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Summary

Alveolar macrophages play an essential role in clearing bacteria from the
lower airway, as the resident phagocyte alveolar macrophages must both
phagocytose and kill bacteria, and if unable to do this completely must
co-ordinate an inflammatory response. The decision to escalate the inflam-
matory response represents the transition between subclinical infection and
the development of pneumonia. Alveolar macrophages are well equipped to
phagocytose bacteria and have a large phagolysosomal capacity in which
ingested bacteria are killed. The rate-limiting step in control of extracellular
bacteria, such as Streptococcus pneumoniae, is the capacity of alveolar
macrophages to kill ingested bacteria. Therefore, alveolar macrophages com-
plement canonical microbicidal strategies with an additional level of
apoptosis-associated killing to help kill ingested bacteria.
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Macrophage adaptation to function

Alveolar macrophages are the resident phagocytes in the
lung [1]. They are mononuclear phagocytes that, poten-
tially, can originate from either the replication of resident
post-mitotic macrophages or through the migration of
bone marrow progenitors and peripheral blood monocytes
that are recruited into tissue, where they develop further in
response to environmental imprinting [2]. Macrophage
transcriptional profiles are highly responsive to the prevail-
ing stimuli and a range of phenotypes are possible that are
often grouped as M1, M2a, M2b and M2c types but which,
in reality, are likely to result in multiple variations whose
real importance lies in adaption of the macrophage to
a range of specialized functions [3]. Inflammatory
macrophages are adapted to anti-microbial host defence
producing proinflammatory cytokines such as tumour
necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and
IL-12 as well as reactive oxygen species (ROS) and nitric
oxide (NO), but have the potential to induce tissue injury.
The M2 alternatively activated macrophages are character-
ized by high levels of IL-10 expression, and although some
subsets contribute to defence against parasites, subsets also
play roles in tissue homeostasis through tissue remodelling
and repair and exert anti-inflammatory and immunoregu-
latory roles [4].

In the lung the alveolar macrophage is the resident
phagocyte in the air space, and these have been viewed tra-
ditionally as a cell that results from the recruitment of
peripheral blood monocytes into the lung, which undergoes
differentiation through intermediate lung phenotypes to
become a highly specialized macrophage [5]. However,
studies suggesting a predominantly monocyte origin for
alveolar macrophages have involved the use of irradiation,
which has depleted pulmonary macrophage populations
capable of replication. When radiosensitive blood monocyte
precursors are depleted using methods whose effect is local-
ized to the bone marrow, but that do not alter proliferation
of macrophage populations at remote anatomical sites, the
numbers of resident alveolar macrophages and indeed pul-
monary proliferation of macrophages are unaltered [6].
Murine models employing conditional cell ablation and
adoptive cell transfer have refined our understanding by
demonstrating that alveolar macrophage numbers are
maintained through recruitment of peripheral blood
CX3CR1hi/CCR2– monocytes, which differentiate through a
parenchymal intermediate to become alveolar macrophages
[7,8]. Both the parenchymal intermediate-stage macro-
phage and the alveolar macrophage have the capacity for
local replication and represent the source of alveolar
macrophages in the steady state, while during increased
turnover, such as may occur during inflammatory states, the
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recruitment and differentiation of monocytes via the lung
intermediate is probably accelerated to allow maintenance
of alveolar macrophage numbers. Although not tested for-
mally in the lung, evidence supports the concept that M1
polarized macrophages may arise preferentially from
recruitment of mononcyte populations, while replication of
tissue macrophages may be the predominant source of M2
polarized macrophages during T helper type 2 (Th2) biased
inflammation [9].

Alveolar macrophages are very long-lived cells that may
live for very prolonged periods in the steady state [10]. In
murine models there was no detectable turnover and little
local replication observed over 8 months, so in a steady state
there may be only a limited requirement for in-situ replica-
tion because of intrinsic macrophage persistence. This
reflects, in part, the resistance of differentiated tissue
macrophage to apoptosis and their expression of high levels
of anti-apoptotic molecules, including the Bcl-2 family
members myeloid cell leukaemia sequence (Mcl)-1 and A1
or the inhibitor of death receptor signalling FLICE (Fas-
associated death domain-like IL-1β-converting enzyme)-
inhibitory protein (FLIP) [11–13].

