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ABSTRACT We consider a small vesicle whose membrane
transports a ligand L into the vesicle through enzymatic units
of type A and transports L out of the vesicle through units of type
B. Oxidative phosphorylation in mitochondria provides an ex-
ample, in which L is HW. The kinetics of the two membrane
systems (A and B) are coupled through the concentration of L
in the vesicle. This interdependence causes the combined
membrane system (A plus B) to simulate a single system when-
ever the net ligand transport into the vesicle is zero. For exam-
ple, in oxidative phosphorylation, it was thought for some time
that ATP was synthesized by the respiratory chain system (via
an "active intermediate') We give the simplest possible analysis
of this kind of coupled system, which is very common, by using
two-state enzyes for both A and B above. A numerical example
is included that illustrates respiratory control in a qualitative
way: although the respiratory chain flux by itself does not de-
pend on ADP concentration, the steady-state flux of the coupled
systems (respiratory chain and reverse ATPase) does depend on
ADP concentration through the interior ligand (H+) concen-
tration.

In recent papers we have considered the steady-state kinetics
of aggregates of enzyme molecules that interact with each other
either through nearest-neighbor free energy effects (1-5) or by
means of interlocking reactions (5-7). In this paper we treat,
as a prototype, a very simple model that illustrates a quite dif-
ferent type of enzyme interaction. Suppose we have a small
vesicle, natural or synthetic, of volume V, with two kinds of
enzyme molecules (or complexes or units) embedded in the
vesicular membrane. There are MA molecules of type A and
MB of type B. Each of these units behaves independently of the
rest except for the fact that units of type A transport a ligand
L from outside the vesicle to inside whereas units of type B
transport L from inside to outside. Because V is small and the
inside ligand concentration is responsive to the ligand transport,
the shared ligand has the effect of coupling the A and B systems
to each other in a rather sensitive way. We examine this cou-
pling here assuming that both A and B units can be treated as
two-state enzyme molecules. An adequate representation of real
units would generally require the use of more states than this;
furthermore, natural vesicles (e.g., mitochondria) might have
more than two kinds of membrane units coupled through the
same ligand (e.g., H+); see below. However, we do not treat
these generalizations here.

In a formal way, let us write the complete process catalyzed
by A molecules as

Lout+PA " Lin+SA;XA [1]
and by B molecules as

Lin + SB Lout + PB; XB [2]

where S refers to substrate, P to product, and X to the net
thermodynamic force. At steady state, when the inward ligand
transport by A units is just balanced by the outward ligand
transport by B units, the over-all process is

SB + PA PB + SA; XA + XB. [3]
To choose an explicit case (suggested by oxidative phos-

phorylation), we assume that the "downhill" L gradient out ,

in is large enough to drive the "backward" reaction PA -I SA
(the former has a positive thermodynamic force, the latter has
a negative force, while the net force XA is positive). Similarly,
we assume that SB -p PB (positive force) is able to drive L up
its gradient (in - out; negative force) with a net positive force
XB. In the oxidative phosphorylation example (ignoring stoi-
chiometry), the vesicle interior is the mitochondrial matrix, the
L gradient is the proton electrochemical gradient, an A unit is
the reverse ATPase complex (PA is ADP,Pi; SA is ATP), and a
B unit is a "transducing site" region of the respiratory chain
complex (SB refers to electron donor and acceptor; PB refers to
oxidized donor and reduced acceptor). Recent work (8) shows
that a third kind of membrane unit (see above), involved with
ATP-ADP exchange, is also coupled through protons. This is
ignored here. A more detailed treatment would simply include
two kinds of A units.
Formal kinetics of coupled two-state molecules
In this section we derive the simple general properties of the
coupled two-state units in terms of the rate constants of the
model. In the next section we introduce explicit, illustrative,
multi-state biochemical cycles for the example of oxidative
phosphorylation in order to lend some molecular reality to the
two-state cycles used here. In the final section, we present a
two-state numerical example that illustrates respiratory control
in a qualitative way.

