
Matrix metalloproteinases: drug targets for myocardial infarction

Andriy Yabluchanskiy1,2,4, Yaojun Li1,2,4, Robert J. Chilton1,3, and Merry L. Lindsey1,2,4

1San Antonio Cardiovascular Proteomics Center
2Barshop Institute for Longevity and Aging Studies
3Division of Cardiology
4Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine

Abstract
Myocardial infarction (MI) remains a major cause of morbidity and mortality worldwide. Rapid
advances in the treatment of acute MI have significantly improved short-term outcomes in patient,
due in large part to successes in preventing myocardial cell death and limiting infarct area during
the time of ischemia and subsequent reperfusion. Matrix metalloproteases (MMPs) play key roles
in post-MI cardiac remodeling and in the development of adverse outcomes. This review
highlights the importance of MMPs in the injury and remodeling response of the left ventricle and
also discusses their potential as therapeutic targets Additional pre-clinical and clinical research is
needed to further investigate and understand the cardioprotective effects of MMPs inhibitors.
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1 Introduction
Acute myocardial infarction (MI) occurs as a result of myocardial cell death due to
prolonged ischemia. Ischemia occurs when the blood supply to the myocardium stops, often
due to the formation of a thrombus in the lumen of the artery supplying oxygen. Ischemic
heart disease remains a primary contributor to morbidity and mortality, highlighting the need
for new drug targets. Following MI, the necrotic myocytes in the myocardium activate an
inflammatory response. This response is beneficial and necessary for wound healing, but at
the same time can be detrimental because it further damages the left ventricle (LV) to
expand the initial region of injury. Tissue remodeling post-MI involves both a cellular
component as well as an extracellular matrix (ECM) remodeling component.

The ECM represents an important cardiac element that adapts to coordinate the functional
requirements of the myocardium. In addition to providing structural support, cardiac ECM
serves as a reservoir to house a variety of cytokines and growth factors, which are
surrounded by a hydrated proteoglycan and glycosaminoglycan-rich environment [1]. The
ECM possesses a number of physiological properties and functions, but is primarily directed
at preserving cardiac integrity and architecture to facilitate and govern cellular activity [2].
The myocardial ECM directs contractile force generated by cardiomyocytes and sustains
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shear stress generated by cardiomyocytes. In addition, the myocardial ECM produces and
maintains certain levels of a variety of growth factors, as well as modulates cell proliferation
and differentiation, ECM synthesis and remodeling [3–5].

Following MI, the ECM is degraded and synthesized through a process that is modulated by
the balance between matrix metalloproteinase (MMP) activity and the function of the main
source of most of the ECM, the fibroblast [6]. Presently, 23 human MMPs have been
identified, and although they share a common homology, their functions vary tremendously
[2]. MMP activity is regulated by two major types of endogenous inhibitors: α2-
macroglobulin (a plasma protein that acts as a general proteinase inhibitor) and the tissue
inhibitors of metalloproteinases (TIMPs) [2]. Four TIMPs have been identified: TIMP-1, -2,
-3 and -4. TIMPs form high-affinity complexes with activated MMPs and neutralize
substrate degradation by blocking the MMP catalytic domain [7]. TIMP-1 is known to
inhibit most MMPs, with the exception of MMP-14 (MT1-MMP), but has a higher affinity
for MMP-9 than MMP-2. TIMP-2 potentially inhibits all MMPs but has a higher affinity to
MMP-2 than MMP-9. TIMP-3 has been shown to bind to MMP-1, -2, -3, -9, and -13 and
TIMP-4 inhibits MMP-1, -3, -7, and -9 [8].

To better understand the significance of MMPs as drug targets for MI, this review article
will summarize the latest developments in the MMP inhibitor arena, focusing on potential
applications of MMP inhibitors for post-MI remodeling.

2 LV remodeling following MI
The composite of tissue changes occurring to the LV in response to MI are collectively
termed as LV remodeling. LV remodeling modifies LV size, shape, and function, and these
changes start immediately after MI and can continue for years [9]. MMPs are involved in all
aspects of remodeling, including the cellular and extracellular responses.