Alveolar macrophages are highly adapted to the unique
environment of the lung, and at steady state their ability to
generate inflammatory responses is regulated tightly to
ensure that lung injury is kept to a minimum, thus preserv-
ing precarious alveolar physiology and gas exchange [14].
Alveolar macrophages with M2 polarization play a key
role in lung development [15]. M2 polarized alveolar
macrophages are thought to play important roles in lung
homeostasis ensuring tissue remodelling and repair, but
emerging data suggest that alveolar macrophages may dem-
onstrate simultaneously both M1 and M2 characteristics
during acute inflammation and disease [16]. Differentiated
macrophages such as alveolar macrophages have a large
surface area with a dynamic cell membrane facilitating
active phagocytosis or endocytosis of inhaled particles
[17,18]. A large range of surface receptors enable ingestion
of a diverse range of particles [19]. Alveolar macrophages
have a large compliment of both secondary lysosomes, con-
taining the enzymes with which they degrade ingested par-
ticles, and mitochondria, ensuring that the energy
requirements of the macrophage are supplied adequately
[20,21]. Rodent studies suggest that the secondary
lysosomes, which fuse with endocytic vacuoles and are a key
characteristic of alveolar macrophages, are a specific feature
of adaptation to the air breathing environment [22]. Differ-
entiated macrophages of human or rodent origin lack
the capacity to generate certain potent ROS species
via myeloperoxidase, used by other phagocytes such as
neutrophils. However, they can generate hydrogen peroxide
through the nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase system [23,24] and ROS via their mito-
chondria [25]. They can form more potent microbicidal
factors though the reaction of ROS with NO generated

through the inducible nitric oxide synthase (NOS2/iNOS)
system [26]. They also utilize proteases such as lysozyme
activated at low pH in lysosomes to degrade ingested bacte-
ria [27]. Macrophage degradation of bacteria contributes to
the activation of pattern recognition receptors and resultant
proinflammatory signalling, although the extent depends
upon the capacity of bacteria to resist degradation with
individual enzymes [28].

Alveolar macrophages role in host defence against
pulmonary bacteria

We have used the Gram-positive bacterium Streptococcus
pneumoniae (the pneumococcus) to probe the macrophage
role in pulmonary host defence. S. pneumoniae is the most
common cause of pneumonia and may spread beyond the
lung, resulting in invasive disease such as meningitis [29].
In murine models of pulmonary infection alveolar
macrophages clear bacteria up to a defined threshold
without overt features of pneumonia, but when alveolar
macrophages fail to control these subclinical infections
recruitment of inflammatory cells, predominantly
neutrophils, is required to control infection [30,31]. Using
defined inocula of S. pneumoniae, depletion of alveolar
macrophages with liposomes containing clodronate or mice
with genetic modifications that alter intracellular killing of
bacteria (as discussed below), we have demonstrated that
mice with decreased numbers of alveolar macrophages, or
with alveolar macrophages of reduced microbicidal capac-
ity, are more susceptible to development of pneumonia and
that the threshold inoculum required to generate pneumo-
nia is reduced significantly [30,32–34]. The capacity of
macrophages to clear bacteria is finite, and even in wild-
type mice the inoculum can be increased to a ‘tipping-
point’ beyond which alveolar macrophages no longer
control the bacteria in the airway [30,31]. At these higher
inocula alveolar macrophage depletion does not alter bacte-
rial clearance because the macrophage capacity for bacterial
clearance is already saturated. Hence neutrophils become
critical for bacterial clearance [31]. The finite capacity for
macrophages to clear bacteria is a feature of both human
and murine cells in vitro.

