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Longitudinal Growth Curves of Brain Function Underlying
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Sarah J. Ordaz,! William Foran,? Katerina Velanova,'-2 and Beatriz Luna'-2
Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and ?Department of Psychiatry, University of Pittsburgh Medical
Center, Pittsburgh, Pennsylvania 15213

Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal
executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they
have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental
change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this
study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human
participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects
of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indi-
cated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean
growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability de-
creased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until
adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed
continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with
task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted
development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capac-

ities and suggest that some executive control regions may buttress immature networks as error processing continues to mature.

Introduction

Inhibitory control, the ability to voluntarily suppress task-
irrelevant, prepotent responses in favor of goal-directed re-
sponses, continues to mature through adolescence, concurrent
with changes in brain function (Luna et al., 2010). Three circuits,
sets of interconnected regions that facilitate a common func-
tional goal, are known to support inhibitory control. The motor
response control circuit prepares and guides an appropriately
timed, goal-directed response, and includes the supplementary
motor area (SMA) and pre-SMA, posterior parietal cortex (pPC),
and putamen (Everling et al., 1999; Rubia et al., 2003). The exec-
utive control circuit coordinates and plans adaptive, goal-
directed behavior, and includes the dorsolateral prefrontal cortex
(dIPFC) and ventrolateral prefrontal cortex (VIPFC; Aron et al.,
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2004). The error-processing circuit, guided primarily by the dor-
sal anterior cingulate (dACC), monitors performance and, upon
detection of errors, signals the executive control circuit to adjust
activation, leading to improved performance (Carter et al., 1998;
Ridderinkhof et al., 2004; Kerns, 2006).

Neuroimaging studies examining developmental changes in
inhibitory control have predominantly highlighted changes
within the executive control circuit, reporting both increases
(Bunge et al., 2002; Rubia et al., 2006, 2007) and decreases (Dur-
ston et al., 2002; Durston and Casey, 2006; Velanova et al., 2008)
in activation from childhood to adulthood. Whole-brain studies
suggest that brain function in motor response control regions
may be mature by childhood, while brain function associated
with error processing may continue to mature throughout ado-
lescence (Rubia et al., 2007; Velanova et al., 2008). Though most
prior studies have been cross-sectional, longitudinal studies have
increased power to detect age-related change (Singer and Willett,
2003; Durston and Casey, 2006). Further, large longitudinal stud-
ies with multiple time points per person can extend our under-
standing of development by producing growth curves that
characterize the shape and rate of development, and also individ-
ual differences in trajectories. This type of research can indicate
how change occurs and can identify sensitive periods of acceler-
ated growth, which can reveal relative timing of maturation
across regions. Examining interindividual variability can reveal
whether individual trajectories diverge, converge, or maintain
rank-order stability.
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Table 1. Number of individuals per frequency of study visit after accounting for
excluded visits, but before excluding participants outside the age range of 9 to 26
years, entailing a total of 312 visits (163 female visits)

Visits Individuals (no. of females)

(< RO, I U N
i
~
AT O Em oSS

Total 129 (68)

Using data from a large, multi-time point longitudinal fMRI
study of inhibitory control in youth, we applied hierarchical lin-
ear modeling (HLM) to characterize the shape and slope of
growth curves of brain function in motor response control, exec-
utive control, and error-processing regions; interindividual vari-
ability in growth curves; and the contribution of sex and IQ to
variability. Inhibitory control was assessed using an oculomotor
paradigm with well delineated neural correlates (Munoz and
Everling, 2004). Based on cross-sectional studies that also ac-
count for developmental change in performance (Rubia et al.,
2007; Velanova et al., 2008, 2009), we hypothesized nonlinear
growth across all regions and a later maturation of executive
control and error-processing function relative to motor control
function (Luna et al., 2010). Given evidence for interindividual
variability in growth curves of structural brain maturation that
are partially accounted for by sex and IQ (Shaw et al., 2006;
Lenroot et al., 2007), we predicted that interindividual variability
would also be evident in growth curves of brain function sup-
porting inhibitory control, and this would be partially explained
by sex and IQ.

Materials and Methods

Participants. Volunteers were native English speakers screened by phone
to ensure no neurological, psychiatric, or eye movement problems, a
negative history of medications known to affect brain function or eye
movements, and no first degree relatives with schizophrenia or bipolar
disorder. In addition, volunteers were screened for non-removable metal
on the body, claustrophobia, and weight >300 pounds to ensure scanner
eligibility. The study complied with Institutional Review Board guide-
lines, and participants were compensated for their participation.

An accelerated cohort longitudinal study design, whereby a wide age
span of individuals is followed over time, was used to enable growth to be
characterized over an extended age range with minimal cohort effects.
Cross-sectional data from the first time point have previously been pub-
lished (Velanova et al., 2008, 2009; Hwang et al., 2010). Visits occurred at
~12 month intervals, and participants contributed between one and six
time points (Table 1); this study design including single visits is effective
for characterizing longitudinal trajectories using the statistical analyses
described below (Bryk and Raudenbush, 2002). A total of 139 partici-
pants (75 females) completed a total of 356 visits (177 females). Over the
course of the study, 24 individuals (14 females) did not return for
follow-up due to (in order of frequency) obtaining braces, difficulty
rescheduling or contacting, loss of interest, and change of residence.

A total of 21 visits (8 females) were not included in subsequent data
analyses due to technical errors (n = 11), participant sleepiness (1 = 4),
participant requests to stop the scan (n = 5), or the discovery of a brain
abnormality (n = 1). Following preprocessing, additional visits were
excluded due to lack of integrity in structural MRI images (1 = 4), lack of
at least three runs inclusive of both usable functional and eye movement
data (n = 3), poor quality of eye tracking (n = 1), and scanner inhomo-
geneities (n = 1). Twenty visits (9 females) were excluded due to move-
ment (described below). Thus, a total of 312 visits from 129 individuals
spanning ages 8.1 to 28.9 years were included in initial statistical analyses.
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Final statistical models were limited to visits from participants between
the ages 9.0 and 26.0 years (mean, 16.65 years; SD, 3.69 years) to ensure
that estimates were based on an equal distribution of data across the age
range, resulting in analyses of 302 visits from 123 individuals (64 fe-
males). The age distribution of scans included in the final analyses is
depicted in Figure 1. The racial distribution of participants represented
the demographics of the Pittsburgh region (80% white, 10% black, 5%
biracial, 2% Latino, 2% Asian and/or Native American/Pacific Islander,
2% not reported).

IQ scores. The four-subtest Wechsler Abbreviated Scale of Intelligence
was used to estimate Full-Scale IQ at first visit. Full-Scale 1Q scores are
conceptualized to be stable with age but were administered at years 1, 3,
and 5. Participants varied in the number of test administrations, so the
score obtained at the first testing was selected for use a priori to ensure
comparability of the construct being measured. Mean IQ was 110.68 (SD,
11.10; range, 85-134) and did not differ between the sexes (¢(,,,, = 1.326,
p=0.187).