2.1 Cellular responses to MI (Table 1)
Prolonged ischemia leads to myocyte death, which occurs by apoptosis and necrosis [10].
Myocyte death stimulates the release of a variety of bioactive substances, including
complement components. Complement is an essential component of the humoral defense
mechanism and also mediates the inflammatory process [11]. The activation of the
complement system is organized via interaction between various specific protein
components. Certain complexes of complement system are involved in coating of damaged
tissue fragments, thereby facilitating their ingestion by phagocytic cells. The other mediate
chemotaxis associated recruitment of leukocytes into the infarcted area via receptor-
mediated mechanisms [12]. The late-acting complement complexes form macromolecular
complexes, which express cytotoxic properties to the local cells [13]. Leukocytes produce a
variety of biologically active substances, which in turn initiate signaling pathways locally
and systemically to provide a robust inflammatory response at the site of injury [14].

2.1.1 Polymorphonuclear leukocyte infiltration—Polymorphonuclear leukocytes
(PMNs) are the first line of defense against foreign bodies and are the first to infiltrate into
the infarct region, in the absence of reperfusion. PMNs produce pro-inflammatory cytokines
(e.g. tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1β)), a number of
chemokines (e.g. IL-8 and macrophage inducible protein 1-alpha (MIP-1α)), and several
growth factors (e.g. vascular endothelial growth factor (VEGF) and transforming growth
factor (TGF) β [15].

The recruitment of PMNs into the infarcted region begins with their adhesion to the
endothelial cells in the vessel wall. PMNs migrate to the site of injury and secrete
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superoxide anions; myeloperoxidase; MMPs -8, -9, and other proteolytic enzymes (e.g.
serine elastase); and TIMP-1. These factors are secreted as a protective measure but actually
results in extending the tissue damage [15–17]. MMP-9, in particular, is rapidly released
within the early hours post-MI and positively correlates with PMN numbers [16, 18]. Serine
elastase, stored within secretory granules of the PMNs, serves as a local MMP-9 activator
[19]. By day 5 post-MI, PMNs begin to undergo apoptosis and are phagocytized by
macrophages.

2.1.2 Macrophage infiltration—Macrophages originate from circulating blood
monocytes, which are derived from CD34+ bone marrow progenitors [20]. The conversion
of monocytes into macrophages begins with their adhesion to the vessel wall. This process is
followed by the induction of several cytokines, including macrophage colony stimulating
factor, TNFα, platelet derived endothelial cell growth factor, TGFα and β, IL-1, and insulin-
like growth factor [21]. A predominant function of the macrophage post-MI is to facilitate
wound healing and scar formation by phagocytosis of necrotic or apoptotic cells and by
secretion of angiogenic molecules and growth factors. Macrophage migration into the
injured myocardium is mediated by locally released chemoattractants [22]. Subsequently,
activated macrophages produce cytokines, chemokines, and proteases. For example,
macrophages are a source of MMPs -1, -2, -3, -7, -8, -9, -12, -14, and -28 as well as TIMPs
-1, -2, -3, and -4 [20, 23].

Phagocytosis triggers TGFβ production in macrophages, which in turn downregulates
MMP-9 activity by inducing TIMP-1 expression [20]. In addition to phagocytic roles,
macrophages also contribute to angiogenesis by secreting factors that directly stimulate
endothelial cell proliferation and by releasing MMPs. Moldovan and colleagues reported
macrophage-derived MMPs degrade the ECM necessary for the formation of new vessels,
which subsequently are inhabited by endothelial cells [24]. ECM degradation and
chemoattractant production both stimulate and inhibit angiogenesis in the post-MI setting
[25]. Several ECM proteins have angiogenic activities after being degraded into smaller
fragments. For example, hyaluronic acid displays neovascularization properties in vitro and
in vivo [26, 27]. Mathematical models show that ECM density influences the velocity of
formation and branching of the vessels, while the alignment of ECM fibers dictate the
orientation and shape of endothelial cells [28]. Degradation of matrix components at low
ECM densities inhibits angiogenesis, whereas matrix degradation at high densities of ECM
stimulates angiogenesis [29].

