com-
posed of two α and two β chains [72]. The β-chain (49
kDa) is heavier than the α-chain and is identical in all
Hp types. The β chain of Hp contains four Asn-linked
glycosylation sites, all of which may be occupied [17,
72]. Glycosylation accounts for, approximately, 19%
of β-haptoglobin mass [17]. Hp contains biantennary
complex glycans in neutral,monosialylated and disialy-
lated forms and triantennary complex glycans in disia-
lylated and trisialylated forms [52].

Changes in haptoglobin glycan composition are as-
sociated with disease. Expression levels of haptoglobin
β-chain increase in ovarian cancer, decrease with
chemotherapy and correlate with levels of CA125 [3].
Increase in fucosylation, sialylation or branching been
found in breast [46], ovarian [114,126,127], lung [53],
pancreatic [98], and prostate cancers [38]. Fu-
cose content on haptoglobin increases with tumour
size [127]. Highly-sialylated Hp was found in Crohn’s
disease [46].

4.1.2. α1-acid glycoprotein
α 1-acid glycoprotein (also known as orosomucoid,

AGP, Fig. 3) has a molecular weight of 41–43 kDa
and is heavily glycosylated (45%) [117]. AGP is an
acute phase protein, which is synthesized mainly by
hepatocytes but extrahepatic synthesis has also been
reported [37]. The serum concentration of AGP rises
two to five times during an acute phase response. Based
on concavalin A (Con A) reactivity (ConA is mainly
selective for mannosylated N -glycans [21]), AGP can
be fractionated to ConA non-reactive, weakly reactive
and strongly reactive forms.

Protein synthesis and glycosylation of AGP are in-
dependently regulated [135,136], both by cytokines
(mainly IL-1 and IL-6) and glucocorticoids [11,85–87].
AGP has the ability to bind and transport several basic
and neutral drugs of endogenous and exogenous ori-
gin [60,70]. AGP has also been classified as a mem-
ber of the immunocalin family, a lipocalin subfami-
ly that modulates immune and inflammatory respons-
es [81]. AGP stimulates cytokine secretion and thus,
contributes to the inflammatory response. This effect
can be enforced by the local production of AGP by
monocytes in response to some of these cytokines [54].
AGP has a beneficial role in wound healing, protecting
against tissue damage and is involved in the induction
of non-specific resistance to infection [54].

Five N -glycans are attached to the human pro-
tein [147]. Each of the N -glycosylation sites of
AGP can express any of the glycans, which can have
di-, tri- or tetra-antennary structures [37]. AGP is also
negatively charged (pI is 2.7–3.2) due to the presence
of sialic acids (12% of total glycans) [54]. There are
changes in glycosylation in inflammation such as an
increase in SLex. There is a relative increase of AGP
glycoforms with biantennary glycans in acute inflam-
mation and a relative decrease of AGP glycoforms with
biantennary glycans in chronic inflammation, pregnan-
cy, estrogen administration and liver damage [29,84].

Changes in glycosylation can affect the biological
properties of AGP. For instance, immunomodulato-
ry activity of AGP depends on its glycosylation [37].
AGP, containing branched glycans, is more effective
in the inhibition of lymphocyte proliferation [106],
and desialylated AGP enhances inhibition of platelets
aggregation [27]. Inflammation-induced increases in
SLex-substituted glycans on AGP might represent a
mechanism for feedback inhibition of granulocyte ex-
travasation into inflamed tissues [37].

4.1.3. α1-antichymotrypsin
Human α1-antichymotrypsin is a plasma glycopro-

tein with a relative molecular mass of approximately
58 kDa and carbohydrate content of 24% [74]. It is an
acute phase protein, secreted by the liver which belongs
to the superfamily of serpins [130]. Its concentration
increases more than four-fold within a few hours in
response to an inflammatory stimulus [7] and it is al-
so elevated in cancer [64]. The physiological function
of α1-antichymotrypsin has not yet been determined,
however α1-antichymotrypsin inhibits chymotrypsin-
like proteases [129], regulates cathepsin G activity [15],
modulates the cellular functions of neutrophils [67] and
lymphocytes [57] and inhibits platelet-activating-factor
synthesis [25].

