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Schizophrenia is typically associated with higher-level cognitive symptoms, such as disorganized thoughts, delusions, and hallucinations.

However, deficits in visual processing have been consistently reported with the illness. Here, we provide strong neurophysiological

evidence for a marked perturbation at the earliest level of cortical visual processing in patients with paranoid schizophrenia. Using

functional magnetic resonance imaging (fMRI) and adapting a well-established approach from electrophysiology, we found that

orientation-specific contextual modulation of cortical responses in human primary visual cortex (V1)—a hallmark of early neural

encoding of visual stimuli—is dramatically reduced in patients with schizophrenia. This indicates that contextual processing in

schizophrenia is altered at the earliest stages of visual cortical processing and supports current theories that emphasize the role of

abnormalities in perceptual synthesis (eg, false inference) in schizophrenia.
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INTRODUCTION

Schizophrenia is an illness that is commonly linked to high-
level cognitive dysfunction, typically manifesting itself
in disorganized thoughts, delusions, and hallucinations.
However, recent models of schizophrenia suggest that these
higher-level cognitive symptoms might reflect a more
pervasive deficit, starting with alterations at the earliest
stages of perceptual processing (Fletcher and Frith, 2009;
Phillips and Silverstein, 2003).

It has also recently been argued that our understanding of
schizophrenia may greatly benefit from the employment of
the rigorous methodological approaches used in the field of
vision science (Silverstein and Keane, 2011). The visual
system, and in particular the primary visual cortex (V1), has
been the most extensively studied brain system to date and
has thus played a central role in our understanding of brain
function in general. For instance, because V1 has a strict
retinotopic organization and V1 neurons respond selec-
tively to specific low-level stimulus features, such as line
orientation, researchers can use V1 as a model to examine
cortical coding principles with great experimental precision.

In this experiment, we exploited a well-established property
of processing in V1—contextual modulation of neuronal
responses to visual stimuli—to probe the integrity of early
visual cortical mechanisms in schizophrenia. Contextual
modulation is the modulation of responses to stimuli
placed within a neuron’s receptive field by stimuli presented
in adjacent regions outside the classical receptive field
(Blakemore and Tobin, 1972). As a number of recent
behavioral experiments have suggested a weakening of
contextual processing in schizophrenia (Dakin et al, 2005;
Fogelson et al, 2011; Must et al, 2004; Tadin et al, 2006;
Uhlhaas et al, 2006; Yoon et al, 2009), we investigated the
neural mechanisms of contextual modulation at the earliest
level of visual cortical processing—retinotopically defined
V1—in patients with the illness.

MATERIALS AND METHODS

Participants

Our functional magnetic resonance imaging (fMRI) study
consisted of 18 participants with paranoid schizophrenia
and 18 healthy controls matched on age, gender, and years
of education (for demographic and clinical characteristics,
see Table 1). All patients were clinically stable and recruited
as outpatients. Diagnosis was made by experienced
psychiatrists using a structured clinical interview for
DSM-IV Axis I disorders (SCID I) and the Positive and
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Negative Syndrome Scale (Kay et al, 1987). All but one
patient were on stable doses of antipsychotic medication at
the time of testing. Exclusion criteria for both groups were
benzodiazepine-intake within 15 h prior to the experiment,
illicit substance use up to 10 days before the experiment,
and neurological co-morbid diagnoses. Prior to scanning,
participants were given an opportunity to familiarize
themselves with the stimuli and task. All participants had
normal or corrected-to-normal vision and gave written
informed consent before participation in the study, which
was approved by an accredited Medical Ethics Review
Committee.

Measuring Orientation-Specific Surround Suppression.