2.1.3 Myofibroblast activation—A major outcome of the inflammatory response is
fibroblast activation, which ultimately coordinates scar formation. Activation involves the
differentiation of fibroblasts into myofibroblasts (fibroblasts that express contractile
proteins) [30]. Myofibroblasts activation can be observed by day 3 post-MI which
corresponds to the timing of macrophage infiltration. Moreover, the positive correlation
between macrophage number and collagen mRNA levels in the infarcted area was observed
in a rat occlusion and reperfusion model 5 days post-reperfusion [31]. At later stages, the
maintenance of the scar is coordinated by the continued presence of myofibroblasts [32, 33].
Among the factors that stimulate myofibroblast activation, macrophages are a primary
source of activators, such as TGFβ, MMPs and TIMPs [20]. TIMPs stimulate fibroblast
proliferation as well as phenotypic differentiation of fibrocytes into myofibroblasts, and this
stimulation is independent of its MMP blocking activity [34].

In addition to ECM, fibroblasts and myofibroblasts synthesize many other factors relevant to
LV remodeling, including interleukin (IL) -1, IL-6, TGFβ, connective tissue growth factor,
tumor necrosis factor α (TNFα), angiotensin II, endothelin I, MMPs, and TIMPs [33, 35–
38]. Myofibroblasts, under certain stimuli, activate or express a number of MMP family
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subtypes, including MMP-1, -2, -9, -13, and membrane type MMP-14 [33]. MMP-2 secreted
by myofbroblasts in vitro, and could be further induced by IL-1β, TNFα, TGFβ, mechanical
load and oxidative stress [33]. Increased TIMP-2 is associated with increased fibroblast
collagen synthesis, while TIMP-4 inhibits cell growth and triggers apoptosis of
differentiated myofibroblasts [39]. TIMP-3 facilitates programmed cell death of both normal
and injured myofibroblasts to prevent excessive myocardial fibrosis [34].

2.2 Extracellular response to MI
A number of ECM proteins are expressed in normal myocardium, including collagens,
laminin, fibronectin, and low levels of matricellular proteins (e.g. thrombospondin-1
(TSP-1)) [40]. These ECM proteins play a central role in the physiological performance of
the heart during various stage of development and in response to pathophysiological signals
[41–43].

2.2.1 Collagen—The collagen found in normal LV includes types I, III, IV, V and VI [44].
The most abundant collagen type present in the LV is type I, which represents 70% of the
total cardiac collagen [45]. Collagen fibers form a complex network to provide strength
sufficient to support the three-dimensional structure surrounding cardiac muscle fibers and
neighboring vascular tissues [46]. These fibers prevent excessive cardiomyocyte stretching
due to the elastic energy that is saved during myocardial contraction. Additionally, collagen
fibers allow the LV walls to resist the intracavitary pressure. Collagen is synthetized and
secreted by fibroblasts in the form of a collagen precursor, which later is converted to a
matured collagen under the effect of specific collagen proteinases [47].

Elevated amounts of collagen III are observed two days post-MI in rats [48]. This increase
in collagen III is consistent with an early wound healing response, where collagen III is
quickly laid down to provide structural support. However, the production of the main
collagen component, collagen I, occurs more slowly. The increase in collagen III continues
through the first 21 days post-MI, while collagen I production continues to remain high for
more than 90 days post-MI [49, 50]. An increase in collagen contents is observed in both
infarcted and distant region of the myocardium, although levels are a magnitude higher in
the infarct [48].

The major causes that lead to cardiac rupture after acute MI are the misbalance between
ECM degradation and synthesis, and alterations in the cross-linking of collagen.

Post-MI, there is a balance between ECM synthesis and degradation, and the fibroblast
contributes to the synthesis part of the equation. If ECM degradation exceeds synthesis, LV
aneurysm or rupture can develop. The later usually occurs after transmural MI. It may
develop in the early period post-MI as well as in the later stages within the first 7 to 10 days
when the infarct region is the most vulnerable [51]. Among many in vivo studies directed to
determine the possible causes for cardiac rupture, the first place belongs to imbalanced
system of collagen production and cross-linking [52]. If ECM synthesis exceeds
degradation, increased LV stiffness can lead to heart failure. MMPs and TIMPs regulate
both parts of the equation [53]. While many studies suggest that deletion of MMP-9 is
beneficial in the early post-MI setting, therapeutic approaches of mediating direct effects on
collagen have not been explored [54].