α1-antichymotrypsin has six potential glycosylation
sites [112], in which disialyl bi-antennary, trisialyl
tri-antennary and disialyl tri-antennary, tri- and tetra-
antennary glycans have been identified [73]. SLexα1-
antichymotrypsin is increased in ovarian cancer [114].

4.1.4. Increase of positive acute phase proteins in
plasma correlates with altered glycosylation

An increase in SLex on the haptoglobinβ-chain, α1-
acid glycoprotein and α1-antichymotrypsin has been
observed [114]. SLex is also present during inflamma-
tion on all these proteins [22].
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Fig. 3. Molecular model of α1-acid glycoprotein. The peptide fold (green) is a homology model of human alpha-1-acid glycoprotein (Pieper
et al., personal communication) based on the crystal structure of chicken plasma retinol-binding protein [148]. Glycans were added to the
three accessible glycosylation sites in the model (Swissprot numbering: P02763). N -linked glycan structures (yellow), chosen on the basis of
sequencing results [147], were generated using the database of glycosidic linkage conformations [143] and in vacuo energy minimisation to relieve
unfavourable steric interactions. The Asn-GlcNAc linkage conformations (Asn – orange) were based on the observed range of crystallographic
values [104], the torsion angles around the Asn Cα-Cβ and Cβ-Cγ bonds then being adjusted to eliminate unfavourable steric interactions
between the glycans and the protein surface.

Terminal sialic acid and fucose on SLex inhibits the
amount of free galactose accessible to the asialoglyco-
protein and Kupffer cell receptors [26] in the liver and
can therefore prolong their clearance from the circula-
tion, resulting in higher plasma concentrations [122].
The presence of SLex glycans from haptoglobin β-
chain, α1-antichymotrypsin and α1-acid glycoprotein
in cancer and also in inflammation suggests that there is
regulation of these acute phase protein concentrations.
The biological significance of these increases is to in-
crease their anti-apoptotic [28] and anti-inflammatory
properties [35]. These anti-apoptotic properties may

aid cancer metastasis. Glycosylation of these serum
proteins derives from the glycosylation process during
their biosynthesis in liver parenchymal cells. Inflam-
matory cytokines, corticosteroids and growth factors
are involved in regulation of these changes [137].

4.2. Negative acute-phase proteins with altered
N-glycosylation

Negative acute-phase proteins decrease in concentra-
tion during the acute immune response. These are albu-
min, transferrin, transthyretin and α-fetoprotein [41].
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4.2.1. Transferrin
A family of proteins, known as transferrins, control

iron levels in the body [4,51]. Transferrin is present in
the blood (serum transferrin), in other bodily secretions
(lactoferrin), in avian egg white (ovotransferrin) and in
melanotransferrin (broad range of tissue types) [139].

Transferrin is critical to protect the body from free
iron in the aerobic environment of the blood and bodily
fluids. Damage occurs when ferrous iron is converted
to ferric iron and forms harmful free radicals. Transfer-
rin is also involved in protection from insoluble ferric
iron [140].

Additionally, serum transferrin transports iron in
the blood by chelating free ferric iron from degraded
haemoglobin and delivering it to cells in a receptor-
mediated endocytotic process. While the transferrin-
receptor complex is internalised, iron is released in the
endosome, and the complex is recycled to the cell sur-
face where the transferrin is released [51].

The regulation of transferrin receptor expression in
various tissues is related to specific cellular iron re-
quirements. For most non-erythroid cells, iron can reg-
ulate the transferrin receptor expression in a recipro-
cal manner, through modulating the stability of the re-
ceptor mRNA. Whereas, in haemoglobin-synthesizing
cells, the transferrin receptor expression is independent
of the cellular iron loading [82].