Neuroimaging data acquisition. Data were acquired using a Siemens 3
tesla MAGNETOM Allegra fitted with a standard circularity-polarized
head coil. Head movement was minimized through prior acclimation in
an MR simulator and use of pillows during scanning to immobilize the
head. Earplugs dampened scanner noise. A PC (Dell Dimension 8200,
Pentium 4, 2 GHz, Windows XP) running E-Prime (Psychology Software
Tools) controlled stimulus display. Stimuli were projected onto a screen
at the head of the scanner bore viewable via a mirror attached to the head
coil. Structural images were acquired using a sagittal magnetization-
prepared rapid gradient-echo T1-weighted sequence (TR, 1570 ms; echo
time [TE] = 3.04 ms; flip angle, 8°%; inversion time [TI] = 800 ms, voxel
size = 0.78125 X 0.78125 X 1 mm) and used for alignment of functional
images. Functional images were acquired using an echoplanar sequence
sensitive to blood oxygen level-dependent contrast [T2*] (TR, 1500 ms;
TE, 25 ms; flip angle, 70° voxel size, 3.125 X 3.125 mm in-plane resolu-
tion), with 29 contiguous 4-mm-thick axial images acquired parallel to
the anterior—posterior commissure plane during each TR. Participants
performed four functional runs (each, 6 min 15 s), followed by three runs
of an unrelated experiment. The first six images in each run were dis-
carded to allow stabilization of longitudinal magnetization.

Antisaccade paradigm. Full details of the experimental paradigm (Fig.
2) are described by Velanova et al. (2008). Each run consisted of three
blocked periods of fixation interspersed by a block of the antisaccade
(AS) task and a block of the visually guided saccade (VGS) task. The VGS
task is a reflexive task that served to enhance the inhibitory demands
during AS trials. As described further in the fMRI data analyses section,
the fixation trials rather than VGS trials were used as a baseline compar-
ison to maximize data reliability and also to explore any potential find-
ings in motor response control regions, which are present to some degree
in both tasks. Task order was counterbalanced across runs and partici-
pants. Twelve AS or VGS trials were presented in each task block, for a
total of 48 of each trial type. Intertrial intervals (3-9 s) were “jittered” to
permit estimation of trial-related activation (Dale, 1999). Each trial be-
gan as participants fixated on a colored cross-hair for 3 s instructing them
to make a VGS (green) or an AS (red). Next, the saccade target stimulus,
a yellow circle, appeared at one of six horizontal eccentricities for 1.5 s.
For AS trials, participants were instructed to inhibit the reflexive saccade
toward the target and to look instead to its horizontal mirror location.
Target location order was randomized within each task block. No “gap”
was interposed between the instruction cue and saccade target stimulus
to increase the probability of accurate performance in younger partici-
pants (Fischer et al., 1997).

Eye movement measurements were obtained during scanning using a
long-range optics eye-tracking system (Model R-LRO6, Applied Science
Laboratories) with a sampling rate of 60 Hz. Nine-point calibrations
were performed at the beginning of the session and between runs as
necessary. Real-time monitoring also permitted immediate identifica-
tion of head movement or gross inattention to the task, and experiment-
ers redirected subjects immediately following the run.

Eye-tracking data. Eye-movement data were analyzed and scored off-
line by trained raters using ILAB (Gitelman et al., 1999) in conjunction
with an in-house scoring suite written in MATLAB (MathWorks). Sac-
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structural images (Jenkinson and Smith, 2001;
Jenkinson et al., 2002). Functional data were
slice time corrected, and motion was corrected

within and across runs using a rigid-body rota-

tion and translation algorithm. Functional files
from each visit were registered to the 3 mm
MNI standardized atlas using a series of affine
and nonlinear transforms. Data were then
smoothed using a weighted 5 mm full-width at
half-maximum Gaussian kernel, a 0.025 Hz
high-pass temporal filter was applied, and the
voxel time series was normalized and scaled to
have a mean intensity of 100 so that regression
coefficients could be interpreted as the per-
centage signal change. Structural and func-
tional data were visually inspected to ensure
data integrity, including ghosting and mag-
netic field inhomogeneities.

Movement analyses. Measures of head
movement during functional sequences were
obtained using a rigid-body rotation and trans-
lation algorithm. Translations and rotations in
the x, y, and z dimensions were averaged across
frames, and total root mean square (RMS) lin-
ear and angular precision measures were calcu-
lated for each run. Runs in which total RMS
movement exceeded 1 mm (translations) or 1°
(rotations) were excluded from further analy-
sis. Excluded visits encompassed individuals
ranging in age from 8.5 to 18.4 years (mean,
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Figure 2. A, B, Depiction of experimental run structures (4) and task trial structures (B).
From Velanova et al. (2008), used with permission.

cades were identified using a velocity algorithm using a 20°/s criterion,
and were presented graphically and numerically so that each could be
inspected for measurements and blink artifacts could be identified. Each
eye movement trial was scored for performance accuracy (correct, cor-
rected error, uncorrected error, or dropped due to blinks or signal loss).
Errors were typically followed by a saccade to the correct location, indi-
cating that participants understood the instruction but were unable to
inhibit the automatic response toward the cue. Error rates were calcu-
lated as the number of corrected error trials divided by the total number
of retained (i.e., not dropped) trials.

fMRI data preprocessing. Neuroimaging data were preprocessed using
an in-house script incorporating tools from FSL (Jenkinson et al., 2012)
to remove noise and motion artifacts, and to align functional images to

Age distribution of the data reveals consistent sampling throughout the age range represented in final statistical
models. Each black circle denotes a scan acquisition that was included in the final analyses, and multiple scans for a single
participant are denoted by a line interconnecting multiple black circles. For each participant, the leftmost circle denotes the age at

25 13.2 years; SD, 2.9 years; conducted before lim-
iting the sample to 9 to 26 year olds). The mean
age for excluded visits did not differ by sex
(tns) = —0.98, p = 0.923).

HLM regressions appropriate for longitudi-
nal data (see description in Statistical analyses)
were run to examine whether age was associ-
ated with the amount of average RMS motion.
Average RMS translational and rotational movement was analyzed for
the average of all runs included within visits included in the final analyses
(i.e., limited to 9 to 26 year olds). Using the best-fitting model, the inverse
age model, revealed developmental declines in both average RMS trans-
lational motion (B,, = 2.4431, £(;,,) = 3.496, p = 0.001) and average
RMS rotational motion (B, = 2.3379, (,,,) = 4.561, p = 0.000), as is
consistent with the developmental literature. There were sex differences
in translational motion (B,, = 0.0665, t(,,,, = 3.483, p = 0.001), with
males demonstrating more motion, but sex did not moderate age-related
change (8,, = —0.2015, t(;,,, = —0.143, p = 0.887). In contrast, there
were no main effects of sex in rotational motion (8,, = 0.0173, t;,,, =
1.149, p = 0.253), but sex did moderate age-related change, with males
revealing steeper rates of change (8,, = —1.949, t,,,, = —1.985,p =
0.049). It is, however, important to consider that we later covaried for
these motion regressors. These analyses also overestimate motion, as they
still include motion from TR values that were subsequently censored
when estimating the hemodynamic response for each visit (see below).

fMRI data analyses. Our goal was to maximize data reliability while
also examining theoretically meaningful and valid metrics of inhibitory
control. Reliability, specifically test—retest reliability of a given individu-
al’s data, is essential for minimizing developmental confounds when
estimating growth curves, and particularly when testing interindividual
variability in growth. On the basis of prior research that was specifically
designed to examine test-retest reliability of fMRI data by testing subjects
across short time intervals (Bennett and Miller, 2010), we selected the
following data analytic approach. First, we analyzed regions of interest
(ROIs) rather than estimating growth curves on a voxelwise basis, though
the latter were also estimated to evaluate regions that may merit further
analyses. Second, we used a fixation baseline comparison rather than a
VGS (control task) baseline, because the AS versus fixation contrast has
been empirically demonstrated in an independent sample to have a
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higher test-retest reliability than the AS versus
VGS comparison (Raemaekers et al., 2007).
Another study designed to examine test-retest
reliability similarly reported higher reliabilities
when using a fixation baseline versus a task
baseline (Sheu et al., 2012). After following the
analytic procedures described below, we con-
firmed the reliability of data in our sample to
the extent possible, as outlined in Reliability of
fMRI data section.