2.2.2 Fibronectin—In the normal myocardium, fibronectin is localized to the basement
membrane of endothelial cells, myocytes, and smooth muscle cells [55]. Fibronectin binds
growth factors, fibrin, heparin, collagens, and integrins [1]. In the MI setting, increased
fibronectin deposition has been observed from 12 hours to 14 days after the infarction [55,
56]. In the MI setting, fibronectin is produced by ischemic cardiomyocytes and local
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fibroblasts [55, 57–59]. Fibronectin acts as a chemoattractant for a variety of cell types
involved in wound healing [57]. Fibronectin is also degraded by MMPs, and fibronectin
fragments have been shown to have biological activity [60]. In particular, fibronectin has
been shown an in vivo substrate for MMP-7 and the MMP-9 in post-MI LV [61, 62].

2.2.3 Laminins—Like fibronectin, laminin is localized to the basement membrane of
endothelial cells, myocytes, and smooth muscle cells in the normal myocardium. Laminin
links the extracellular space and the intracellular milieu by binding several cell-surface
receptors including the integrins α6β1, α1β1, α2β1, and α3β1 [63]. In addition, laminin
binds to sarcoglycans through the α-dystroglycan to form connections with intracellular
dystrophin.

Laminin is a well-known MMP substrate associated with early remodeling post-MI [64].
Dinh et al. showed that laminin levels are higher in patients with severely reduced LV
function and proposed laminin as a surrogate marker of ECM remodeling post-MI [65].
Horstmann and colleagues demonstrated a negative correlation between MMP-9 levels and
intact laminin levels in patients with acute stroke, suggesting that laminin processing may be
a key event in remodeling [66]. Laminin may help early survival after MI by preventing
cardiac rupture but may also inhibit macrophage infiltration, which could delay wound
healing [67]. Laminin improved the differentiation of adipose-derived stem cells in vitro to
become cardiomyocytes, suggesting a role in stem cell biology [68].

2.2.4 Matricellular proteins—Secreted protein acidic and rich in cysteine (SPARC), also
known as osteonectin or BM-40, is restricted in adult to tissues that undergo consistent
turnover or to sites of injury and disease [69, 70]. The capacity of SPARC to bind ECM,
modulate growth factor efficacy, increase MMP expression, and alter cell shape as a
counter-adhesive factor highlights the importance of SPARC in the response to injury [71].
SPARC binds to a number of ECM components, including collagen types I, II, III, IV, and
V. SPARC binds to growth factors such as platelet-derived growth factor and vascular
endothelial growth factor and modulates TGFβ activity to stimulate cell proliferation,
migration, and differentiation [72].

SPARC levels increase significantly in the post-MI LV, to organize the formation of
granulation tissue in the scar. The role of SPARC in LV remodeling follows the TGFβ
signaling pathway, indicating a strong interaction with TGFβ [40]. SPARC deletion has
beneficial effects in early post-MI LV function [70]. Impaired fibroblast activation in
SPARC-deleted mice, however, suggested that long-term deletion would be detrimental.
This turned out to be correct, as there was an increase in LV rupture rates in the longer post-
MI period [73]. SPARC up-regulates MT1-MMP expression and MMP-2 activation,
indicating that its post-MI roles are complex [74].

Thrombospondin-1 (TSP-1) is another matricellular protein with multiple biological
functions associated with early remodeling post-MI. TSP-1 is expressed in α-granules of
platelets and by endothelial cells and macrophages in a highly regulated manner [75]. TSP-1
possesses protective properties post-MI, however the exact mechanisms remain unclear [76].