We adapted a standard approach from electrophysiology for
investigating contextual modulation in V1. Using fMRI, we
followed a similar methodology and stimulus design used
by Zenger-Landolt and Heeger (2003) to measure suppres-
sion of the blood oxygenation level-dependent (BOLD)
response associated with viewing a center (annulus) grating
embedded within one of two contextual surround gratings,
oriented either orthogonal or parallel to the center grating’s
orientation (Figure 1). This specific stimulus configuration
(ie, using an annulus rather than a central disc grating) was
chosen to allow for the best dissociations of visual regions
corresponding to the ‘center’ grating from regions represent-
ing the ‘surround’ grating within separately mapped retino-
topic areas (V1, V2 and V3). It has been well established that,
especially in area V1, neurons tuned to the orientation of the
contextual surround grating suppress the responses of
neurons tuned to the orientation of the center grating
(Blakemore and Tobin, 1972; Schwartz et al, 2007; Zenger-
Landolt and Heeger, 2003). Moreover, an important feature
of this surround suppression is its orientation specificity,
with suppression being strongest when the orientations of the
center grating and the contextual surround are parallel
(Blakemore and Tobin, 1972; Schwartz et al, 2007).

Stimuli and Design of the Main Experiment

We used an optimized block design in which a grating
(a sinusoidal pattern; 1.1 cycle/deg, reversing in phase

at 4 Hz) was continuously displayed within the annular
‘center’ region while a grating in the ‘surround’ regions
appeared and disappeared with a square-wave temporal
profile lasting 20 s per cycle (ie, 10 s ‘off’ and then 10 s ‘on’,
as in Figure 1). This temporal structure was selected in order
to best maximize surround suppression of the BOLD
response (Haynes et al, 2003; McDonald et al, 2009;
Williams et al, 2003; Zenger-Landolt and Heeger, 2003).
The annulus region extended from 1.8 to 4.01 eccentricity
and the ‘surround’ region, which included the areas both
inside and outside of the annulus, extended to 12.01
eccentricity. Two different center-surround configurations
were used: a ‘parallel surround’ condition where the annulus
center grating and the surround grating were presented at
the same orientation, and an ‘orthogonal surround’ condi-
tion where the annulus center grating and the surround
grating were presented with an angular difference of 901.
Each run comprised four on–off center-surround cycles for
each condition, presented in an alternating sequence over
the run. The order of these conditions was counterbalanced
across runs and subjects. Blank fixation periods (10 s) were
also displayed at the beginning, middle, and end of each run,
resulting in a run duration of 3 : 17 min.

To avoid any orientation processing biases whereby
greater BOLD responses are elicited for horizontal and
vertical orientations compared with diagonal orientations
(Engel and Furmanski, 2001), we presented each condition
at four different stimulus orientations (0, 45, 90 and 1351)
such that every discrete stimulus orientation occurred once
over the course of each run. Hence, the parallel and
orthogonal blocks differed only in the relative orientation of
center and surround and not in the distribution of absolute
orientations. Blocks were also ordered in a balanced design
over the entire scan session so that each block type occurred
an equal number of times before every other block type.

To control for attentional set and to ensure that
participants were not moving their eyes during the
experiment, we used an incidental task, where a fixation
point (0.251 in diameter) was present throughout all runs
and participants were asked to fixate and respond with a
button press when its color changed from white to red.
These changes occurred at 9–10 random time intervals
distributed across each 20-s block.

Participants were scanned for a total of 10 fMRI runs. Five
runs were devoted to measuring suppression of the BOLD
response associated with parallel and orthogonal surrounds.
Two independent localizer runs, carried out after the first
three experimental runs, were employed to isolate the
cortical representation of the annulus from the surround
representation, and a further three runs were conducted to
perform standard phase-encoded retinotopic mapping
(Sereno et al, 1995).

We also measured eye movements from the majority of
participants (14 from the patient group and 12 from the
control group) in a separate session outside of the scanner
following the fMRI experiment. Subjects viewed an identical
stimulus to that used in the fMRI experiment and were
engaged in the same fixation task. Eye movements that
exceeded 0.51 eccentricity from the fixation point were
recorded using a video-based eye tracker (sampling rate:
250 Hz, spatial resolution: 0.051, Cambridge Research
Systems, UK).