Once the capacity of alveolar macrophages to control
infection directly has been overwhelmed, the macrophage
plays alternative roles in regulating the inflammatory
response (Fig. 1). Macrophages are key orchestrators of
inflammatory responses in the lung. They produce key
regulatory cytokines, such as IL-1β, which helps to prime
release of the neutrophil chemokine CXCL8 from epithelial
cells [35]. They also help to induce apoptosis in target cells
such as monocytes, and efferocytosis of these apoptotic cells
helps to down-regulate the proinflammatory cytokine
network [36,37]. When the threshold at which macrophages
can no longer control bacterial numbers in the lung is
exceeded, T cells play an important role in enhancing bacte-
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rial clearance [38]. Achieving complete clearance of
S. pneumoniae while minimizing lung damage requires
tight regulation of neutrophilic inflammation. To achieve
this, different T cell populations interact closely with
phagocyte populations to enhance clearance capacity for
S. pneumoniae but with variable effects on the extent of the
inflammatory response [39]. T helper type 1 (Th1) and
Th17 CD4+ T cell responses play important roles in clear-
ance of S. pneumoniae, contributing to the anti-microbial
host response through activation of phagocyte-driven
microbial killing, while CD8+ T cells may have important
roles regulating the extent of Th17 responses and
neutrophilic inflammation [40–43]. Although adaptive
immune responses contribute to these responses, innate
immunity can amplify responses in the form of monocyte-
induced stimulation of memory T cells, and innate
responses generated by cells such as invariant natural killer
T cells (iNKT) can prime phagocyte bacterial killing
[41,43–45]. Dysregulated T cell activation can influence
bacterial clearance adversely [38]. Fas ligand, which plays a
role in the pathogenesis of a diverse range of infections
[46], has an important role in regulating the extent of T cell
activation through the induction of T cell apoptosis in sus-
ceptible activated cells [38]. This helps to optimize bacterial
clearance. Monocytes induce Fas ligand-mediated T cell
apoptosis (including CD4+ T cells, CD8+ T cells and CD4+

Th17 T cells) during pneumococcal infection, limiting
excessive T cell activation and preventing bacteria-induced
proinflammatory necrotic cell death [47]. As macrophages
also induce Fas-mediated apoptosis in susceptible T cells
[46,48] and induce apoptosis of Fas-susceptible cells during

S. pneumoniae infection [34,47], it is likely that a variety of
monocyte/macrophage cell types play an important role in
regulating the inflammatory response through the regula-
tion of T cell activation via the induction of Fas ligand-
mediated apoptosis. This represents an emerging but
important aspect of macrophage control over neutrophilic
inflammation in the lung [46,48].

Microbicidal mechanisms by which macrophages
kill S. pneumoniae

Although ROS generated by the NADPH oxidase system
contributes to the killing of many bacteria, it is not required
for killing of S. pneumoniae by alveolar macrophages
[33,49]. Neutrophils, which have a greater reliance on
NADPH oxidase-generated ROS for bacterial killing in
general than macrophages, also do not utilize this
microbicidal strategy to control S. pneumoniae, instead
requiring the neutrophil granule serine proteases, such as
cathepsin G and neutrophil elastase, for the effective killing
of ingested S. pneumoniae [50,51]. These proteases are not
expressed in macrophages. Analysis of S. pneumoniae, which
is a catalase-negative bacterium, reveals that it has a variety
of adaptations to withstand oxidative stress (Fig. 2), and
that it can use the production of hydrogen peroxide to
inhibit other bacteria with which it must compete for the
environmental niche it exploits in the upper airway. Three
enzymes are involved primarily in the production of hydro-
gen peroxide during pneumococcal metabolism; pyruvate
oxidase encoded by spxB, lactate oxidase encoded by
lox, which converts lactate to pyruvate and carbamoyl
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Fig. 1. Macrophages play critical roles in host