Serum transferrin and transferrin receptors play an
important role in iron homeostasis – iron regulation
in the human body. Human serum transferrin is syn-
thesized in the liver. It is a polypeptide chain of 679
amino acid residues [12]. There are two homologous
domains; the N -terminal and the C-terminal domains
(with glycans attached to the C-terminal domain - For
review see [19,30]). Transferrin has two glycan chains
(mostly complex biantennary types, which terminate in
sialic acids. The protein is fully glycosylated with these
glycans present on two major Asn-linked glycosylation
sites Asn 432 (Asn-Lys-Ser) and Asn 630 (Asn-Val-
Thr) and one minor site Asn 491 (Asn-His-Cys) [116].
The glycosylation is site specific, especially, the core
fucosylation, which occurs only at Asn 630 site [115].
Changes in glycosylation on transferrin can occur dur-
ing disease; an increase in highly branched fucosylated
glycans was reported in hepatocellular carcinoma pa-
tients [144]. However, non-glycosylated recombinant
transferrin was found to be functionally indistinguish-
able from glycosylated serum transferrin [90,91].

4.2.2. Altered glycosylation of the negative acute
phase protein transferrin plays an important
role in iron homeostasis

The level of transferrin decreases in ovarian cancer
patients’ serum [3,128], in other gynaecological can-
cers [128] and in inflammation [108]. After chemother-
apy, levels of transferrin increase or remain constant
in ovarian cancer patients [3]. Glycosylated transferrin
and its glycans have anti-apoptotic properties, as shown
by deglycosylation, which abrogated this effect. They
play an important role in regulation of the programmed
cell death via alterations in cytokine expression [77].
There are many transferrin receptors present on cancer
cells and this could play a role in anaemia, which is
found in more than 30% of patients [42]. The trans-
ferrin receptor has three fully glycosylated sites; Asn
251, Asn-Gly-Ser; 317, Asn-His-Thr and 727, Asn-
Glu-Thr [24]. Glycosylation of the transferrin receptor
is critical for its folding, stability and/or secretion [24,
100]. Altered glycosylation of the N -linked glycans of
the transferrin receptor from diabetic patients leads to
reduced binding affinity for transferrin [43]. Glycosy-
lation of transferrin does not have influence on its bind-
ing capacity, but transferrin and iron uptake is reduced
after transferrin deglycosylation [55].

4.2.3. Iron homeostasis
Formanowicz et al. [36] developed a Petri net-based

model of body iron homeostasis, in which they simu-
lated iron homeostasis, describing the homeostasis as
follows:

Iron is taken from the diet. There are two forms
of iron; heme iron (ferrous, Fe2+) and non-heme iron
(ferric, Fe3+). Iron Fe3+ is reduced to Fe2+ in the
stomach in low pH by reducing agents (e.g. ascorbic
acid) and transported into small intestine mucous mem-
brane. If the iron is supplemented in the Fe2+ form it
is transported directly. Most of the metal in the labile
iron pool in the cell is metabolically drawn into Fe-
dependent enzymes, transported into mitochondria for
heme synthesis or incorporated into ferritin for storage
or detoxification. The red blood cells exist in the human
body for about 120 days and after mono-nuclear cells
phagocytose them. These cells are responsible for the
recirculation of iron derived from red blood cells. Iron
then enters the circulation, binds to transferrin and is
transported to the bone marrow for red cell production.

During inflammation, iron metabolism is changing.
In one of these changes, iron is not released from body
iron stores (ferritin) because it would enable the devel-
opment of micro-organisms, which need iron for their
growth. Infection and inflammation thus results in hy-
poferremia. If persistent, it can lead to anaemia.



226 R. Saldova et al. / Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis

5. Glycosylation of molecules involved in the
immune system

Almost all of the key molecules involved in the in-
nate and adaptive immune response are glycoproteins.
In the cellular immune system, specific glycoforms are
involved in the folding, quality control and assembly
of peptide-loaded major histocompatibility complex
(MHC) antigens and the T cell receptor complex [113].
In the humoral immune system, all of the immunoglob-
ulins and most of the complement components are gly-
cosylated [113].