For each voxel, a general linear model that
estimates the average hemodynamic response
was generated using Analysis of Functional
Neuro-Images (AFNI; Cox, 1996). Correct,
corrected error, and uncorrected error/dropped
trials were modeled using the SPM gamma
function, with baseline signal drift plus six mo-
tion parameters entered as covariates. In addi-
tion, spikes in motion were addressed by
censoring TR values with significant motion (if
aderivative value ofa TR had a Euclidean norm
above 0.9) while estimating the hemodynamic
response. These steps to address motion were
informed by evidence that addressing both can
minimize confounds in developmental functional neuroimaging results
(Fair et al., 2012; Power et al., 2012; Van Dijk et al., 2012; Satterthwaite et
al., 2013). Hemodynamic responses during correct trials were estimated
(separately) and were contrasted with responses during the fixation base-
line. Given the role of dACC in error processing, activation in dACC was
also examined through the comparison of corrected error trials versus
baseline. The voxelwise main effect of time maps from this sample are
depicted in Figure 3 and indicate robust activation in ROIs selected a
priori because of their known association with AS performance.

Our analyses focused on a priori ROIs associated with inhibitory con-
trol but generally not specific to the AS task, including regions associated
with motor response control [supplementary eye field (SEF), pre-SMA,
and bilateral pPC, putamen, and frontal eye field (FEF)], executive con-
trol (bilateral dIPFC and vIPFC), and error monitoring (dACC; Munoz
and Everling, 2004; Kenner et al., 2010; Swick et al., 2011). These are
inclusive of regions activated in children and adolescents completing the
AS task as revealed by using prior fMRI studies using voxelwise analyses
(Luna et al., 2008; Geier et al., 2010; Padmanabhan et al., 2011); this
includes a study from a cross-sectional subsample of this sample data
(Velanova et al.,, 2008). To generate unbiased ROIs based on the large
extant literature, central coordinates were identified using the Neu-
rosynth platform and database (www.Neurosynth.org, accessed March,
2012), a meta-analytic program that generates voxelwise statistical maps
for a given term or topic (Yarkoni et al., 2011). Terms and topics were
selected based on their having been implicated in inhibitory control. As
topic maps are factor maps that summarize results from a larger set of
studies associated with a related set of terms, topic maps were used when
possible. We examined the list of studies that were included in the Neu-
rosynth meta-analysis for potential topics/terms to ensure that they
included multiple studies with child and/or adolescent participants. Re-
verse, rather than forward, inference maps were used because these de-
pict the probability of each topic/term given activation observed at each
voxel (assuming 50% probabilities of “term” and “no term”), and these
provide a statistical measure of the specificity of activation to each topic/
term at each coordinate across the hundreds of studies in the Neurosynth
database associated with each topic/term. Small corrections to central
coordinates were made using anatomical references to ensure that final
spheres overlapped with canonical eye movement regions reliably elic-
ited by the AS task (Munoz and Everling, 2004). ROIs were defined as
voxels within a given radius of each identified peak; a 10 mm radius was
used for most ROIs, but exceptions were made to avoid overlap (SEF,
SMA) and to accommodate differing anatomical sizes (putamen,
dIPFC). Table 2 summarizes the central coordinates and size of each ROI,
which are also depicted visually as part of Figure 5. Beta values reflecting

Figure 3.
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Main effect of time maps from all participants in this sample, shown in radiological view and thresholded at p <
0.001, indicate robust activation in regions known to be associated with AS performance. To avoid overestimating activation, only
one randomly selected visit per participant is depicted. A, Axial images of the AS correct with a fixation baseline comparison
indicate engagement of motor response control and the executive control system, with an additional coronal image highlighting
right dIPFC activation. B, Axial and mid-sagittal images of AS-corrected errors with a fixation baseline comparison corroborate
expected activation in the dorsal anterior cingulate cortex. R, Right.

Table 2. Mean coordinates and cluster sizes for all ROls

Center voxel coordinates

X y z Radius (mm) Voxels (no.)

SEF 0.0 —46 62.0 7 37
Pre-SMA 0.0 5.0 521 7 37
FEF

Left —255 —15 56.0 10 107

Right 26.5 —15 58.0 10 107
Putamen

Left —26.0 4.0 6.0 7 37

Right 26.0 2.0 4.0 7 37
pPC

Left —320 —48.0 50.0 10 107

Right 32.0 —54.0 48.0 10 107
dIPFC

Left —41.0 19.0 41.0 12 185

Right 42.0 18.0 42.0 12 183
VIPFC

Left —46.5 10.5 24.0 10 107

Right 49.5 12.0 220 10 107
dACC 0.0 19.5 40.5 10 107

response magnitudes for all voxels within each ROI were averaged to
produce a mean percentage signal change metric for each ROI per visit.

The voxelwise main effect of time maps across all participants for both
the correct trials and for corrected error trials were visually inspected to
ensure that the task elicited activation in canonical AS task regions (Fig.
3). Indeed, the activation elicited by this task in this sample comported
with the a priori selected ROIs from Neurosynth for both activation
associated with AS correct (with fixation baseline) and with AS-corrected
errors (with fixation baseline). In addition, to confirm that these two
main effects of time maps were indeed specific to an inhibitory control
process, they were compared with voxelwise maps that used a VGS cor-
rect baseline comparison and to the Neurosynth-based ROI maps. A VGS
correct baseline for AS-corrected error activation theoretically isolates
activation associated with monitoring and correcting the initial, errone-
ous reflexive VGS. Both of the main effects of time maps using the VGS
baseline revealed activation within similar overlapping areas, including
the ROIs selected. Together, this affirms the validity of the sample-
independent ROI selection we used, while also highlighting the robust
nature of the patterns of activation as they persist, regardless of the base-
line chosen for contrasts.

Reliability of fMRI data. The analytic approach, including the use of a
fixation baseline and the emphasis on using ROIs, was selected to maxi-
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Table 3. Test-retest reliabilities, ICCs, and AIC values from model-fitting for both behavioral and fMRI data included in final analyses

AIC value from unconditional growth model®

Pseudo-R?, age term in

Test—retest reliability Icc Inverse age Linear age Quadratic age unconditional model
ROI

SEF 0.475 0.359 —1004.27 —1004.96 —1008.18 0.019
Pre-SMA 0.556 0.382 —1000.41 —998.49 —1000.77 0.072
FEF

Left 0.784 0.383 —1254.19 —1250.68 —1264.20 0.182

Right 0.624 0.273 —1123.06 —1119.10 —1128.13 0.104
Putamen

Left 0.163 0.209 —1214.23 —1214.85 —1217.84 0.000

Right 0.160 0.228 —1258.72 —1258.91 —1260.88 0.039
pPC

Left 0.553 0.406 —1222.03 —1222.46 —1230.78 0.043

Right 0.765 0.355 —1142.69 —1137.84 —1146.84 0.103
dIPFC

Left 0.504 0.169 —1277.61 —1276.11 —1272.42 0.029

Right 0.484 0.428 —1236.27 —1234.63 —1231.18 0.031
VIPFC

Left 0.548 0.170 —1222.83 —1219.95 —1231.04 0.034

Right 0.302 0.291 —1185.97 —1185.16 —1189.69 0.033
dACC

Correct trials 0.693 0.290 —1061.05 —1057.20 —1060.86 0.076

Error trials 0.151 —860.43 —859.24 —860.21 0.070

Behavioral variables

AS percent errors 0.763 0.650 —249.79 —236.37 —245.52 0.202
AS latency (correct) 0.533 0.606 3198.73 3204.29 3201.75 0.140

AINCCvalues were statistically significant (2 SDs of Cls did not overlap with 0).

