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Background. Glioblastoma multiforme (GBM) is a high-
grade glioma with poor prognosis. Identification of new
biomarkers specific to GBM could help in disease diagno-
sis. We have developed and validated a bioinformatics
method to predict proteins likely to be suitable as
glioma biomarkers via a global microarray meta-analysis
to identify uncharacterized genes consistently coex-
pressed with known glioma-associated genes.
Methods. A novel bioinformatics method was imple-
mented called global microarray meta-analysis, using
�16 000microarrayexperiments to identify uncharacter-
ized genes consistently coexpressed with known glioma-
associated genes. These novel biomarkers were validated
as proteins highly expressed in human gliomas varying in
tumor grades using immunohistochemistry. Glioma gene
databases were used to assess delineation of expression of
these markers in varying glioma grades and subtypes of
GBM.
Results. We have identified 5 potential biomarkers—
spondin1, Plexin-B2, SLIT3, fibulin-1, and LINGO1—
that were validated as proteins highly expressed on the
surface of human gliomas using immunohistochemistry.
Expression of spondin1, Plexin-B2, and SLIT3 was signif-
icantly higher (P , .01) in high-grade gliomas than in
low-grade gliomas. These biomarkers were significant
discriminators in grade IV gliomas compared with
either grade III or II tumors and also distinguished
between GBM subclasses.

Conclusions. This study strongly suggests that this type
of bioinformatics approach has high translational poten-
tial to rapidlydiscernwhichpoorly characterizedproteins
may be of clinical relevance.
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A
n important issue to be resolved with regard to ma-
lignant gliomas is whether there are new relevant
biomarkers that can help increase the specificity

for the diagnosis of high- and low-grade gliomas. Forty
percent of all primary central nervous system tumors are
diagnosed as gliomas, of which glioblastoma multiforme
(GBM) is the most malignant; the mean survival time is
�15 months for patients diagnosed with GBM.1 The ma-
lignant nature of high-grade gliomas makes them one of
the leading causes of cancer death. Information regarding
tumor behavior, including cell proliferation (cellularity
and mitotic activity), nuclear atypia, neovascularization,
and thepresenceofnecrosis and/orapoptotic regions, can
be obtained from grading and identification criteria.2 To
classify tumors such as adult malignant gliomas and to
assess prognosis, differences in molecular composition
among tissue types, or “biomarkers,” can be used diag-
nostically.2–7 The most useful are markers that can
guide clinical decisions and predict response to certain
therapies.

Recent biomarkers have been found from genome-
wide surveys associating somatic mutations with risk of
glioma development. The molecular biomarkers most
commonly used to evaluate adult malignant gliomas
from biopsies include 1p/19q codeletion, methylation
of the O6-methylguanine-DNA methyltransferase gene
promoter, alterations in the epidermal growth factor
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receptor pathway, and isocitrate dehydrogenase 1 and 2
gene mutations.2–8 Several proteomics-based approaches
have been used to find proteins unique to gliomas,9 but
these have been severely limited by issues of sample size,
the ability to detect low-abundance proteins, and data re-
producibility. It is also important to note that many of
these studies have generated hundreds and even thou-
sands of putative candidates, yetnot many have been eval-
uated with subsequent validation and characterization
approaches.

Our motivation was to identify novel glioma biomark-
ers, in the hopes that they would be of value for clinical di-
agnostics, prognostics, or therapeutics. An approach we
previously developed that entails a global microarray
meta-analysis (GAMMA) of genes differentially ex-
pressed across 3651 human 2-color microarray experi-
ments was used to identify gene–gene coexpression
patterns that were consistent and specific across heteroge-
neous microarray experiments.10 The significance and re-
producibility of the GAMMA predictions from the
2-color array data have been corroborated by normaliza-
tion11 and meta-analysis of 13 000 additional 1-color
human microarrays,12 as well as 700 RNA sequence ex-
periments (unpublished observations). This “guilt by as-
sociation” approach identifies gene sets that are likely to
be associated in biologically relevant ways such as pheno-
type, disease, and genetic network. GAMMA has been
used successfully to identify the mitotic role of a formerly
uncharacterized gene called C13ORF3 (now Ska3),13