Figs. 1 and 2 should be examined together. Fig. 1 shows
several A and B enzyme units schematically (0 and x, respec-
tively), with only the ligand (0), not substrates and products,
appearing explicitly in the figure. State 2 (for both A and B) has
ligand bound; state 1 has ligand not bound. The relation of these
states to more complete biochemical cycles will be illustrated
in the next section. In general, with two-state cycles, it is to be
understood that more complicated cycles have been "reduced"
(ref. 5, appendix 1) because of transient intermediates, etc.
The same rate constants appear in both Figs. 1 and 2. The

associated physical processes (binding or release of ligand) are
indicated in Fig. 1, whereas the kinetic cycles are shown in Fig.
2. Unprimed rate constants are usually the dominant ones
(counterclockwise in Fig. 2); the smaller inverse rate constants
are primed. An asterisk indicates a second-order rate constant;
the others are first-order or pseudo first-order rate constants.
The interior concentration of ligand is c = N/V; because V is
small, c cannot be treated as a constant. However, for simplicity,
we assume that ligand is maintained at a constant exterior
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FIG. 1. Schematic vesicle with membrane. Units of type A(
and B(x) transport a ligand L(o) across the vesicular membra
Interior concentration of L is c. Arrows indicate binding or releasE
ligand. See text.

concentration over the time period of interest. Also, for clar
and simplicity, we assume that substrates and products
maintained at constant concentrations wherever they app
(inside or out). The membrane potential, if involved, is a
assumed to be constant. In the reverse ATPase case (above),
example, the interior ADP, Pi, and ATP concentrations coi
be kept essentially constant by the separate phosphate a
ADP-ATP carrier systems (9) that are also present in the i
tochondrial inner membrane. It is because of the above ml
tioned simplifying assumptions that no other second-order r
constants are used in Figs. 1 and 2. The constant concentratii
referred to above are "imbedded" in pseudo first-order r
constants, one way or another (ref. 5, appendix 1).
The fraction of A units in state 1 is denoted by PA, etc. (I

2). The kinetic equations for the variables PA, PB, and c ax

d = (aA + A)(1 - PA) - (aA + 3A*C)PA

dPB = (aB + 3B)(l - PB)- (a*C + B)PB

dc
=
MA [#A(1 - PA) - ACPA]dt V

+ MB [a'B(1 -PB)- a;CPB]-V

We are interested, primarily, in the steady state. For this,
us consider first the hypothetical separate steady states of A;
B units for an arbitrary value of c. We find (5) for the fluxes

IPA aBC

2

Lout-Lin

(A)

1-PB

Lin- Lout

(B)
FIG. 2. Two-state cycles for A (A) and B (B) units, with first-

order rate constant notation for transitions (arrows). Dominant cycle
direction is counterclockwise in both cases. "Out" refers to binding
and release of ligand to exterior, etc. See text.

Lout T Lin

(2)11 L\

D'lL LI
TII

FIG. 3. Seven-state cycle for reverse ATPase that could serve as
precursor of Fig. 2A. See text for notation.
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and JB (Fig. 1)
MA(aA#A- aA'3'C)

JA() A AC

aA'+ 3A + aIA + fl*C' [7]

MB(a*Cf3B - a~i3')JB(C) =B~ fBCailcd) [81
These are not only the ligand fluxes but also the fluxes of sub-
strates and products involved in the two cycles.

Incidentally, if only A units or only B units were present in
the membrane, c would be free to adjust itself to the corre-
sponding equilibrium value:

JA(Ce) = 0, CA = aA3A/AgA

JB(Ce) = 0, CB = ao'B/aI#B.
[9]

[10]
Mate Note, in Eqs. 7 and 8, that JA(C) starts (c = 0) from a positive

value and ends (c = o) at a negative value, while JB(C) does the
Fig. reverse. That is, JA decreases and JB increases with increasing
re c; the latter dependence on c is usually stronger because an

unprimed rate constant is involved. The two curves necessarily
[4] cross each other. The intersection occurs at the steady-state

value of c, cc., determined by JA(C=) = JB(C=) (Eqs. 7 and 8).
This is, in effect, the desired steady-state solution of Eqs. 4

[5] through 6. JA = JB leads to a quadratic equation in c., which
we omit. We denote the steady-state flux JA = JB by J.. This
flux will be positive if cA > cB (the usual case; note the primes
in Eqs. 9 and 10). The last section provides an explicit numerical
example. The A and B systems are coupled to each other, at

[6] steady state, through their common dependence on the value
of ca. in the small volume V.