TSP-1 increases at days 7–28 after ischemia and reperfusion, and TSP-1 clearly demarcates
the infarcted area from the non-infarcted myocardium. TSP-1 deletion led to expansion of
the post-MI inflammatory reaction and extension of granulation tissue formation into the
non-infarcted remote region [76]. Moreover, TSP-1 inhibited MMP activity in the border
region to control excessive ECM degradation [40].
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2.2.5 Proteoglycan—Proteoglycans maintain the tensile strength of ECM and provide a
reservoir for a number of growth factors. Biglycan, the major small chondroitin sulphate/
dermatan sulphate, is involved in the interaction with other matrix components, especially
type I collagen, and TGFβ [77, 78]. During MI, the expression of biglycans positively
correlates with collagen mRNA expression during the fibrotic process in the LV [79].
Biglycan null mice showed alteration in scar formation in the mouse model of permanent
coronary artery ligation 30 days post-MI [79].

Decorin, another proteoglycan base component, is widely distributed in the ECM and is
associated with collagen fibrils. Decorin is upregulated during later fibrotic stages. The
mRNA expression of decorin positively correlated with type I collagen mRNA levels in the
infarct area in the rat model of permanent coronary artery ligation 7, 14 and 28 days post-MI
[80]. Decorin was reported to mediate the fibrotic processes via suppression of TGFβ1
mRNA expression in vivo [81].

Syndecans belong to a family of cell-surface heparan sulphate proteoglycans. Its level is
upregulated in the infarcted tissue and is associated with macrophage infiltration [82].
Syndecan null mice exhibited impaired cardiac function and showed increased mortality rate
after MI in the model of permanent coronary artery ligation in acute stage post-MI.
Although TGFβ1-dependant cell signaling was preserved in these mice, the cell migration,
fibronectin-induced cell signaling, and differentiation in cardiac fibroblasts were defective
[83].

3 MMPs as therapeutic targets
The generation of the smallest possible scar that does not affect the biomechanics of the
heart requires a carefully balanced activity of MMPs and TIMPs in the infarcted heart.
Multiple MMPs are elevated post-MI, and roles for several of these MMPs have been
elucidated. Well-healed infarcts contain large amounts of ECM, which can occupy up to
80% of the infarct area [84]. MMP-3 is an upstream activator of other MMPs and may
contribute to aneurysm formation in the infarcted LV [85, 86]. MMP-7 increases the
potential for post-MI arrhythmias, through cleaving connexin-43 [87]. MMP-9 levels
increase in multiple animal models of MI and positively correlate with infarct rupture rates
in humans [88]. MMP-12 is highly expressed in macrophages and may also play a role in
post-MI remodeling [85]. Therefore, there remains a strong rationale to study MMPs as
possible therapeutic targets in the MI setting.

3.1 Direct MMPs inhibitors and selectivity
The search for the first orally bioavailable small molecule MMP inhibitor began in the late
1970s and was directed at treating arthritis [89]. At that time, only a few MMPs had been
identified, and the first generation of MMP inhibitors (e.g., batimastat and galardin) had
poor bioavailability that substantially limited their development [90]. Later, second
generation of MMP inhibitors was also reported to possess numerous side effects [91]. In the
past decade, both macromolecular MMPs inhibitors (monoclonal antibodies and natural
TIMPs) and small molecules (synthetic and natural products) have been tested as potential
therapeutic agents [92, 93].

A large body of literature now supports a key role for the two motifs (S1’ subsite and P1’
residue) in the interactions of MMPs with their substrates (or inhibitors). X-ray
crystallographic studies have classified MMPs into two broad structural classes dependent
on the depth of S1’ pocket, which was suggested as the selectivity pocket for MMP
inhibitors [94]. This selectivity pocket was later shown to be relatively deep for some
MMPs, but partially or completely blocked for others due to differences in amino acid
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chains forming the pocket. Therefore, developing selective inhibitor of MMPs was rather
limited in the application towards deep pocket enzymes over short pocket enzymes, via
incorporation of an extended P1’ group. In this case, the presence of the smaller P1’ group
led to wide spectrum selectivity (Figure 1).