to detect a role in coagulation for C6ORF105 (now
androgen-dependent tissue factor pathway inhibitor–
regulating protein)14 and to identify olfactomedin 4 as a
novel neutrophil subset marker associated with granule
secretion.15 Recently, we used GAMMA to identify the
biomarker ELTD1 (epidermal growth factor, latrophilin,
and 7 transmembrane domain-containing 1 on chromo-
some 1) as a putative glioma-associated marker with im-
munohistochemistry (IHC) validation in human and
rodent gliomas and in vivo molecular-targeted MRI in
rodent gliomas.16

With the GAMMA approach, genes are not analyzed
directly,but the top20genesmostconsistentlycoexpressed
with them are analyzed for what they have in common in
the peer-reviewed literature using a large-scale computa-
tional analysis.17,18 This way, even if a protein has no
known function, its function can be inferred. In this case,
its role in gliomas can be inferred by its consistent patterns
of coexpressions with other glioma-associated genes.
Then, using the Human Protein Reference Database19

and other experimental sources on protein cellular
localizations, we can screen this list of predicted glioma-
associated proteins for those that are extracellular or
membrane bound. It is thought that extracellular or
membrane-bound proteins could be potential ideal thera-
peutic targets and could be reached for in vivo targeted
imagingwithfluorescence-labeled antibodies. After identi-
fying putative glioma-associated markers, we used IHC to
experimentally validate their presence in human gliomas.
For IHC, the novel biomarkers can be compared with
traditional IHC markers for human gliomas, including
vascular endothelial growth factor (VEGF), glucose

transporter–1 (GLUT-1), and hypoxia inducible factor–
1a (HIF-1a). Expression of the novel biomarkers in
human gliomas will be further evaluated from gene ex-
pression databases to establish whether these biomarkers
are differentially expressed in varying glioma grades and
GBM subtypes.

Materials and Methods

Bioinformatics

Using bioinformatics methods developed in our group to
pair coexpression data with literature-based analysis
of protein commonalities,10,17,18,20 we conducted a
global meta-analysis of �16 000 microarray experiments
(1- and 2-color) obtained from the database of the
National Center for Biotechnology Information Gene
Expression Omnibus (NCBI GEO). For each human
gene, the meta-analysis identified a set of 20 genes that
were the most consistently and specifically coexpressed
with it across the heterogeneous conditions analyzed.
Each gene, whether it had any published literature de-
scribing its function or not, had its function inferred by
analysis of what these 20 coexpressed genes had in
common. This was done via an automated, large-scale
analysis of the peer-reviewed literature17,20 to identify
genes that were consistently transcribed with established
glioma-related genes but that have themselves never
been associated with gliomas in the literature. This cir-
cumvents a problem inherent in the lists of expressed
genes derived by microarrays, which identify only those
genes that are being actively transcribed at the time of
the experiment without detecting proteins that are
present but not actively transcribed. That is, GAMMA
associates genes that are frequently cotranscribed regard-
less of the condition, and then if a statistically significant
set of genes has been reported as glioma associated in
the literature, these associations need not be transcrip-
tional to be identified by GAMMA (eg, they could be
from proteomics or genome-wide association studies).
The enormous sample size of both microarray data and
analyzed abstracts enables us to screen out genes that do
not pass a threshold of statistical significance. This associ-
ative method works for glioma-derived literature-based
associations as well as for searches on associated process-
es (such as angiogenesis, apoptosis, and cell migration),
helping to corroborateany putative roles in tumorigenesis
that we uncover. For each association, we calculated
mutual information (a measure of variable dependency)
between literature terms to prioritize the strength of asso-
ciation between each protein and a role in gliomas.18

Finally, we obtained increased confidence in the predic-
tions because GAMMA also successfully predicted
many established glioma-related genes (eg, epidermal
growth factor receptor, matrix metalloproteinase–2,
glial fibrillary acidic protein, fibroblast growth factor 2).
These identifications serve as positive controls for
predictive capacity.
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Immunohistochemistry