®Lower (more negative) AIC values indicate improved model fit. If AIC indicated the quadratic model fit best, this model was only chosen if the quadratic term was also significant. AIC values for selected models are bolded.

mize the reliability of our outcome metrics, as described previously. The
following steps were taken to ensure that the outcome metric of the
percentage signal change was indeed reliable over time in our sample.

First, test-retest reliability of fMRI measurements across sessions was
established by examining change within subjects who provided two scans
after the age of 20 years (n = 14), as change over time in this subsample
should be most reliable and least related to developmental factors. Cor-
relations between percentage of signal change estimates at the first and
second scan were calculated for each ROI for each participant. As these
adult participants demonstrated few error trials (see Results), only reli-
abilities for brain activation during correct trials are reported. Mean
test-retest reliabilities for each ROI (Table 3) are in the moderate range,
consistent with reliabilities seen in adults during executive control tasks
(Bennett and Miller, 2010) and specifically during AS performance (Rae-
maekers et al., 2007).

Second, to index a sufficient amount of homogeneity of data collected
from the same individual over multiple time points, intraclass correla-
7”'007%6'2’ the proportion of
intersubject variability to total variability using restricted maximum like-
lihood (REML) estimates. ICCs for each ROI are reported in Table 3 and
are all >0.10, suggesting proper within-subject dependency, or nesting of
observations within individuals, needed for subsequent HLM analyses
(Lee, 2000). These values are consistent with reliability measurements for
other fMRI studies including youth and adults (Koolschijn et al., 2011).
Additionally, the significance of the ICC value was statistically tested
using a Wald test, H, : p = 0. Results indicated significant clustering
effects, validating the need to use hierarchical linear modeling to model
dependency within individuals. In all ROIs for correct trial performance,
ICCs were significantly different from zero. The ICC estimate for the
single region of interest (AACC) for corrected error trials was not differ-
ent from zero (Z = 1.804, p = 0.071). Visual inspection indicated outli-
ers, and after removing points outside of 3 SDs of the mean percentage
signal change (n = 4), the ICC for the dACC was significant (Z = 2.102,
p = 0.036). These visits were excluded from subsequent analyses of acti-
vation on corrected error trials. As three of the four data points were from
individuals with at least three visits, removal of these data points was
unlikely to alter findings of individual variability.

tions (ICCs; p) were calculated via p =

Due to developmental changes in the total number of correct (B8,, =
1.363, (15, = 7.080, p = 0.000) and corrected error trials (8,, = —1.070,
t122) = —7.759, p = 0.000), the reliability of signal estimates from single-
subject general linear models changed over development. To address this
concern, a weighted average 8 estimate was calculated for each ROI that
incorporated the SEs of each voxel estimate as a weight. However, this
minimally changed ICCs (mean, 0.244, SD, 0.086; range, 0.112—0.335),
so HLM analyses proceeded with unweighted average betas.

Third, unequal sampling across the age range can produce variable
data reliability across development, so we visually inspected the data to
determine (1) whether spline models were superior to combining all
individuals into a single model and (2) whether limiting the age range
could minimize unequal sampling across the age range. Spline models
were not superior, but the age range was limited to 9.0 to 26.0 years.

Statistical analyses. Growth curve modeling extends multiple regres-
sion for use with repeated-measures data and involves statistical model-
building procedures to (1) model general patterns of developmental
change, (2) test for significant individual differences in intercepts and
slopes of individual growth models, and (3) test predictors of the inter-
cept and the slope that may explain individual differences (Singer and
Willett, 2003). Growth curve modeling was accomplished in the present
study using HLM analyses (also termed “random effects,” “mixed ef-
fects,” or “multilevel modeling”). HLM utilizes multilevel fixed and
random-effects analyses to account for the nesting of data within indi-
viduals. Further, HLM uniquely permits flexible modeling of time, so
that data collected at uneven intervals and from individuals with varying
numbers of time points can be included in the model (Bryk and Rauden-
bush, 2002; Raudenbush and Bryk, 2002). HLM models provide esti-
mates of both (1) a grand-mean trajectory that captures the mean
developmental pathway of the full sample, and (2) an individual trajec-
tory for each individual that enables one to test individual differences in
intercepts and slopes of trajectories and predictors of such variability,
should it exist. HLM requires model estimation and model-building pro-
cedures to be used to remove most nonsignificant terms in the model,
according to convention. Models were estimated using the eponymous
program HLM version 6 (Scientific Software International).

Consistent with the latest developmental research methodology (Kail
and Ferrer, 2007), the following model-building procedure was followed
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for each outcome variable (i.e., AS-corrected error rates, AS latencies,
and percentage signal change for each ROI). First, linear, quadratic, and
inverse unconditional growth curves were modeled. The optimally fit-
ting model was selected as the unconditional growth model on the basis
of the Akaike Information Criterion (AIC) fit index. AIC is a standard-
ized model-fit metric that permits comparison of models that are not
nested (i.e., linear and inverse age models have an equivalent number of
parameters, so they are not nested) and offers standardized comparison
of models with differing numbers of parameters (i.e., linear and qua-
dratic age models). More negative AIC values reflect a better model fit to
the data. To ensure validity of the AIC-informed selection of model
shape, note that the final model (age, inverse age, or quadratic age) was
only selected if the relevant age term was also statistically significant.
Thus, if AIC values indicated that the quadratic model was best fitting,
this model was only selected if the quadratic term was also significant.

The unconditional growth model is a base from which to begin model-
building procedures. In all cases, the age term was centered to facilitate
meaningful interpretation of the intercept as the estimated value of the
dependent variable at the mean age of the sample (16.7 years). An un-
conditional model using the inverse of age (centered) to predict AS-
corrected error rates would be denoted as follows for Level 1:

ASerr,; = my; + mp; (InvAgeC),; + e;

e; ~ N(0, 0%)
and for Level 2:
o = Boo T Toi
m; = B + 1

In such a model, B, reflects the grand mean AS-corrected error rate at
the mean age of the sample, and 3, reflects the grand mean slope of the
trajectory. The random-effect term for the intercept and slope are r,; and
r,;» respectively, with a unique estimate of both terms generated for each
individual. Significant variability in the r,; term (7,,) indicates individual
differences in AS-corrected error rates at the mean age of the sample, and
significant r,; variability (7,,) indicates individual differences in slopes of
AS-corrected error rates.

Second, model-building procedures were used to determine whether
the random terms were indeed significant and, if so, whether adding the
time-invariant predictors of sex and IQ can explain the individual vari-
ability in the intercept and/or slope. The significance of the random
terms was determined via y? tests for improvement in model fit over a
model without each random term. If random intercept and/or slope
terms were significant, indicating that variability exists, then centered sex
and IQ terms were added as Level 2 predictors to determine whether they
predicted some or all of the individual variability. Finally, any insignifi-
cant terms were removed to produce a final model. Models were fit using
(1) full information maximum likelihood estimates for the purposes of
calculating deviance, degrees of freedom, and model comparison tests
(AIC); and (2) REML estimates for reporting of fixed effect and variance
component estimates as well as their significance tests.

Given that this is the initial study to examine growth curves in brain
activity and variability of such trajectories, we also sought to minimize
false-negative findings. We therefore report results from ROI-based
growth curve analyses both before and after correction for multiple com-
parisons, consistent with published research (Galliano et al., 2013). The
inclusion of uncorrected results is consistent with the other known de-
velopmental study using growth curve modeling (Shaw et al., 2012) and
merited due to: (1) the use of a limited number of hypothesis-driven a
priori ROIs informed by a large body of animal and human (adults and
youth) research examining brain function supporting AS and inhibitory
control, and (2) evidence that multilevel models that yield more reliable
estimates (Gelman et al., 2012). However, to explore how robust the
mean growth curve findings were, we also used a more conservative
approach by correcting for multiple comparisons as per Benjamini and
Hochberg (1995). Specifically, this was applied to tests of significance for

Ordaz et al. @ Longitudinal Growth Curves of Brain Function

intercept and slope terms, random intercept and slope terms (i.e., tests of
variability), and sex differences where applicable.