Two major classes of inhibitors were identified from these structural assessments:
hydroxamate-based inhibitors and non-hydroxamate-based inhibitors. The main idea was
based on a creation of a compound that would substitute the active site of the active MMP
with a peptide-like structure [92]. In hydroxamate-based inhibitors, most of the small
molecules use hydroxamate as their zinc-binding site. Hydrogen bonds between
hydroxamate-NH group and carbonyl oxygen Ala128 this interaction is also known to
contribute to the binding. The interactions observed were reported to be productive without
any adverse effect [95]. Hydroxamate inhibitors are further grouped into substrate-analogue
peptides, such as succinyl, sulphonamide, phosphinamide hydroxamates [96]. Non-
hydroxamate inhibitors have limited use due to a general lack of specificity.

Another step in the MMP inhibitor field has been to develop inhibitors based on mechanism.
Mobashery et al. demonstrated a novel approach to highly selective gelatinase inhibition
through coordination of the thiirane group of the inhibitor with the active zinc-site of the
MMP [97]. This coordination caused conformational change of the MMP and the covalent
attachment of inhibitor to the active-site Glu of the MMP [98]. From the many MMP
inhibitors tested to date, only doxycycline (Periostat) has been approved by the FDA [99].

3.2 The MMP inhibitory properties of currently used post-MI medications
While selective and specific MMP inhibitors have not been successfully tested and applied
to the post-MI setting, many of the drug therapies currently used to treat MI have indirect
MMP inhibition effects (Figure 2). These effects are summarized below in Table 2.

3.2.1 Thrombolytic agents and anticoagulants—In clinical guidelines, acute
vascular events such as acute MI and acute ischemic stroke share similar treatment
approaches, namely the timely use of thrombolytic agents. MMP-3, -9, and -14 levels
increase in the serum or plasma following treatment with tissue plasminogen activator after
acute ischemic stroke in both humans and a rat model [66, 100]. Alteplase treatment
increases MMP-2 and MMP-9 concentrations in patients with ST segment elevation acute
MI [101]. The rise in MMP-9 levels suggested that MMP activity may be responsible for the
failure or thrombolytic agents [102].

Thrombolysis is often accompanied with anticoagulant therapy. Three main classes of
anticoagulants are used for MI therapy: heparins, synthetic heparins, and direct thrombin
inhibitors [103, 104]. Anticoagulant therapy increases MMP-9 in blood samples of stroke
patients [105, 106]. At the same time, anticoagulant therapy increases TIMPs levels in the
plasma. Manello et al. reported that heparin directly activates MMPs and also increases the
release of TIMP-2 to block their activity [107].

3.2.2 ACE inhibitors and angiotensin II receptor inhibitors—Angiotensin
converting enzyme (ACE) inhibition is an effective post-MI treatment [108]. Because the
regions close to the zinc in ACE are very similar to analogous regions in other
metalloproteases, several ACE inhibitors have high affinities for MMPs, suggesting a direct
inhibitor role. Yamamoto et al. demonstrated strong MMP-9 inhibition by ACE inhibitors in
a post-MI animal model [109, 110]. ACE inhibitors and angiotensin II receptor inhibitors:
ACE inhibitors directly bind to MMP-9 at the S1’ subsite, which forms a deep hydrophobic
pocket compatible with hydrophobic moieties present in ACE inhibitors. The Yamamoto lab
has also shown that different ACE inhibitors have varying levels of inhibitor activity
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depending on their affinities. Lisinopril is stabilized in the active site of MMP-9 by specific
hydrogen bonds and hydrophobic interactions, while imidapril possesses a higher affinity to
MMP-9, probably due to a stronger interaction with the S1 site [110]. This team has shown
that captopril directly binds to the MMP-9 active site [111]. Perindopril decreases MMP-9
activity and cytokine production in peripheral blood in the acute period of ischemic stroke
and MI, while trandopril and valsartan supresses MMP-9 activity and cardiac remodeling
post-MI [112].