The human tissue sample portion of the study was con-
ducted in compliance with the University of Utah
Health Sciences Center Institutional Review Board. For
IHC analysis, tissue from 50 patients with high-grade
gliomas (21 female, 29 male), including 40 GBM, 6 ana-
plastic astrocytomas, and 4 anaplastic oligodendroglio-
mas, was compared with tissue from 21 patients (10
female, 11 male) with tumors classified as low-grade
gliomas (11 benignoligodendrogliomas, 10 low-grade as-
trocytomas). Antibodies (Abs) to spondin1, Plexin-B2,
Slit homolog (SLIT3), fibulin-1, and leucine-rich repeat
and immunoglobulin domain–containing Nogo receptor
interacting protein 1 (LINGO1) were available commer-
cially (F-spondin Ab [S-17], Plexin-B2 Ab [I-16], SLIT3
Ab [F-15], and fibulin-1 Ab [H-190] were all obtained
from Santa Cruz Biotechnology. LINGO1 [LRRN6A]-
S596 [C-term] Ab was obtained from Abgent. All
human Abs were assessed and found to provide similar
results; dilutions were 1:500). A toluidine blue (0.1%)
counterstain was used (15 sec). IHC was performed
using the Vectastain ABC Kit (Vector Laboratories).
Negative controls were performed by replacing the
primary Ab with nonimmune serum. Slides were exam-
ined using an Olympus BX41 microscope. Under 200×
magnification (10 ocular × 20 objective), slides were
scored by 2 investigators blinded to the specimen tumor
grade or patient information. A score of 0–4 was assigned
based on the percentage of cells stained in a given field:
0 ¼ 0%–25%, 1 ¼ 25%–50%, 2 ¼ 50%–75%, 3 ¼
75%–100%, and 4 ¼ 100%. In prior papers, we have
demonstrated that this method is very reproducible,
with good interrater reliability (P ¼ .99, 95% confidence
interval [CI] ¼ 0.99–1.00) and intrarater reliability (P ¼
.96, 95% CI ¼ 0.92–0.99).21 Each investigator indepen-
dently reviewed the slide at low power and at random
high-power fields when determining the IHC score.
Positive expression was considered for scores of 2–4,
whereas negative expression was considered for scores
of 0 and 1. Percent survival values for the GBM,
anaplastic astrocytoma, and anaplastic oligodendro-
glioma patients were 0.0%, 0.0%, and 50.0%, respec-
tively. Percent survivals for benign oligodendroglioma

and low-grade astrocytoma patients were 27.3% and
70.0%, respectively.

Gene Expression Analysis

For the glioblastoma expression microarray analysis, raw
Affymetric .cel files and level 3 Agilent expression data
were downloaded from The Cancer Genome Atlas
(TCGA)—529 and 594 GBM samples, respectively; data
were also retrieved from the Repository for Molecular
Brain Neoplasia Data (REMBRANDT; 229 total astrocy-
tomas,ofwhich125wereGBM)andErasmus (NCBIGEO
Series GSE16011; a total of 187 astrocytomas, of which
159wereGBM),aswellasthecorrespondingclinicalanno-
tations for each. The .cel files were then processed using R
and Bioconductor, in a custom computable document
format file, with background correction, log transforma-
tion, and quantile normalization performed using the
robust multi-array algorithm implemented in R.

For mesenchymal and proneural gene signature defini-
tion, we used a composite of signatures from the Phillips
et al.22 and Verhaak et al.23 studies. For a given tumor,
the metagene mesenchymal and proneural signature
scores were both calculated. Within a data set, the mesen-
chymal and proneural metascores were z-scores corrected
to allow comparison between the two. Tumors were then
assigned to one of the signatures based on the higher-
expressing metagene.

Statistical Analyses

Statistical differences for IHC scoring and expression
statistical differences were compared between groups
using the Welch 2-sample t test (unpaired, 2-sided),
with P , .05 considered to be significant.