Planned post hoc analyses using a dummy-coded variable with females
or males coded as the reference group were used to test the significance of
intercepts and slopes for trajectories for each sex. In addition, sex differ-
ences in outcomes at ages other than the mean age of the sample were
tested by running models with age centered at ages 11 and 23 years, and
then testing the significance of the sex term coefficient. These ages were
chosen because they reflect ages at the relative extremes of the ages sam-
pled, but still had a high number of sample points to ensure reliability of
estimates.

Voxelwise HLM analyses. To ensure that our selection of ROIs did not
bias our patterns of findings or obscure findings of age-related change in
other regions, we also conducted voxelwise HLM analyses. These were
conducted by applying the nlme function in R (R Core Team, 2012) to
each voxel and then reconstructing model outputs into a three-
dimensional statistical map. As with the ROI analyses, we followed a
standard model-fitting procedure for each voxel. First, inverse, linear
age, and quadratic unconditional growth models were estimated with the
intercept and slopes as random effects. AIC values for each model were
compared. A quadratic model was only selected for a given voxel if the
coefficient of the quadratic term in the regression model was significant
and the AIC value indicated this to be the best-fitting model. Second,
significant clusters of voxels were identified only after correcting the map
for multiple comparisons using a combination of cluster size and indi-
vidual voxel probabilities, and parameters determined following a Monte
Carlo simulation using the AFNI AlphaSim program. This analysis spec-
ified that 14 contiguous voxels along with a single-voxel threshold of p <
0.005 was required to achieve a cluster threshold of a = 0.050.

Results

Trajectories of behavioral performance

AIC values for the inverse, linear, or quadratic unconditional
model are listed in Table 3 and were used to guide which of the
three models was selected to characterize the shape of growth.
The proportion of variance explained by age in the unconditional
model is also listed in Table 3.

Inverse models provided the most optimal fit for growth
curves of AS-corrected error rates and AS latencies on correct
trials, indicating that improvements in performance decelerated
with age but persisted into early adulthood (Fig. 4; Table 4,). For
AS-corrected error rates, variability existed in the intercept
random-effects term but not the slope random-effects term. As
interindividual variability in inhibitory errors was only mani-
fested in intercepts, this reveals a pattern whereby individuals
show parallel trajectories over development. Individual variabil-
ity existed for both the intercept and the slope for AS latency, but
no clear pattern of heteroscedasticity emerged—that is, variabil-
ity did not decline with age to indicate convergence of trajecto-
ries, nor did it increase with age to indicate divergence of
trajectories. Sex and IQ did not predict any variability.

Mean growth curves for brain function

Table 3 lists the AIC values used to guide the selection of uncon-
ditional models characterizing the shape of growth and also lists
the proportion of variance explained by age in the unconditional
model. Model-fitting procedures resulted in a final growth curve
model for the percentage signal change for each ROI. Final 3
values, variances, their significance, and whether significance
tests survive correction for multiple comparisons are presented
in Tables 5, 6, and 7, and mean growth curves are depicted in
Figure 5. The following analyses account for developmental
differences in performance because they are limited to brain
activation during trials associated with only one type of per-
formance (either correct or corrected errors). Unless other-
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Figure4. A, C,Raw behavioral data with superimposed loess lines corroborate selection of inverse functions to model mean growth curves (right; black). B, Since results indicated significant
variance in intercepts but not slopes for AS-corrected error rates, the mean growth curve is plotted along with a portion of each individual's estimated regression line. D, For AS latencies, results
indicated significant variability in both intercepts and slopes, so each individual’s full estimated regression line is plotted.

Table 4. HLM model-fitting results for behavioral data
Final model for AS

Final model for AS

percentage errors latency (correct)
Fixed-effects (robust SE)
Model for intercept, 7r;
INTRCPT, Boo 0.283*** (0.016) 485.237 (4.795)***
SEX.“ Bos
107 Boy
Model for age slope, 7r; Inverse age Inverse age
INTRCPT, B4 7.437%%*(0.752) 1206.411 (271.808)***
SEX By
107 1,
Random-effects (variance components)
Variance in individual means 0.02%** 1792.79%*
Variance in slopes 1148 1765740.456*
Variance within individuals 0.013 1215.272
AIC —249.792 3198.729

Values for each term included in the final model and their significance are noted below. These include fixed-effect
terms (regression coefficients and their standard errors) and random-effect terms (intercept variance and slope
variance). Model-fitting procedures are described in Materials and Methods. ***Significant at p << 0.001, **signif-
icantat p << 0.01, *significant at p < 0.05, * Trend, significant at p < 0.10.

“Predictor centered so that 0 reflects the grand mean; in the case of sex, a weight was created for each sex so that the
sum of sex codes across all participants was 0.

wise noted, findings described below also survived correction
for multiple comparisons.

When examining activation in motor response control ROIs
(bilateral putamen, bilateral pPC, bilateral FEF, SEF, pre-SMA)
during correct performance, slope terms of mean growth curves
(B1o) did not show significant age-related change in magnitudes
of brain activation, with the exception of the left FEF, which was
fit by a quadratic function indicating lowest magnitudes in ado-
lescence. For all ROIs, the intercept at mean age of the sample was
significant and positive. Together, these findings indicate that the
activation (percentage signal change) was positive, yet un-
changed with age in all but one of the eight motor response con-
trol regions (Fig. 5A).

Among executive control ROIs during correct performance,
the right dIPFC showed a significant positive slope of inverse age,
indicating declining activation levels with development. Activa-
tion atage 11 years (based on the intercept of a model centered at
age 11 years) was greater than zero (Byg age11 = 0.015, f(12) =
3.346,p = 0.001), only a trend at the mean age of the sample (16.7
years; Tables 5, 6, 7), and was not significant at age 23 years
(Boo age2s = —0.000, t(155) = —0.074, p = 0.942), suggesting that
magnitudes of activation in the right dIPFC approached zero by
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Table 5. HLM model-fitting results for each a priori ROl values for each term included in the final model and their significance

dIPFC VIPFC dACC
Left Right Left Right Errors Correct
Fixed effects (robust SE)
Model for intercept, 7r;
INTRCPT, Byo —0.0083 (0.0018)***  0.0048 (0.0027)"  0.0048 (0.0024)* 0.0285 (0.0024)*** 0.0517 (0.0041)***  0.0411 (0.0032)***
SEX,” B01 0.0030 (0.0048)
10,7 By, 0.0005 (0.0003)
Model for age term slope, 7r; Inverse age Inverse age Inverse age Inverse age Inverse age Inverse age
INTRCPT, B4 0.0502 (0.1395) 0.3154 (0.1495)*°  0.0980 (0.1220) 0.1935 (0.1557) —0.7274 (0.1883)***  0.0644 (0.2036)
SEX,? B, —0.8186 (0.3113)*
102 p12
Model for age slope, 7,
INTRCPT, B,o
Random effects (variance components)
Variance in individual means, var(ry) = 7o, 0.00008* 0.00044*** 0.00023*** 0.00027** 0.00059 * 0.00050***
Variance in slopes, var(r,) = 7, 0.26576 0.46675 0.22957 * 0.13754* 0.44370 1.070%
Variance in Age ? slopes, var(r,) = 7,
Variance within individuals, var(e,) = o ? 0.00068 0.00062 0.00085 0.00090° 0.00251 0.00121
AIC —1280.426 —1236.269 —1210.828 —1174.973 —848.987 —1056.761

Results include fixed effect terms (regression coefficients and their standard errors) and random effect terms (intercept variance and slope variance). Significance was set as follows: ***Significant at p < 0.001, **significant

atp < 0.01, *significant at p < 0.05, " Trend, significant at p < 0.10.