,let There are special cases (e.g., one-way cycles) for which the
and quadratic equation in c., above, becomes linear, but we leave
SJA these to the interested reader.

If the rate constants happen to be such (Eqs. 9 and 10) that
CA = cB, then this is also the value of c., and J. = 0. In this
special cas4, the steady state is an equilibrium state (for both
A and B).
The steady-state thermodynamic forces XA and XB are given

by
eXA/kT = aA3A/a/J3AC , eXB/kT = a0C43B/aB13 [11]

Both XA and XB are usually positive; each is a combination of
two subforces (Eqs. 1 and 2). Because 1A = JB at steady state,
there is no net ligand transport in the coupled system (A plus
B) and the sum XA + XB, determined by

e(XA+XB)/kT = A/AIB/aA fA*Bf [12]
has the physical significance indicated in Eq. 3. Note that c.
does not appear in Eq. 12. Operationally (i.e., viewed as a "black
box"), the coupled A and B systems simulate a single kind of
system with flux J., force XA + XB, and net reaction given by

Biochemistry: Hill

l



Proc. Natl. Acad. Sci. USA 76 (1979)

A St~<RYSL SXDo

AR S I L S DR

L0tLout

FIG. 4. Six-state cycle for respiratory chain "transducing site"
enzyme that could serve as precursor of Fig. 2B. See text for nota-
tion.

Eq. 3. Even though MA # MB, the stoichiometry in Eq. 3 is
precise because JA = JB. At this level, the role of the ligand does
not appear explicitly. These comments seem pertinent to the
history of the study of oxidative phosphorylation (9): until rather
recently, perhaps because of the simulation of a single kind of
system, ATP was generally thought to be synthesized by the
respiratory chain, via an "active intermediate" (rather than by
a separate reverse ATPase system).
We confine our brief discussion of the subject of transients

to two limiting cases. From Eqs. 4 through 6, we have the fol-
lowing order of magnitude equations, writing p for PA or PB,
M for MA or MB, and a for a first-order rate constant:

Ap = apAt, Ac = (M/V)Ap, Ac/c = (M/N)Ap, [13]

where At is a small time interval and N is the number of ligand
molecules in V.

(i) If N >> M, c changes fractionally much more slowly than
p changes. In this case, each of systems A and B (Eqs. 4 and 5)
quickly comes to its own steady state appropriate to the rela-
tively slowly changing value of c. In fact, the two steady-state
fluxes at any c are given by Eqs. 7 and 8, and Eq. 6 can be
written

dc/dt = [JA(c)- JB(C)I/V. [14]

Mathematically, then, we are left with a single differential
equation in c, Eq. 14. This case arises, for example, if V is large,
because N = cV.

(ii) If M >> N, c will quickly come to and maintain a
steady-state value appropriate to the relatively slowly changing
values of PA and PB. The value of c, at any t, will be such as to
give zero net flux of ligand into the vesicle. We set the right-
hand side of Eq. 6 equal to zero, solve for c, and ut this ex-
pression in place of c in Eqs. 4 and 5. We are left, then, with two
differential equations in PA and PB. In a typical mitochondrion,
which has both a small c and a small volume (9), N (number of
protons) is of order 102 whereas M is of order 104. Hence this
case (M >> N) applies.

1 14 /A 1

1 0 c ( i3 1
2 2

(A) (B)
FIG. 5. Rate constant assignment for Fig. 2 in numerical example.

See text.
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FIG. 6. Plot of JA/M and JB/M against c, for several values of
OA, for numerical example in Fig. 5. Intersection points give steady-
state values of J./M and c. Equilibrium point is labeled "eq".

Illustrative biochemical cycles
To give some molecular significance to the formal two-state
cycles in Fig. 2, we discuss here more detailed biochemical
cycles that could serve as the precursors of Fig. 2. This is done
for the case of oxidative phosphorylation. However, the cycles
chosen are not to be taken seriously (e.g., they ignore the real
stoichiometry). Their purpose is primarily pedagogical.