Results

Bioinformatics

Using our GAMMA procedure, we identified membrane-
bound proteins that had not yet been associated with
gliomas but whose expression consistently correlated

Table 1. GAMMA-associated relationships of potential novel glioma biomarkers (highest GAMMA scores) with cancer growth
characteristics and other cancers

Biomarker Functional Relationships Ref.

SLIT-13 Growth factor, angiogenesis/VEGF, cell proliferation, cell migration, extracellular matrix proteins,
epigenetic (hypermethylation) inactivation of SLIT1–3 genes in human cancers, melanoma,
breast cancer, ovarian cancer, colorectal cancer, gastric cancer

39,50,51

SPON1 (spondin1) Extracellular matrix protein, promotes cell attachment, cell adhesion, angiogenesis/VEGF, cell migration,
cell growth; colorectal cancer, ovarian cancer

40–43

FBLN1 (fibulin-1) Extracellular matrix organization (proteins, components), integrin, basement membrane, TGFb, growth
factor, cell adhesion, cell proliferation, cell growth, cell migration, angiogenesis, matrix
metalloproteinases; overexpressed in other cancers, melanoma, breast cancer, hepatocellular
carcinoma, prostate cancer

45–49

PLXNB2 (Plexin-B2) Cell proliferation, angiogenesis, cell motility, TGFb, pro-inflammatory cytokines 52–56

LINGO1 Neurogenesis, brain development, epidermal growth factor receptor binding, astrocytes, glial cells 57–60
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with genes reported to be associated with gliomas. We
identified 195 putative candidate markers, all genes pre-
dicted or known to be membrane bound and not appear-
ing in any MedLine article that mentioned gliomas (or
synonymous terms). Of these 195, only 75 had commer-
cial antibodies at the time of analysis that we could use
to validate with IHC. Fibulin-1, LINGO1, spondin1,
SLIT3, and Plexin-B2 were chosen from among this list of
75 because they all had high scores. With this analysis set
to stringent thresholds, we empirically observed that the
FBLN1, LINGO1, SPON1, SLIT3, and PLXNB2 genes
were all found to be consistently transcribed with known
glioma-associated genes. Supplementary Figs S1–S5 show
how these genes are connected to other glioma-associated
genes via protein–protein interactions (obtained from
the Human Protein Reference Database).24 FBLN1is
associated with several extracellular matrix remodeling
genes (eg, collagen genes such as COL1A1/2, COL2A1,
COL3A1, COL4A1/2/3, COL5A1, COL6A3, COL7A1,
COL18A1; transforming growth factor [TGFb1];
matrix metalloproteinases such as MMP2, MMP9, and
MMP14) and other cell invasion- and migration-related
genes, such as CD44, which are characteristic of the inva-
sive nature of GBM.25–28 SPON1 is also associated with
genes related to cell invasion or migration, such as various
collagen genes, MMPs, CD44, and TGFb1; endothelial
cells (integrin ITGB1/3), and epidermal growth factor re-
ceptor, all found to be affected in GBM.25–30 PLXB2 is
associated with genes that regulate extracellular matrix
remodeling (COL2A1, COL1A1/2, MMP1, TGFb1)
and angiogenesis (VEGF-a and the integrin binding
protein IGFBP3). LINGO1 is associated with tight junc-
tion protein 1 (also known as zonula occludens 1), which
regulates membrane-type 1 MMP expression (involved in
tumor cell invasion).31 Supplementary Fig. S6 includes
gene association data for ELTD1.16 Functional relation-
ships for biomarkers are outlined in Table 1.

GAMMA-predicted associations and their scores are
based on a combination of (i) how many genes out of
the top 20 coexpressed genes that were analyzed showed
associations with gliomas based on published reports
and (ii) their statistical significance based on random
network simulations to estimate the probability that a
set of equally frequent terms would associate with
gliomas. Only proteins with P , .01 were selected as
potential candidates. A flow diagram of the GAMMA ap-
proach is illustrated in Fig. 1. All predicted associations
for these genes are given in Supplementary Tables S1–S5.