“Predictor centered so that 0 reflects the grand mean; in the case of sex, a weight was created for each sex so that the sum of all codes across all participants was 0.

®Does not survive correction for multiple comparisons.

Table 6. HLM model-fitting results for each a priori ROl values for each term included in the final model and their significance

FEF
SEF Pre-SMA Left Right
Fixed effects (robust SE)
Model for intercept, 7my;
INTRCPT, Byo 0.0501 (0.0034)*** 0.0636 (0.0035)*** 0.0467 (0.0032)*** 0.0642 (0.0027)***
SEX,” Bos —0.0052 (0.0068) 0.0078 (0.0071) 0.0001 (0.0055)
107 By,
Model for age slope, 7r; Age Inverse age Age Inverse age
INTRCPT, B, 0.0001 (0.0008) 0.1034 (0.2456) —0.0002 (0.0006) 0.2389 (0.1937)
SEX,” By, 0.0043 (0.0015)** —1.0896 (0.4913)* —1.011(0.3875)*
107 By,
Model for age ? slope, 7r;
INTRCPT, B, 0.0003 (0.0001)*
Random effects (variance components)
Variance in individual means 0.00074*** 0.00064*** 0.00055%** 0.00030**
Variance in slopes 0.00000%° 1.57311%* 0.00001 0.94294%°
Variance in Age ? slopes 0.00000
Variance within individuals 0.00152 0.00143 0.00054 0.00103
AlC —997.671 —991.677 —1244.205 —1116.213

These include fixed-effects terms (regression coefficients and their SEs) and random-effects terms (intercept variance and slope variance). Significance was set as follows: ***Significant at p << 0.001, **significant at p << 0.01, *significant

atp < 0.05, *Trend, significantat p < 0.10.

“Predictor centered so that 0 reflects the grand mean; in the case of sex, a weight was created for each sex so that the sum of all codes across all participants was 0.

®Does not survive correction for multiple comparisons.

early adulthood. However, the finding of age-related change in
the right dIPFC did not survive correction for multiple compar-
isons. Left dIPFC and bilateral vIPFC activation did not change
with age, but a significant intercept term for these all executive
control ROIs indicates these regions were activated throughout
the course of development, albeit at levels much lower than in the
motor response control ROIs.

Brain function associated with error processing (dACC acti-
vation during corrected error trials) was best fit by a negatively
sloped inverse function, indicating increasing levels of activation
with age that are different from zero even at age 11 years (Byq age11 =
0.029, t(;,9y = 5.817, p = 0.000). This was specific to corrected error
trials, as dACC activation during correct trials revealed no significant
developmental change despite positive levels of activation at the
mean age of the sample.

Variability in growth curves for brain function

In all motor response control regions except the right pPC,
both intercepts and slopes varied with age (Tables 6, 7),
though some slopes (as noted in Tables 6, 7) did not survive
correction for multiple comparisons. The left and right puta-
men, left pPC, and SEF showed a pattern of equifinality,
whereby trajectories tend to converge over time (Fig. 6A).
Statistically, this was evidenced by a decline in variance in
intercept values for equations centered at ages 11, 16.7, and 23
years, respectively, in combination with negative correlations
between intercept and slope for regions modeled by linear age
(left putamen, r = —0.937; right putamen, r = —0.982; left
pPC, r = —0.295) and positive correlations for regions mod-
eled by an inverse function (SEF, r = 0.913). Neither 1Q nor
sex predicted variability in either intercept or slope in the



Ordaz et al.  Longitudinal Growth Curves of Brain Function

J. Neurosci., November 13, 2013 - 33(46):18109-18124 « 18117

Table 7. HLM model-fitting results for each a priori ROl values for each term included in the final model and their significance

Putamen

pPC

Left Right

Left Right

Fixed effects (robust SE)
Model for Intercept, 7r,;
INTRCPT, Byo
SEX.? By
'a BOZ
Model for age slope, 7; Age Age
INTRCPT, B, 0.0004 (0.0005)
SEX By,
107 By,
Model for age? slope, 77,
INTRCPT, B,o
Random effects (variance components)
Variance in individual means
Variance in slopes
Variance in Age * slopes
Variance within individuals 0.00086
AIC —1202.854

0.0417 (0.0022)***

0.00023*
0.00000%°

0.0321(0.0021)***

—0.0001 (0.0005)

0.00020%
0.00000 *

0.00074
—1246.914

0.0516 (0.0027)*** 0.0533 (0.0031)***

Age Inverse age
—0.0003 (0.0007) 0.1137 (0.1889)

0.00044***
0.00001**

0.00057%**
0.899287**

0.00068
—1210.630

0.00086
—1133.884

These include fixed-effects terms (regression coefficients and their standard errors) and random-effects terms (intercept variance and slope variance). Significance was set as follows:***Significant at p < 0.001, **significant at p < 0.01,

*significant at p < 0.05, *Trend, significant at p < 0.10.

“Predictor centered so that 0 reflects the grand mean; in the case of sex, a weight was created for each sex so that the sum of all codes across all participants was 0.

®Does not survive correction for multiple comparisons.

putamen or left pPC, indicating that other, yet to be identified
factors contribute to the decline in variability.

In the right FEF, SEF, and pre-SMA, sex but not IQ predicted
slope variability, and neither predicted intercept variability (Ta-
bles 6, 7). Figure 7 illustrates that activation in these motor con-
trol regions declined in females during childhood to reach male
levels in adolescence. Planned follow-up simple-effects analyses
were conducted to examine (1) the significance of age-related
change in female and male trajectories, and (2) whether differ-
ences in activation between the sexes in childhood (age 11 years)
and adulthood (age 23 years) were significant. In all of these
regions, the same pattern emerged, whereby magnitudes of acti-
vation declined with age in females (right FEF: B, pemateref =
0.745, t(131) = 3.223, p = 0.002; SEF: By pematerer = —0-002,
tazy = —2.027, p = 0.045; pre-SMA: Bio pematerer = 0-648,
ta21) = 2.114, p = 0.036), but there was no age-related change or
only a trend in males (right FEF: B,y yaerer = —0.267, t(151) =
—0.858, p = 0.393; SEF: B1g niaterer = 0-002, f(151, = 1.934, p =
0.055; pre-SMA: Biy malerer = —0.441, (5, = —1.150,
p = 0.253). Second, sex differences were present in childhood
(age 11 years) and adulthood (age 23 years). In childhood, fe-
males showed higher levels of activation in the SEF (Byg age11 =
—0.030, £, = —2.513, p = 0.014) and right FEF (Bgg se11 =
—0.031, £,y = —2.556, p = 0.012), and a trend for higher
activation in the pre-SMA (Bg 4ge11 = —0.026, £(15;) = —1.666,
p = 0.098). In adulthood (age 23 years), males showed trend
levels of higher activation in the SEF (Byg agezs = 0.022, t(151) =
1976, p = 0.050) and right FEF (Byg sgezs = 0.017, 11, = 1.824,
p = 0.070), and significantly higher activation in the pre-SMA
(Boo age2s = 0.026, t(15;, = 2.207, p = 0.029). Therefore, these
results indicate that in these three motor response control re-
gions, female trajectories of activation decline with age, intersect-
ing with stable male trajectories in adolescence. The sex
difference switches with development, proceeding from greater
female activation at age 11, to no sex differences in adolescence,
and less (or a trend for less) female activation by age 23 years.