defence against Streptococcus pneumoniae.
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phosphate synthase encoded by carB [52–54]. S. pneumoniae
has evolved to cope with the resultant oxidative stress in
several ways; sodA encodes the manganese superoxide
dismutase (MnSOD) that removes superoxide, the NADH
oxidase encoded by nox removes O2 to H2O, preventing its
conversion to superoxide, SpxB enables acetyl phosphate to
be converted to adenosine triphosphate (ATP), preventing
ATP depletion during oxidative stress, psaA encodes a man-
ganese permease and psaD a putative glutathione reductase,
which together alter redox status and limit hydrogen perox-
ide production via SpxB, while AdhC is an alcohol
dehydrogenase that generates the reduced glutathione
required for PsaD [55–60]. Other factors contributing to
resistance to oxidative stress include the heat shock-induced
protease HtrA, a putative alkylhydroperoxidase AhpD, the
ClpP protease, a putative transcriptional regulator Rgg and
a putative thioredoxin-like protein TlpA [61–65]. Although
arising primarily as a mechanism by which S. pneumoniae
can withstand the ROS generated by their own metabolism,
the range of strategies employed to withstand oxidative
stress suggest that the bacteria should be relatively more
resistant to the ROS, produced by macrophages after inges-
tion of bacteria, than bacteria that lack these adaptations.

Macrophages have evolved additional anti-microbial
strategies, including generation of NO via NOS2, and
NO can react to form S-nitrosothiols, such as
S-nitrosoglutathione (GSNO) or can react with with ROS to
generate reactive nitrogen species (RNS), such as
peroxynitrite formed between NO and superoxide, which
are potent anti-microbicidal molecules [26]. Therefore,
although ROS may of itself be dispensable as an anti-
microbicidal, it can still contribute to pneumococcal killing
through formation of RNS. Microbial components, includ-
ing the toxin pneumolysin and pneumococcal cell wall,
stimulate macrophage NO production and NO-mediated
bacterial killing [66–68]. In keeping with this, we and others
have shown that mice that lack NOS2 are less able to clear
S. pneumoniae from the lung [33,69]. Nevertheless, there are
also factors which restrict the capacity of NO or RNS to kill
ingested bacteria. First, S. pneumoniae also has genes that
allow it to adapt to nitrosative stress; pneumococcal surface
protein C (PspC) reduces NO production, AdhC is an
S-nitrosoglutathione reductase, while ClpP has been impli-
cated in resistance to RNS [70–72]. To compound these
challenges imposed by the bacterial genome, human
macrophages appear to generate lower levels of NO than
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Fig. 2. Streptococcus pneumoniae resists anti-microbial killing. Streptococcus pneumoniae (Spn) express several genes, which help them resist reactive

oxygen species, generated within phagocytes. Spn express several enzymes that generate hydrogen peroxide (H2O2); SpxB encodes a pyruvate oxidase,

Lox a lactate oxidase and CarB a carbamoyl phosphate synthase. Pneumococcal proteins which help resist H2O2 include high temperature

requirement A (HtrA), a heat shock-stimulated serine protease, the alkylhydroperoxidase D (AhpD), the caseinolytic peptidase P (ClpP), another

heat shock-stimulated serine protease, the thioredoxin-like protein A (TlpA), the pneumococcal surface antigen A (PsaA) a manganese permease,

PsaD a putative glutathione peroxidase and an alcohol dehydrogenase (AdhC) that generates the reduced glutathione required by PsaD. Resistance to

superoxide (O2
•−) involves the superoxide dismutase A (SodA) and the transcriptional regulator Rgg. Nox is a nicotinamide adenine dinucleotide

(NADH) oxidase that converts O2 to H2O, limiting the availability of O2 to form O2
•−. Spx allows acetyl phosphate (Acetyl P) to provide a source of

adenosine triphosphate (ATP) during oxidative stress. In addition, pneumococcal surface protein C (PspC) helps Spn to withstand nitric oxide (NO)

and ClpP-reactive nitrogen species (RNS), produced by macrophages.
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murine macrophages and levels of production are lower in
differentiated tissue macrophages [47,73]. Much less is
known about the capacity of proteases to contribute to
pneumococcal killing in macrophages. Although RNS
are likely to make a significant contribution to early
phagolysosomal killing of S. pneumoniae and proteases have
the potential to add additional killing capacity, it is clear
that the macrophage is likely to have a finite capacity for
bacterial killing and needs to employ an additional
microbicidal strategy to control S. pneumoniae. The fact
that bacteria such as S. pneumoniae are not believed to
demonstrate intracellular persistence suggests this addi-
tional mechanism must be effective.