Immunoglobulins are glycoproteins and the major
secretory products of the adaptive immune system [6,
79]. They provide long-term defence against foreign
antigens [6]. There are five classes identified in hu-
mans; IgG, IgM, IgA, IgE and IgD; they share sim-
ilar structures and are composed of Ig domains [5].
The immunoglobulins differ in the location and num-
ber of N -linked glycosylation sites, which are situated
on the Fc and Fab region and the glycans attached to
the immunoglobulins are large, approximately 2 kDa
each [6].

5.1. Decreased galactosylation on immunoglobulin G
has impact on its function

Human serum IgG consists of four subclasses,
which differ in their γ-chain sequences and disulphide
bridges. The most abundant serum Ig is IgG1, which
circulates at concentrations of 10–15 mg/ml [6]. All
IgG molecules contain two N -linked glycosylation
sites, which can be differently glycosylated [6]. The
glycan helps to maintain the quaternary structure and
the stability of the Fc region [94,95]. Aberrant glyco-
sylation of immunoglobulins is linked to disease and
pathogenesis, for example, increase in levels of agalac-
tosylated glycoforms of IgG in rheumatoid arthritis [6].

A significant decrease in the level of galactosylation
and sialylation in ovarian cancer patients serum has
been observed [114]. Increase of agalactosylated IgG
oligosaccharides is caused by decreased Gal-T activity
in plasma cells [10] or increased production of specif-
ic subsets of plasma cells with low expression levels
of galactosyltransferases [99]. Different glycoforms
may differ in their affinity for ligands [61,89,94,120,
133]. The IgG-G0 glycoform is elevated in rheumatoid
arthritis serum [101] and terminal GlcNAc of this gly-
coform on the Fc region of the IgG molecule clustered
on target cells can be recognized by collagenous lectin
mannose-binding protein (MBL) resulting in comple-

ment activation [89]. Kaneko et al. [61] have shown
that sialylation on IgG reduces its cytotoxicity to natural
killer cells, exhibiting an anti-inflammatory effect. De-
creased galactosylation and sialylation on IgG in ovar-
ian cancer patients then may increase the cytotoxicity
and complement activation via MBL.

Increase of agalactosylated IgG glycoforms has pre-
dominantly been identified with tumour progression
and metastasis of gastric and lung cancer [63], as well
as in chronic inflammatory diseases such as rheuma-
toid arthritis, tuberculosis or inflammatory bowel dis-
ease [10,101] and vasculitis [56]. IgGs from systemic
lupus erythematosus patients with Sjögren’s syndrome,
also have decreased galactosylation on IgG [18].

Decrease in sialylation on IgG glycans has also been
found in rheumatoid arthritis [92]. Therefore, this in-
crease of agalactosylated glycans on IgG of ovarian
cancer sera may be indicative of an inflammatory state.

5.2. Function of the immune response

The human immune system recognises cancer as an
inflammatory process and responds accordingly. It ac-
tively produces acute phase proteins, which have also
anti-apoptotic properties. In inflammation, it helps to
reconstitute the damaged tissue but it protects and pro-
motes cancer cells, considering them as its own. If this
hypothesis is correct, anti-inflammatory drugs should
have a powerful effect in cancer treatment. Indeed,
non-steroidal anti-inflammatory drugs (NSAID) have a
positive effect both in prevention [150] and in protec-
tion against cancer development and progression [121].

6. Apoptosis

Apoptosis is a physiological form of cell death [76].
The term describes a specific morphology during that
process and is associated with a distinct set of biochem-
ical and physical changes involving the cytoplasm, nu-
cleus and plasma membrane [76]. Early in apoptosis,
cells round up, losing contact with their neighbours and
shrink [76]. Under physiological conditions, certain
modifications in the plasma membrane occur, which
enable the recognition of apoptotic bodies by phago-
cytic cells [76]. Apoptotic bodies are surrounded by an
intact plasma membrane, so, apoptosis usually occurs
without leakage of cell content and without inflamma-
tion [76]. Apoptosis occurs during embryonic devel-
opment, tissue remodelling, immune regulation and tu-
mour regression [118]. It is induced by death recep-
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tors, which have been identified as a subgroup of the
TNF-receptor superfamily [118].