In the executive control regions of the bilateral dIPFC and left
vIPFC, models revealed variance at the intercept but not the slope
(Table 5), indicating variability across individuals is manifested

as parallel trajectories with equivalent slopes (Fig. 6B). The
intercept-based variability was not explained by IQ, sex, or trait-
like behavioral variability in performance (see Variability in
growth curves for brain function section).

In the right vIPFC, significant intercept and slope variability
was explained in part by sex differences in trajectories (Table 5).
Sex differences in the right vIPFC were consistent with those seen
in the other ROIs where trajectories differed by sex. That is, fe-
males showed significant age-related declines (B¢ remalerer =
0.603, t(,51) = 2.985, p = 0.004), while males did not (8, palerer =
—0.216, t(;5;) = —0.911, p = 0.364), and right vIPFC activation was
significantly greater in females in childhood (By; 11 = —0.022,
taany = —2.079, p = 0.039), whereas the males showed greater acti-
vation in adulthood (B, 4ge23 = 0.016, t(15;,) = 2.256, p = 0.026).

For dACC activation during corrected error trials, there was
no significant intercept (trend level) or slope variability (Table 5).
This was unique to error processing, as dACC during correct
trials evidenced both significant intercept and slope
variability.

Except for where noted above, all results for variability in
intercept and slope terms survived correction for multiple
comparisons.

Associations between brain function and

behavioral performance

To explore whether brain activation was associated with behav-
ioral performance, AS performance was regressed on magnitudes
of brain activation for each region that showed developmental
change in brain function: right dIPFC and left FEF during correct
trials, and dACC during corrected error trials. After controlling
for age (modeled as an inverse function), AS-corrected error rates
were not associated with activation in either right dIPFC (B3,, =
—0.354, 1,5, = —1.276, p = 0.205) or left FEF (B,, = —0.014,
t(122) = —0.041, p = 0.967). However, increased dACC activation
during corrected error trials was associated with decreased AS-
corrected error rates (8, = —0.674, t(;,9) = —4.735, p = 0.000),
after controlling for age (Fig. 8A). A test of mediation using
MacKinnon’s Product of Coefficients Test (MacKinnon et al.,
2002) revealed that the effect of age (modeled as inverse age) on
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Figure 5. A, Mean growth curves for motor response control ROIs (shown below graphs in radiological view) consistently indicate no developmental change in activation, with one exception
noted. B, Mean growth curves for executive control regions indicate that only the right dIPFC demonstrates developmental changes in activation, asillustrated below. C, Mean growth curve for error
processing (dACC during corrected error trials) indicates increases in the percentage of signal change with age. This effect is specific to error-related activation, as indicated by a lack of significant

age-related change in the dACC during correct trials.
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Figure 6. A, Variability declines with age in a subset of motor response control regions, including the SEF, bilateral putamen, and left pPC. B, Parallel trajectories in executive control regions.
Dashed lines indicate significant variability in intercepts, but not in slopes, and convey the range of interindividual variability in brain activation at all ages.

AS-corrected error rates was mediated by dACC activation dur-
ing corrected error trials (a3 = 0.583, SE, g = 0.185, CI = 0.177—
0.896; Fig. 8B). AS latencies on correct trials were not associated
with activation in any region that showed age-related change in
performance (dACC: B = —43.801, t(,,5) = —0.999, p = 0.320;
right dIPEC: B = —33.305, 1,55, = —0.396, p = 0.692; left FEF:
B = 35.731, t(;,) = 0.376, p = 0.707), and therefore mediation
was not tested.

Voxelwise HLM analyses

For activation associated with AS correct trials and AS-corrected
error trials, the quadratic model was not best fitting for any voxel
that also fell within a significant cluster of age-related activation.
Model comparison between the inverse age and linear age models
revealed the inverse age model to be best fitting for all voxels
characterized by significant age-related change. For correct trials,
clusters characterized by significant age-related change as mod-
eled by an inverse function are depicted in Figure 9, Band C, and
Table 8. For corrected errors, significant age-related change was
evident in various regions of the lateral prefrontal cortex, includ-
ing areas of the right middle and inferior frontal gyrus, and the
left superior medial frontal gyrus. Notably, age-related change
was not evident within the a priori right dIPFC ROI used in prior
analyses.

Few voxels, let alone clusters of voxels, revealed significant
age-related change in activation associated with corrected error
AS trials (Fig. 9A; Table 8). The largest cluster was the dACC
(cluster size = 75), and 48% of this cluster fit within the a priori
dACC ROI used in the prior analyses. A negative slope fit by an

inverse function indicated that activation increased at a declining
rate with age.

Discussion

The ability to voluntarily suppress a reflexive response in favor of
a planned goal-directed response is central to cognitive control of
behavior. This study sought to characterize the normative growth
curves of underlying brain activation, examine the relationship of
brain activation to performance, explore variability in trajecto-
ries, and probe contributions of sex and IQ to any such variabil-
ity. Growth curves were modeled using statistical model-building
approaches typically used in developmental studies, but which
are novel to functional neuroimaging studies of youth (but see
Shawetal., 2012). Behavioral results accord with the extant cross-
sectional literature indicating asymptotic growth that is pro-
tracted through adolescence (Klein and Foerster, 2001; Luna et
al., 2004; Ordaz et al., 2010), and neither sex (Ross et al., 1994;
Luna et al., 2004) nor IQ (Michel and Anderson, 2009) explained
variability. Mean growth curves for brain activation in a priori
regions of interest revealed little developmental change in motor
response control regions and increased activation in an error-
processing region. Post hoc voxelwise growth curve analyses un-
derscored the significance of developmental changes in activation
related to error processing. There was equivocal evidence for age-
related declines within the identified a priori right dorsolateral
prefrontal executive control region, though post hoc voxelwise
analyses revealed similar patterns of age-related decline in other
regions of the right lateral prefrontal cortex also involved in ex-
ecutive control, highlighting a common pattern of decelerating
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Figure 7.

Sex effects in trajectories exist predominantly in motor response control regions. Red and blue symbols denote whether there is significant age-related change for each sex. Black

symbols indicate the significance of sex differences at ages 11, 16.7, and 23 years, ages selected a priori to reflect different stages of development.

rates of activation as children proceed into adolescence. To-
gether, these findings fit with our hypothesis that executive con-
trol and error-processing regions matured later than motor
response control regions, and results also clarified that error-
processing function was the latest to mature. Only error-
processing activation was associated with performance, and this
was shown to mediate the relationship between age and inhibi-
tory error rates. Variability patterns were unique to each func-
tional network, suggesting that similar mechanisms may support
development within different circuitries. Contrary to hypotheses
based on growth curves of structural brain maturation, IQ did
not explain any variability in brain activation; however, sex did
explain variability in some regions, predominantly those in-
volved in motor response control. Importantly, activation asso-
ciated with error processing was unique in that there was no
significant interindividual variability in growth curves, under-
scoring its centrality in facilitating developmental improvements
in behavior.