Apoptosis-associated killing

Induction of apoptosis has been demonstrated to aid bacte-
rial killing for intracellular pathogens such as Mycobacte-
rium tuberculosis [74,75]. We have demonstrated that
macrophage apoptosis is a feature of in-vitro challenge of
macrophages to S. pneumoniae and also occurs in vivo
[30,36]. It is observed with both human and murine
macrophages. The induction of apoptosis is linked to the
burden of intracellular bacteria, suggesting that it is acti-
vated when the intrinsic capacity for phagolysosomal
killing is exhausted [76]. Apoptosis induction is delayed,
occurring typically 16–20 h after bacterial ingestion in
vitro, and the apoptosis-associated killing occurs after the
initial phase of phagolysosomal killing associated with
microbicidal molecules in the phagolysosome. Apoptosis-
associated killing of S. pneumoniae requires NO generation
[68]. Although induced following phagocytosis, apoptosis is
not the result of phagocytosis per se nor linked to uptake by
any specific receptor that recognizes S. pneumoniae. It is
enhanced in response to opsonized bacteria and in
response to less virulent unencapsulated strains, but this
seems to be because these circumstances enhance numbers
of intracellular bacteria [76,77]. It is also facilitated by
responses associated with pathogen recognition; Toll-like
receptor (TLR)-4 plays a role in enhancing the response
[78]. Apoptosis-associated killing is observed with a range
of serotypes of S. pneumoniae, but as the efficiency of
ingestion of different serotypes can vary and apoptosis
induction is influenced by the number of intracellular bac-
teria it is seen to greater extents for strains that are
phagocytosed more efficiently and is seen to the greatest
extent for unencapsulated strains [76].

Inhibition of elements of the apoptotic response reduces
bacterial killing in vitro and does not result in cell survival,
but rather results in pathogen-driven death by necrosis
with impaired bacterial killing [32,34,68]. Analysis of the
macrophage proteome demonstrates that apoptosis results
from a concerted programme that not only induces
apoptosis but also inhibits alternative death paradigms,
including necroptosis, a form of programmed necrosis, and

the endoplasmic reticulum (ER) stress pathway [79]. We
have found no evidence that the death process we observe
involves pyroptosis, an alternative form of programmed cell
death that is caspase-1-dependent, but which is also associ-
ated with anti-microbial responses, although with greater
degrees of inflammatory response. Although pyroptosis can
be induced in monocytes to a range of bacteria we have
found that it is observed predominantly with infections
associated with greater levels of internalized bacteria and
greater levels of ATP depletion than we observe with
S. pneumoniae, and in this model S. pneumoniae did not
engage pyroptosis [80]. The delayed apoptotic death process
seems to be enhanced in the more differentiated tissue
macrophage phenotype [76]. Our group also has unpub-
lished evidence that mice that lack caspase-1 do not show
any reduction in cell death in response to S. pneumoniae,
when rates of cell death are examined in bronchoalveolar
lavage 24 h after intratracheal challenge with S. pneumoniae,
a finding which appears to suggest that the death process
observed does not represent pyroptosis (Marriott and
Dockrell unpublished observations). Recent observations
provide further insight into why apoptosis may be induced
in macrophages exposed to S. pneumoniae in preference to
pyroptosis. Caspase-1-dependent pyroptosis following chal-
lenge with S. pneumoniae is inhibited by induction of
chitinase 3-like-1, a host response to S. pneumoniae which
seems to have a conserved role in evolution, allowing bacte-
rial clearance with a death process that results in lower
levels of inflammation than occur with pyroptosis [81].