In addition to ACE inhibition, blocking the angiotensin II receptor has also been shown to
attenuate remodeling. Harada et al. demonstrated that angiotensin II type 1A receptor null
mice displayed less LV remodeling and improved survival post-MI [113]. Irbesartan, an
angiotensin II receptor antagonist, inhibits MMP activity in patients with symptomatic
carotid artery stenosis [114]. Inhibiting both angiotensin II type 1 and type 2 receptors with
Sar1-Ile8-Ang II reduces collagen type I and elastin deposition but also increases vascular
stiffness, fibronectin, and MMP-2 activity [115]. Olmesartan improves LV remodeling in
apo E null mice by inhibiting nuclear factor κ-B (NF-κB) and MMP-9 activities [116]. Yang
and colleagues reported that valsartan decreased levels of MMP-2, -3, and -9 post-MI [117].
More studies are needed, however, to further explore the long-term effects of these
inhibition strategies.

3.2.3 Aldosterone antagonists—Aldosterone antagonists are recommended for acute
MI patients who have symptoms and/or signs of heart failure and left ventricular systolic
dysfunction. According to the National Institutes for Health and Clinical Excellence
recommendations, treatment with an aldosterone antagonist should be initiated within 3–14
days post-MI, preferably after ACE inhibitor therapy has been initiated [118].

Aldosterone induces MMPs activity through the activation of mineralocorticoid receptor,
protein kinase, and reactive oxygen species dependent activation of mitogen/extracellular
signal-regulated kinase and extracellular signal-regulated kinase pathway [119]. Aldosterone
antagonists demonstrate indirect effects on MMP activity and collagen deposition post-MI.
Spironolactone prevents cardiac collagen deposition post-MI in rodents [120].
Spironolactone and hydrochlorothiazide both demonstrated an ability to reduce vascular
MMP-2 activity and expression in a model of renovascular hypertension [121]. Moreover,
prolonged treatment with spironolactone for 24 weeks in patients with heart failure
decreased the level of MMPs and improved cardiac function [122].

3.2.4 Beta-blockers—Beta-adrenergic antagonists are another class of medications
commonly used in post-MI patients with developing heart failure. Beta-blockers possess
antioxidant, anti-proliferative, and free radical scavenging effects, which may alter MMP
abundance [123]. Carvedilol reduces plasma MMP-9 levels in younger patients with
idiopathic dilated cardiomyopathy and improves LV remodeling in a mouse model of acute
myocarditis [124, 125]. While carvedilol has been shown to inhibit MMP-2 and -9, it also
increases MMP-8 and -13, indicating that the connection between β blockers and MMP
activity is complex [126, 127]. Atenolol in supra-therapeutic doses reduces MMP activity
and prevents ventricular stiffening in a dog model of pacing-induced cardiac dysfunction
[128]. Short-term beta-adrenergic blockade decreases MMP-9 promoter activity in the
human ECV304 endothelial cell line and plasma gelatinase activity in patients with heart
failure [129].

3.2.5 Statins—Hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors
(statins) are broadly used to treat patients with high cholesterol levels [130]. Statins also
block the synthesis of isoprenoid intermediates, which serve as lipid attachments for a
variety of intracellular signaling molecules. In particular, the rho-family small GTP-binding
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proteins, whose proper membrane localization and function are dependent on isoprenylation,
are blocked by statins. [131]. Statins improve endothelial cell function, inhibit proliferation
and migration of smooth muscle cells, and decrease vascular inflammation. Statins inhibit
MMPs by suppressing macrophage infiltration [132]. Luan et al. demonstrated that statins
stabilize the atherosclerotic plaque by inhibiting several MMPs, including MMP-1, -2, -3
and -9 [133]. Statins, however, can also trigger the upregulation of macrophage elastase
(MMP-12) [134]. Pravastatin reduces serum soluble CD40L, C-reactive protein, MMP-2,
and MMP-9 levels in post-MI patients [135–137]. Turner et al. demonstrated that
simvastatin suppresses TNF-α-induced invasion of human cardiac myofibroblasts by both
MMP-9-dependent and -independent mechanisms, indicating that statins likely have effects
on MMPs through multiple pathways [138].

3.2.6 Non-steroid anti-inflammatory drugs (NSAIDs)—NSAIDs occupy an
important place in treatment of patients presenting with acute MI. NSAIDs suppress gene
expression of MMPs SP1 transcription factor binding site [139]. Experimentally, however,
no studies have been performed to investigate the potential use of NSAIDs as MMPs
inhibitors in the MI setting. Aspirin, the most commonly used NSAID among patients with
myocardial infarction and heart failure, suppresses MMP-1 in isolated human coronary
endothelial cells but did not affect MMP-2 or -9 levels [140, 141].