Table 1 Subject Demographic and Patient Clinical Characteristics

Patients (n¼ 18) Controls (n¼ 18) t value

Mean SD Mean SD

Gender (% of male subjects) 53.80 53.80

Age (years) 33.27 5.57 33.72 6.35 0.00 ns

Education (years) 15.79 4.19 15.39 3.73 0.40 ns

Illness duration (years) 9.00 6.88 — — —

CPZ equivalent (mg/day) 282 256.65 — — —

PANSS

Positive symptom 11.90 4.62 — — —

Negative symptoms 13.90 5.17 — — —

General symptoms 24.80 7.89 — — —

Abbreviation: ns, not significant.
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fMRI Data Acquisition

Functional images were acquired in a 3 Tesla Siemens
(Erlangen, Germany) Trio scanner using a gradient echo
planar imaging (EPI) sequence and a twelve-channel head
coil. We collected 33 slices positioned at an orientation
parallel to the calcarine sulcus using a descending sequence
with the following parameters: repetition time (TR) 2.5 s;
echo time (TE) 30 ms, flip angle: 811, slice thickness 3 mm,
interslice gap 0.3 mm, voxel size 3� 3� 3 mm. For each
subject, a high-resolution (1 mm isotropic) T1-weighted
MPRAGE image was acquired for surface reconstruction
and was used as an anatomical reference. Functional data
were co-registered to the raw anatomical scan and not trans-
formed to any standard coordinate system. We corrected for
head motion and made a mean intensity adjustment (global
scaling), but no spatial smoothing was applied to the
functional data.

Areas V1, V2, and V3 of the visual cortex were delineated
manually on the basis of field sign alternations
(Slotnick and Yantis, 2003) that were projected on inflated
cortical maps created in Freesurfer (Dale et al, 1999; Fischl
et al, 1999).

We restricted our analysis for examining contextual
suppression of the BOLD response to those voxels within
retinotopic cortex that responded exclusively to the center
annulus grating (ie, surviving a threshold of po0.05,
uncorrected, in an SPM contrast between activation
associated with a ‘central annulus alone’ condition and
activation associated with a ‘surround alone’ condition—
collected during separate independent localizer runs). Our
regions of interest (ROIs) were then created by intersecting
this localiser mask with the separate retinotopic areas. For
each subject, signal time courses for every voxel were
estimated using a general linear model (GLM) as imple-
mented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). We
modeled separate regressors for the baseline condition,
the parallel surround condition, and the orthogonal
surround condition, all convolved with the canonical

haemodynamic response function. Following this, using
the Matlab-based REX toolbox (http://web.mit.edu/swg/
software.htm), signal time courses were extracted from
each ROI and a voxel-weighted average was computed such
that voxels that gave the strongest ‘central annulus alone’
response during the independent localizer runs were given
the highest weighting. Specifically, voxels within the ROI
that exhibited the highest t-values in the SPM contrast
between ‘central annulus alone’ and ‘surround alone’ were
taken as the weights to be used for computing a weighted
average across all voxels within the ROI. t-values were
normalized to sum to 1 and a weighted sum was computed.

Data were then normalized to a percent signal change,
which was referenced to the local mean signal elicited
during fixation periods. BOLD suppression was calculated
for the two surround conditions by subtracting the mean
signal measured during the baseline condition. For each
ROI, orientation-specific contextual suppression was eval-
uated in a repeated-measure ANOVA using the factors
group and orientation.