Murine models illustrate that impairment of apoptosis
results in decreased bacterial killing in the lung and
enhanced tissue invasion, as reflected by greater levels of
bacteraemia [30,32,34]. Ultimately, apoptotic macrophages
are ingested by lung macrophages and help to down-
regulate proinflammatory cytokine expression, in particular
TNF-α-dependent signalling, and this is associated with an
overall reduction in neutrophil recruitment to the lung and
lung inflammation [33,37].

The molecular regulation of
apoptosis-associated killing

Apoptosis following ingestion of S. pneumoniae involves an
intrinsic mitochondrial-dependent pathway that is inde-
pendent of death receptors such as Fas ligand [46,68]. The
pathway is caspase-dependent [30,36]. Apoptosis is delayed
to maximize the time during which the macrophage can kill
ingested bacteria, but occurs when intracellular killing by
canonical mechanisms becomes exhausted [32]. The onset
of apoptosis is carefully scripted. We have shown that the
onset of apoptosis is regulated by expression of the anti-
apoptotic protein Mcl-1 [32]. The anti-apoptotic protein
Mcl-1 is a Bcl-2 family member and has been demons-
trated previously to be expressed highly in differentiated
macrophages [11]. It has a relatively short half-life,

Alveolar macrophage killing of bacteria

197© 2013 British Society for Immunology, Clinical and Experimental Immunology, 174: 193–202



estimated to be 20–30 min, and is well equipped to respond
to dynamic changes in the macrophage ingesting and killing
bacteria [82]. Initially it is transcriptionally up-regulated,
but following prolonged exposure to S. pneumoniae protein
translation becomes gradually reduced and proteasomal
degradation via ubiquitination is increased [32,34,79].

Apoptosis arises in response to S. pneumoniae localized in
phagolysosomes and we have investigated how this might
activate an apoptotic programme that involves Mcl-1 down-
regulation. Lysosomal membrane permeabilization can acti-
vate a mitochondrial pathway of apoptosis [83]. We have
found evidence that lysosomal membrane permeabilization
precedes Mcl-1 down-regulation and investigated the role of
lysosomal proteases in these events. We have shown, using
pharmacological inhibition and genetic manipulation, that
the aspartic lysosomal protease cathepsin D plays a key role
in the induction of apoptosis [34]; see Fig. 3. Cathepsin D is
the most abundant lysosomal protease in differentiated
macrophages [84,85]. Activation of cathepsin D allows
Mcl-1 to interact preferentially with its E3 ubiquitin ligase,
Mcl-1 ubiquitin ligase (Mule, also known as ARF-BP1/
HectH9), rather than with heat shock protein 70 with which
it can also interact [34]. It also results in down-regulation of
eukaryotic elongation factor (eEF) 2, a critical component
of the translational machinery required to allow Mcl-1

translation [79]. This results in Mcl-1 down-regulation,
induction of apoptosis and enhanced bacterial killing. The
role of cathepsin D and Mcl-1 in the regulation of
apoptosis-associated bacterial killing are conserved between
murine and human macrophages.

The molecular basis of lysosomal permeabilization has
not yet been established. It seems to arise due to a host
response to ingested S. pneumoniae and in particular to the
expression of the bacterial toxin pneumolysin [34].
Although the toxin itself causes membrane pores we have
no evidence that it causes pores in the lysosomal mem-
brane, as exposure to bacteria expressing toxin lacking
pore-forming capability still induce comparable levels of
apoptosis to bacteria expressing wild-type toxin (Bewley
et al., manuscript submitted). Equally, we have not found
any role to date for components of the intracellular recogni-
tion systems for pneumolysin, which involve nucleotide-
binding oligomerization domain containing protein
(Nod)-like receptor (NLR) P3 or the absent in melanoma
(AIM) 2 NLR, in the response to pneumolysin that leads to
lysosomal membrane permeabilization or to induction of
apoptosis [86–88]. The induction of lysosomal membrane
permeabilization, cathepsin D activation and induction of
apoptosis is not a response limited to S. pneumoniae, as it
occurs with a range of other extracellular bacteria [80]. Of
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Fig. 3. Induction of apoptosis-associated killing complements bacterial killing in macrophages. Streptococcus pneumoniae Spn is internalized