4 Conclusion
LV remodeling post-MI involves MMP activity at every step. MMPs coordinate key
biological activities, including inflammation and scar formation. The alteration in MMP and
TIMP expression may lead to undesired consequences, resulting in the development of a
variety of possible complications, including sudden cardiac death, LV rupture, or the
development of congestive heart failure. The potential roles of MMPs as therapeutic targets
in the MI setting, therefore, are warranted. Many direct inhibitors of MMP transcription and
activity have been tested; however, none of these inhibitors have translated to clinical
relevance for the post-MI patient. At the same time, many of the currently used medications
to treat MI influence MMP and TIMP activity. Identifying selective MMP inhibition
strategies for the post-MI patient, particularly therapies that limit the progression to heart
failure remain a highly desired goal.
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Figure 1.
MMP subsites as targets for different classes of MMP inhibitors. Pre – a signal sequence
pre-domain, Pro – pro-catalytic domain, Catalytic – catalytic domain, Zn2+ - metal center of
the catalytic domain, Hemopexin – hemopexin-like domain (absent in MMP-7 and
MMP-26) [142, 143].
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Figure 2.
Medications used post-MI that directly or indirectly affect MMP production or activity.
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Table 1

Cell functions in the post-MI left ventricle (LV) [20, 30, 33, 144–152].

Cell type Functions

Neutrophils ▪ produce pro-inflammatory cytokines, chemokines, and growth factors

▪ release proteolytic enzymes, including MMPs-8 and -9

▪ mediate tissue damage

▪ produce TIMP-1

Macrophages ▪ phagocytose necrotic myocytes and apoptotic neutrophils

▪ produce cytokines and growth factors

▪ secrete angiogenic molecules

▪ produce TIMPs

▪ trigger myofibroblast differentiation and activation

Fibroblasts ▪ produce extracellular matrix, including interstitial collagens, necessary for scar formation

▪ contract the LV infarct zone

▪ produce MMPs, cytokines, growth factors

▪ produce TIMPs
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Table 2

Medications used in post-MI patient management, their applications, and effects on MMPs and TIMPs
[23, 58, 116, 92, 94, 95, 100–102, 105, 107, 109, 110, 117, 120, 143–150, 153–160].

Medication Applications MMP Effects

Thrombolysis- tissue plasminogen
activators

Catalyze the conversion of plasminogen to plasmin, the major
enzyme responsible for clot breakdown

↑ MMP-1, -2, -3, -9, -12, -14
↑ TIMP-1, -2

Anticoagulants Bind to and activate anti-thrombin III. Activated anti-thrombin III
inactivates thrombin and other proteases involved in blood
clotting, most notably factor Xa.

↑ MMP-2 and -9 release in blood
↑ TIMP-2
↓ TIMP-1

Angiotensin converting enzyme
Inhibitors

Inhibit the angiotensin-converting enzyme to lower blood pressure ↓ MMP-1, -2, -3, -9
↑ TIMP-1

Angiotensin II receptor inhibitors Modulate the renin-angiotensin-aldosterone system to lower blood
pressure

↓ MMP-2, -3, -9
↑ TIMP-1

Aldosterone antagonists Antagonize aldosterone at the mineralocorticoid receptor level ↓ MMP-1, -2, -9
↑ TIMP-2

Beta-blockers Block endogenous catecholamines, including epinephrine
(adrenaline) and norepinephrine (noradrenaline)

↓ MMP-2, -9
↑ TIMP-1, -2, -3

Statins Inhibit HMG-CoA reductase to lower cholesterol levels; anti-
inflammatory effects

↓ MMP-1, -2, -9, -12
↑ TIMP-1

Non-steroidal anti-inflammatory
drugs (aspirin)

Irreversibly inhibit COX-1-mediated platelet aggregation ↓ MMP-1
↑ TIMP-1
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