Unlike activation in all motor response control and executive
control ROIs, dACC activation during corrected error trials was
associated with AS performance. Importantly, this relationship
did not exist for dACC activation during correct trials, suggesting
that dACC-supported error processing specifically underlies the
developmental improvements in performance on an inhibitory
control task. Indeed, dACC-supported error processing statisti-

cally mediated the relationship between age and AS performance.
The dACC is known to monitor performance, detect incorrect
responses, and adjust subsequent responses, which enhance over-
all performance (Gehring et al., 1993; Menon et al., 2001; Polli et
al., 2005). Though it is unclear whether the dACC detects re-
sponses to be corrected via error detection (Garavan et al., 2003)
or monitoring of conflicting/incompatible responses (Carter et
al., 1998; Braver et al., 2001), the dACC seems to adjust perfor-
mance by signaling the right dIPFC to increase activation on the
next trial, which subsequently improves performance (Kerns,
2006; Cavanagh et al., 2009). Our finding of developmental in-
creases in error processing-related activation fits with cross-
sectional fMRI and event-related potential studies reporting
greater such activation in adults than youth (Davies et al., 2004;
Ladouceur etal., 2007; Rubia et al., 2007; Velanova et al., 2008). It
also aligns with results from a large, cross-sectional, developmen-
tal structural neuroimaging study that revealed that the dACC is
unique among all cortical areas in that its cortical surface area
explains significant variability in performance on another inhib-
itory control task, even after accounting for age (Fjell et al., 2012).
Our characterization of a growth curve with decelerating rates of
change reveals that the developmental change is characterized by
continued subtle refinements in activation that occur throughout
adolescence. These results extend previous research focused on
traditional prefrontal executive regions to provide a novel under-
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cuits by adolescence (Hwang et al., 2010)
and from Diffusion Tensor Imaging stud-
ies, indicating that white matter tracts that
link to dIPFC (superior longitudinal fas-
ciculus) are mature by adolescence,
whereas those linking to dACC (cingu-
lum) mature into adulthood (Lebel et al.,
2012). Right dIPFC activation was not
correlated with performance, which may
suggest that the right dIPFC may not be
directly involved with trial-level perfor-
mance but may reflect overall effort
(Braver et al., 1997). Indeed, experi-

mental manipulations indicate that this

region supports determining which task
features require attention and which
processes should be prioritized—once
this is determined, right dIPFC activa-
tion diminishes (Rypma et al., 2002;
Chein and Schneider, 2005; Lee et al.,
2012). Other areas of the executive con-

AS % errors

trol network did not show age-related
change, suggesting that only portions of
this network are involved in facilitating
the maturation of performance.

Our data, the first to examine variabil-
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Figure 8.

standing of the primary role of performance monitoring for fa-
cilitating the development of mature inhibitory control over
behavior.

In contrast to the dACC during corrected errors, activation in
the right dIPFC ROI, a key executive control region, decreased
with age and reached adult levels by adolescence. This finding,
however, did not survive correction for multiple comparisons,
and voxels corresponding to this ROI did not evidence develop-
mental change in voxelwise growth curve analyses. Nonetheless,
the voxelwise investigation revealed significant clusters of voxels
in other areas of the right lateral prefrontal cortex (middle and
inferior frontal gyri)—areas that also followed a pattern of
steeper declines in childhood followed by a decelerating rate of
activation levels in adolescence. The lack of voxels showing de-
velopmental change within the predefined right dIPFC ROI in
voxelwise analyses may be attributable to the lesser test-retest
reliabilities of voxelwise versus ROI-based metrics or they may
underscore the small effect size of the ROI-based dIPFC finding
over the large age range sampled in this study. For this reason,
future research seeking to clarify age-related changes in lateral
prefrontal cortex ought to examine a targeted age group limited
to older children and young adolescents. What is consistent
across any of these ROI-based and voxelwise findings is the pat-
tern that areas of the lateral prefrontal cortex are recruited most
by children and used at a decelerating rate over development.
That activation in the right lateral prefrontal cortex reaches ma-
turity before dACC is consistent with evidence from functional
connectivity studies indicating that prefrontal executive circuits
are functionally integrated into distributed inhibitory control cir-

A, Increased activation in the dACC during corrected error trials is associated with better overall task performance, as
indicated by lower AS error rates. B, Percentage of signal change in the dACC during corrected error trials mediates the effect of age
(modeled as an inverse function) on AS error rates, as indicated by the product of coefficients test (MacKinnon et al., 2002).

ity in growth curves of inhibitory control,
indicate that patterns of variability are
consistent within functional circuitries,
which may reflect different developmen-
tal processes across different brain re-
gions. dACC activation was the most
developmentally invariant, as it did not
demonstrate significant variability in
either intercepts or slopes, suggesting a central role of error pro-
cessing in supporting the emergence of mature inhibitory con-
trol. In contrast, variability was present in the trajectories of
activation in executive control regions, but rank-order between
individuals was preserved across development, suggesting this
type of activation is a trait-like characteristic. Variability in mul-
tiple motor response control regions was heteroscedastic. This
variability was relatively high in childhood and diminished with
age, and activation increased over development in some individ-
uals but decreased in others. Together, this indicates that matu-
ration reflects a stabilizing process of convergence, and the
observed variability may reflect a dynamic tuning of optimal mo-
tor control engagement as error processing matures.

Despite comparable task performance across sexes at all
ages, this study revealed sex-specific patterns of developmen-
tal change in brain function in a subset of motor response
control regions (SEF, pre-SMA, and right FEF) and an execu-
tive control region (right vIPFC). Whereas males did not show
differential recruitment with age, females showed declines in-
dicating a greater reliance on these regions early in develop-
ment. Given that both sexes show the same developmental
patterns in dACC and dIPFC activation, the female-specific
change in predominantly motor response control recruitment
may reflect sex differences in compensatory approaches. Fe-
males’ white matter matures earlier than that of males and ata
time when dACC continues to mature (Asato et al., 2010; Bava
etal.,, 2011), so females may take advantage of earlier access to
speeded connections by relying upon motor control regions
during early adolescence. Indeed, developmental changes in
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for a given cluster are displayed.

Table 8. Voxelwise HLM analyses reveal clusters showing significant age-related change in activation associated with correct or corrected error trials

Area Voxels (n) Peak voxels x, y, z(mm; in LPI) Slope of inverse age at peak Mean slope of inverse age
Correct trials
L precentral and postcentral gyri 48 —46.5, —16.5,31.5 0.799 0.615
L lingual gyrus and L visual association area 34 —1.5, —825,—15 —3.001 —2.359
R inferior frontal gyrus (pars triangularis) 34 40.5,19.5,28.5 2.740 1.957
L superior medial gyrus 29 —1.5,49.5,49.5 18.453 6.208
L paracentral lobule 29 —4.5, —40.5,76.5 14.365 8.713
R middle frontal gyrus 20 28.5,37.5,16.5 3.600 2972
Bilateral precuneus 15 —1.5,—76.5,52.5 26.919 20.111
Corrected error trials
L dorsal anterior cingulate cortex 75 —1.5,25.5,315 —2.301 —1.238
L postcentral gyrus 39 —705,—225,225 —3.872 —1.984
L precuneus 23 —13.5, —375,465 —3.680 —2.781
L lingual gyrus 2 —34.5, —91.5,13.5 11.308 6.100
L, Left; R, right.

white matter microstructure are associated with magnitudes
of brain function supporting executive function (Olesen et al.,
2003) via their effects on network integration (Stevens et al.,
2009). Importantly, the lack of sex differences in dACC and
dIPFC further underscores that these areas of the inhibitory
control network are foundational.

In sum, our longitudinal approach enabled us to discern the
contributions of different brain systems to the development of
inhibitory control, revealing that error processing/performance
monitoring is the primary process supporting the maturation of
inhibitory control. Importantly, executive processes are engaged
in childhood to support inhibitory control but do not underlie
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the transition to adult-level inhibitory control of behavior. In this
initial study, we examined regions known to be functionally in-
terconnected within circuits, and future studies could extend this
work by examining growth curves of functional connectivity.
This could reveal how strengths of connections between regions
change with age and whether the strength of such associations
varies across individuals. Analyses examining the connectivity of
error-processing activation to activation in regions to which the
dACC is anatomically and functionally interconnected could re-
veal the process by which error processing-related activation fa-
cilitates age-related improvements in inhibitory control.
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