For cell homeostasis to be maintained, a balance
between the increase (differentiation from precursors
and proliferation) and decrease (further differentiation
and cell death) has to be achieved [76].

6.1. Apoptosis in cancer

Apoptosis and the genes that control it have an im-
portant effect on the malignant phenotype [83]. Some
oncogenic mutations, which disrupt apoptosis, lead
to tumour initiation, progression or metastasis [83].
While other oncogenic changes promote apoptosis
and over-ride apoptosis during multistage carcinogen-
esis [83]. The majority of cytotoxic anti-cancer agents
induce apoptosis but the possibility of defects in apop-
totic programs contribute to treatment failure [83]. The
same mutations that suppress apoptosis during tumour
development also reduce treatment sensitivity [83].
Therefore, apoptosis provides a link between cancer
genetics and cancer therapy [83]. There is intensive re-
search on the mechanisms regulating apoptosis, the re-
sults of which will provide new strategies for improving
therapeutic outcome [83].

6.2. Apoptosis and glycosylation

Glycosylation has an important role in apoptosis.
Resistance to apoptosis is a critical feature of cancer
cells. Increase of endogenous sialylation, may be one
anti-apoptotic mechanism that converts tumour cells to
a more malignant phenotype [66]. This supports the
finding that sialidase expression is inversely associated
with metastatic potential and tumour growth in cancer
cells, probably through a regulation mechanism that
suppresses cell growth and promotes apoptosis [65].

Galectin-1 is a mammalian lectin that induces cell
death in leukemia, lymphoma, breast and prostate can-
cer. T cells express specific glycoprotein receptors that
bear the specific glycans recognized by galectin-1 sus-
ceptible to galectin-1 mediated T-cell apoptosis [109].
A characteristic “glycotype” with sialylated core 1 O-
glycans promote galectin-1 resistance [109]. Core 2 N -
acetylglucosaminyltransferase is required for galectin-
1 susceptibility of T lymphoma and is down-regulated
in galectin-1-resistant cells. This indicates that sim-
ilar O-glycan ligands on different polypeptide back-
bones are common death trigger receptors, recognised
by galectin-1 on different types of cancer cells [134].
Loss of galectin-1 susceptibility and synthesis of en-

dogenous galectin-1 has been proposed to promote tu-
mor evasion of immune attack [134].

The Golgi enzyme, GlcNAc-TV, is upregulated
in cancer and produces N -glycans with poly N -
acetyllactosamine, which is the preferred ligand for
galectin-3 [31,102]. GlcNAc-TV glycans have positive
effect on tumour growth, metastasis and resistance to
apoptosis [31,32].

7. Conclusion

Changes in glycosylation are very important in ovar-
ian cancer, providing both potential markers and insight
into cancer pathogenesis. Changes in glycosyltrans-
ferase levels and/or glycan nucleotide donors, lead to
modifications in both N - and O- linked glycans. The
most significant N -glycosylation changes in ovarian
cancer serum glycoproteins are increases in agalactosy-
lated biantennary glycans and SLex. N -glycosylation
on CA125 does not contribute to these major changes.
An increase of SLex has been found on haptoglobin β-
chain, α1-acid glycoprotein and α1-antichymotrypsin.
The concentration of these positive acute phase pro-
teins is increased in the acute phase response and this
could be affected by the altered glycosylation. A de-
crease in galactosylation and sialylation on IgG modu-
lates its function. Glycosylation also has an important
role in apoptosis, which is deregulated in cancer. Tak-
en together, these data suggest that the progression of
ovarian cancer involves pathways which promote cell
growth and metastasis, in part bymimicking inflamma-
tion processes. Therefore, tumours that survive the host
response are these which make changes contributing to
its chances for survival.
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