Thus the seven-state cycle in Fig. 3 might be the source of
the two-state cycle in Fig. 2A, by reduction of the larger cycle
(ref. 5, appendix 1). [Incidentally, the actual seven-state myosin
ATPase cycle does reduce, effectively, to a two-state cycle (see
ref. 5, p. 83)]. The model and notation here are taken from
earlier papers (10, 11). I and II in Fig. 3 represent two confor-
mations of the enzyme. Also, L is H+, T is ATP, and D is ADP
+ Pi. The bound ligand has access to the inside (left superscript)
when the enzyme is in conformation I and to the outside (right
superscript) in conformation II. The dominant direction of the
cycle is counterclockwise (as in Fig. 2A). The out -- in H+
gradient drives the synthesis of T from D. In Eq. 1, PA is D and
SA is T.
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FIG. 7. Plots ofJ.1M and c. against PA, taken from intersection
points in Fig. 6. The flux represents qualitatively the dependence of
the rate of oxygen uptake and ATP synthesis on ADP concentration
(OA). Dashed curves are for one-way special cases.
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FIG. 8. Plots of thermodynamic forces (X) against OA at steady
state, in numerical example. See text.

If, for example, we assign states 1 and 2 as indicated by the
circled numbers in Fig. 3, the expression S'Ac in Fig. 2A is ac-
counted for by the Lin arrow in Fig. 3. Note also that OA in Fig.
2A would be (according to Fig. 3) proportional to the fixed
concentration of D. In the next section we consider variations
in the fixed ADP concentration.

Fig. 4 (a possible source of Fig. 2B) shows a hypothetical
six-state cycle for a respiratory chain "site" enzyme S. The
notation is taken from ref. 6. The enzyme has two conforma-
tions, S and S'. Also, L is H+, R means reduced, 0 means oxi-
dized, A means acceptor, and D means donor. L has access to
the inside when bound to S and to the outside when bound to
S'. The dominant cycle direction is counterclockwise (as in Fig.
2B): the reaction DR + AO - Do + AR drives L in -- out
against its gradient. In Eq. 2, SB is DR + AO and PB is Do + AR.
The assignment of states 1 and 2 is included in Fig. 4. The Lin
arrow in this figure accounts for the expression ac* in Fig.
2B.
Numerical example: respiratory control
We now provide a numerical illustration of the steady state
properties of the coupled two-state systems in Fig. 2. For con-
venience, the rate constants and c are chosen to be dimensionless
and of order unity, as shown in Fig. 5. Also, we take MA = MB
M. If we adopt the biochemical interpretation in the pre-

ceding section, the example allows a qualitative understanding
of respiratory control (9). That is, system A in Fig. 5 is the re-
verse ATPase and flA is proportional to the fixed but adjustable
ADP concentration (holding Pi constant). Our object is to see
how the steady state of the coupled system, especially the flux
J., (proportional to the rate of oxygen uptake or ATP synthesis),
depends on the assigned MA (i.e., ADP) level.

For any choice of f3A, the steady state can be determined as
in Fig. 6. Here we plot JA(C)/M and JB(C)/M from Eqs. 7 and
8, using the rate constants in Fig. 5 and several values of 3A. The
points of intersection determine JO/M and c.. Although JB(C)
(respiratory chain) itself is independent of A (i.e., ADP), the
steady-state flux J. of both systems (A and B) is clearly fairly
sensitive to OA, because of the coupling of the two systems
through the interior ligand concentration c. Fig. 7 presents
J41M and c0, as functions of 13A (from the intersection points
in Fig. 6). The flux JMO(A)/M simulates that of a single system.
For large MA,

JO/M - aO3'/2/(l + af3A'2) [15]
where a = (2/3)1/2. The equilibrium point in Fig. 6 (labeled
eq.") has AA = 1/256, CO = '1h6, and J. = 0.
For comparison, in Fig. 7, we include (dashed lines) the

one-way special case (the clockwise rate constants in Fig. 5 are
set equal to zero). Here c. = AA and JO/M = DA/(1 + 13A).

Fig. 8 gives the force functions
eXA/kT = 16fA/C-(fA), eXB/kT = 16C(OA)

and e(XA+XB)/kT = 256OA. [16]

XA + XB is the effective single force driving the coupled sys-
tems.

I am indebted to Dr. S. R. Caplan for very helpful comments.
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