following phagocytosis into a phagolysosome, where it can resist killing by reactive oxygen species (ROS). With time, the phagolysosome becomes

permeabilized and activation of the lysosomal protease cathepsin D (cD) results in down-regulation of the anti-apoptotic protein myeloid cell

leukaemia sequence 1 (Mcl-1). Mcl-1 down-regulation involves ubiquitination mediated by interaction with the Mcl-1 ubiquitin ligase E3 (Mule)

and proteasomal degradation. Following Mcl-1 down-regulation, pro-apoptotic Bcl-2 family members result in the ultimate activation of

Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which interact with the mitochondrion (aBax/aBak) to induce

mitochondrial outer membrane permeabilization and cytochrome c (Cytc) release. This results in caspase activation (aCasp) and downstream

features of apoptosis, illustrated by nuclear fragmentation. Apoptosis results in macrophage cell death but also killing of the residual viable Spn

contained in the phagolysosome.
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some interest, although there are several bacteria in which
apoptosis-associated killing appears not to occur, infec-
tion with Staphylococcus aureus can result in persistent
up-regulation of Mcl-1 and an absence of apoptosis-
associated killing [89]. We have found that, in contrast to
S. pneumoniae, Staphylococcus aureus fails to induce cathep-
sin D activation [34]. Furthermore, we have found that
Neisseria meningitidis does not induce apoptosis in
monocytes or macrophages [80,90]. Thus, some bacteria
may have developed strategies to limit induction of
apoptosis-associated killing to enable their own intracellu-
lar persistence.

Recently it has been suggested that macrophage
apoptosis-associated killing during S. pneumoniae infection
can be enhanced by TNF-related apoptosis-inducing ligand
(TRAIL) and that neutrophils may be a source of this ligand
during established pneumonia [91]. Because macrophages
undergo apoptosis-associated killing in vitro in the absence
of neutrophils, and in murine models in the absence of
neutrophil recruitment this mechanism is unlikely to
explain the intrinsic mechanism in macrophages, it suggests
rather that apoptosis-associated killing can also be engaged
by additional pathways involving neutrophils. This may be
of relevance during established pneumonia where endog-
enous activation of apoptosis-associated killing by the
macrophage alone is exhausted or inefficient and where
additional mechanisms of bacterial killing such as
neutrophil-mediated killing are impaired [91]. As cells
other than neutrophils also express TRAIL, it remains possi-
ble that other cell types such as macrophages, lymphocytes
or epithelial cells could contribute to this additional mecha-
nism of apoptosis induction in settings distinct from those
described [92].

Concluding remarks

Alveolar macrophages play a key role in host defence, func-
tioning as the resident phagocytes that clear bacteria. They
are efficient at phagocytosing bacteria, but the rate-limiting
step in bacterial clearance is intracellular killing. Although
they utilize a range of anti-microbicidals to kill ingested
bacteria, the restrictions on the microbicidal molecules they
generate imposed by their localization in the distal airway
and the range of survival strategies employed by a pathogen
such as S. pneumoniae mean that additional mechanisms
are required to kill phagocytosed bacteria. Induction of
apoptosis-associated killing is a key component of host
defence, which combines bacterial clearance with relatively
modest cost to overall pulmonary inflammation. It repre-
sents an important and under-recognized component of
host defence in the lung. The clearance of intracellular bac-
teria when initial intraphagolysosomal killing is exhausted
is evidence of its efficiency, while the evidence that some
bacteria have prevented this host response raises the possi-
bility that selective re-engagement could represent a novel

approach to enhance microbial killing, particularly in the
face of bacteria that demonstrate high-levels of antimicro-
bial resistance.

This review results from a talk given at the 3rd Annual
Infection and Immunity Meeting, a meeting of the BSI
Infection and Immunity Affinity Group held on Thursday
11 April 2013. To view the abstracts from this meeting
visit: http://onlinelibrary.wiley.com/doi/10.1111/cei.2013
.173.issue-s1/issuetoc.
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