RESULTS

In healthy participants, we found suppression of BOLD
responses in V1 to be significantly stronger when the con-
textual surround grating was oriented parallel in compar-
ison to when it was oriented orthogonal (t(17)¼ � 2.83
p¼ 0.012; see Figure 2), consistent with previous findings
of orientation-specific contextual suppression (Blakemore
and Tobin, 1972; Haynes et al, 2003; McDonald et al,
2009; Williams et al, 2003). This was also the case in
V2 (t(17)¼ � 2.86, p¼ 0.011) and V3 (t(17)¼ � 3.06,
p¼ 0.009). In contrast, the data from schizophrenic patients
revealed a marked alteration of orientation-specific con-
textual suppression, with the surround grating’s orientation
exerting no significant influence on the magnitude of
BOLD suppression in V1, V2, or V3 (all to1). This
difference in orientation-specific contextual suppression

Figure 1 Example stimuli. Two center-surround conditions were used: a ‘parallel surround’ (PS) and an ‘orthogonal surround’ (OS). The central annulus
region was considered the ‘center’ in this stimulus configuration. This stimulus design allowed for maximum blood oxygenation level-dependent (BOLD)
suppression and optimal discrimination of visual regions corresponding to the ‘center’ and ‘surround’ parts of the stimulus within retinotopic cortex.
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between controls and patients was reflected in a significant
group-by-orientation interaction for V1 (F(1, 34)¼ 4.87
p¼ 0.034), V2 (F(1, 34)¼ 4.70, p¼ 0.037), and V3
(F(1, 34)¼ 6.11, p¼ 0.018).

Importantly, the group difference in orientation specificity
between patients and controls was not due to overall
weakened suppression in patients, as there was no significant
main effect of group in any visual region (Fo1), nor could
baseline differences in the absence of a contextual surround
explain the results, as BOLD responses to the annulus grating
alone did not significantly differ between patients and
controls (to1), in addition, there were no significant
differences in the size of retinotopically defined ROIs between
the two groups (to1). Furthermore, the lack of orientation-
specific contextual suppression in schizophrenic patients is
unlikely to be an effect of pharmacological treatment, as a
correlation of orientation selectivity (ie, the difference
between suppression in the orthogonal and parallel condi-
tion) with chlorpromazine equivalents of patients’ antipsy-
chotic medication uncovered no significant relationship in
any area examined (V1: R¼ � 0.21, p¼ 0.463, V2:
R¼ � 0.04, p¼ 0.882, V3: R¼ 0.02, p¼ 0.964). Furthermore,
our results are unlikely to reflect differences in focal attention
(Barch et al, 2009), as accuracy in performing a fixation task
concurrently during the experiment did not differ between
groups (mean performance: patients: 81.3%±4.8 SD correct,
controls: 84.4%±5.0 SD, t(17)¼ 1.65, p¼ 0.113), nor did a
correlation between the total number of deviant eye move-
ments (recorded in a separate eye-tracking control session)
and the magnitude of orientation selectivity reveal a
significant relationship for controls (R¼ 0.082, p¼ 0.771) or
patients (R¼ � 0.01, p¼ 0.944).

Correlations of orientation selectivity with overall PANNS
scores failed to show any relationship between illness
severity and orientation-specific contextual modulation
(positive scores: R¼ 0.42, p¼ 0.179; negative scores:
R¼ � 0.49, p¼ 0.104; general scores: R¼ � 0.08,
p¼ 0.799; total score: R¼ � 0.00, p¼ 0.988). Moreover, no
relationship was found between orientation selectivity and
the subjects’ daily nicotine intake (controls; R¼ � 0.31,
p¼ 0.38, patients; R¼ � 0.14, p¼ 0.65).

DISCUSSION

These results are the first demonstration of altered
contextual neural processing in primary visual cortex of
patients with schizophrenia. Although failures to use
contextually appropriate information have long been
suggested a key feature of the illness (Chambon et al,
2008; Cohen and Servan-Schreiber, 1992; Hemsley, 2005;
Phillips and Silverstein, 2003; Silverstein and Schenkel,
1997), our data now provide evidence at the neural level that
contextual influences on visual information processing in
schizophrenia are altered at the earliest stages of the visual
cortex.

Specifically, the absence of orientation-specific contextual
modulation suggests a disruption of inhibitory neural
signals in V1, which is in line with the large body of
evidence supporting GABAergic dysfunction in schizophre-
nia (Benes, 2000; Lewis et al, 2005; Nakazawa et al, 2012;
Yoon et al, 2010), as well as NMDA receptor-mediated
hypofunction (Corlett et al, 2009; Kehrer et al, 2008; Phillips
and Silverstein, 2003). Such disruptions may affect local
inhibitory mechanisms within V1 (Blakemore and Tobin,
1972) or feedback connections from higher areas (Hupe
et al, 1998; Zipser et al, 1996), both of which generate extra-
classical receptive field effects in V1, boosting the gain of
sensory signals (Angelucci and Bullier, 2003). Moreover,
suppression of V1 BOLD responses, as measured in our
study, is a classical demonstration of efficient hierarchical
encoding of visual information (Rao and Ballard, 1998),
whereby the contextual surround provides a statistical
prediction of the central signal, and the prediction error (ie,
the difference between the prediction and the actual signal)
is transmitted to the next stage of processing. Thus, our
findings of altered contextual modulation in patients with
schizophrenia support current theoretical models that link
the positive symptoms of the illness to a disruption in
predictive coding (Corlett et al, 2009; Fletcher and Frith,
2009; (Silverstein and Schenkel, 1997). Our next challenge
will be to disentangle the roles of feedback and local
mechanisms in this alteration, for example, by using

Figure 2 Mean percent signal change of the blood oxygenation level-dependent (BOLD) response in V1, V2, and V3 following the presentation of
oriented contextual surrounds. Negative values indicate suppression of the BOLD response relative to a ‘center alone’ baseline condition (the surround ‘off’
period). Error bars represent SEM.
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experimental designs that preclude local lateral inhibition in
V1 (eg, Harrison et al, 2007).

Although our analysis did not reveal a direct relationship
between psychopathology and orientation-specific sup-
pression in early visual cortex, it should be noted that in
order to obtain valid fMRI measurements, we only
included outpatients who were diagnosed with paranoid
schizophrenia on the basis of previous psychotic
episodes but were clinically stable at the time of testing.
This is reflected by an average total PANSS score of B50 in
our patient sample, which corresponds to only mild clinical
impairment (Lawrie et al, 2002). The group difference in
orientation-specific suppression is therefore unlikely to be
related to the current psychopathology of our patients but
might rather represent a trait marker for the illness.
However, examining patients exhibiting higher levels of
delusional thought might reveal a link between symptom
severity and the magnitude of orientation-selective suppres-
sion. In any case, given that addressing visual function is a
more tractable means of examining the integrity of brain
mechanisms in schizophrenia, this approach may provide a
more precise assessment of neurological impairment in
schizophrenic patients (Silverstein and Keane, 2011).

Finally, surround suppression of neural responses is a
mechanism ubiquitous to sensory systems, serving to
regulate the gain of perceived stimulus contrast and
facilitate figure-ground segmentation (Albright and
Stoner, 2002; Carandini and Heeger, 2012; Tsubomi et al,
2012; Zenger-Landolt and Heeger, 2003). Thus, these data
lend support for the vast number of low-level perceptual
abnormalities documented in the literature (Butler et al,
2008; Butler et al, 2005; Dakin et al, 2005; Javitt, 2009;
Silverstein and Keane, 2011; Uhlhaas and Mishara, 2007;
Yoon et al, 2010). Furthermore, as nicotine has been shown
to mediate gain control mechanisms within V1 and improve
the detection of visual stimuli (Disney et al, 2007), these
findings may account for the increased nicotine intake
commonly observed in patients with schizophrenia (Kumari
and Postma, 2005). Nonetheless, future research is needed
to ascertain whether perturbations of early sensory neural
mechanisms, as observed in this study, reflect a discrete
problem at lower levels, akin to the earlier reports of a
sensory gating deficit in schizophrenia (Braff et al, 1978;
Freedman et al, 1987), or whether the problem is a
widespread and pervasive alteration of context-dependent
neural processing occurring at all levels of the hierarchy
(Corlett et al, 2009; Fletcher and Frith, 2009; Silverstein and
Schenkel, 1997).
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