Immunohistochemistry

Fibulin-1, SLIT3, LINGO1, spondin1, and Plexin-B2 were
all found to be expressed in gliomas in general (Fig. 2).
Fibulin-1 and LINGO1 were not found to have significantly
higher expression (P . .05 for both) when comparing high-
grade and low-grade gliomas, whereas all other biomarkers
(traditional biomarkers including VEGF, HIF-1a, and
GLUT-1 had P , .05, P , .05, and P , .01, respectively),
including SLIT3 (P , .01), spondin1 (P , .001), and
Plexin-B2 (P , .01), had significantly higher expression in

high-grade compared with low-grade gliomas (Fig. 2A).
All 5 novel biomarkers compared well with VEGF,
HIF-1a, or GLUT-1, although LINGO1 had a higher
average IHC score in both high-grade and low-grade
gliomas compared with traditional markers. In low-grade
gliomas (low-grade astrocytomas and oligodendroglio-
mas), LINGO1 had the highest IHC score, followed by
fibulin-1. All of the novel biomarkers were ≥80% posi-
tive in high-grade glioma patients, and fibulin-1, SLIT3,
and LINGO1 were .70% positive in low-grade glioma
patients (Fig. 2B).

Fig. 1. The global microarray meta-analysis (GAMMA)

bioinformatics approach. (A) For all human genes, the first step is to

identify their coexpression trends. Previous experiments show that

genes positively correlated in their coexpression levels tend to be

related by function, phenotype, and disease relevance. For

example, for every experiment where 2 genes, alox5ap and itgb2,

are expressed, this is quantified by Pearson correlation; however,

not all genes have expression data. (B) For genes of unknown

function, the second step is to identify the 20 genes with the

strongest coexpression correlation. In this example, only 3 genes

are shown for simplicity. (C) The third step is to identify what the

coexpressed genes have in common. Text-mining software

(IRIDESCENT) is used to analyze what diseases, phenotypes,

chemicals, and other genes appear in the literature with each of the

coexpressed genes. These are the inferred associations for the

unknown gene. The set of coexpressed genes is searched for

reported commonalities in the peer-reviewed literature. After all of

the genes are analyzed, the list is shortened to include those with

certain characteristics. In this example, we include only those that

are inferred to be associated with gliomas, are plasma-membrane

bound, and have commercial antibodies available for validation

experiments to be conducted to establish whether these proteins

are differentially present in gliomas.
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Figure 3 depicts representative IHC staining for VEGF,
HIF-1a, GLUT-1, SLIT3, spondin1, Plexin-B2, fibulin-1,
and LINGO1 in human high-grade and low-grade
gliomas, indicating that high-grade gliomas had substan-
tially higher levels of VEGF, HIF-1a, GLUT-1, SLIT3,
spondin1, and Plexin-B2 compared with corresponding
low-grade gliomas. In addition to examples depicting
low levels in low-grade gliomas (Fig. 3, Gii and Hii),
both fibulin-1 and LINGO1 had samples with high
levels of staining in low-grade gliomas (Fig. 3, Giii and
Hiii, respectively).

Figure 4 illustrates that gene expression levels of
fibulin-1, LINGO1, spondin1, and Plexin-B2 are all sig-
nificantly different in grade III or grade IV gliomas com-
pared with grade II gliomas. Gene expression data for
SLIT3 was found to be poorly represented on the
Affymetrix platforms and did not provide conclusive dif-
ferences in tumor grades in the Agilent TCGA data. Both
fibulin-1 and Plexin-B2 were found to be expressed signifi-
cantly more in grade IV gliomas than in grade II (P , .001
and P , .0001, respectively) or grade III (P , .001 and

P , .05, respectively), whereas LINGO1 and spondin1
were found to have significantly lower expression in
grade IV tumors than in grade II (P , .0001 for both) or
grade III (P , .01 and P , .001, respectively).

Figure5 shows howeach of the biomarkers can be used
to differentiate between mesenchymal and proneural
GBM subtypes, as measured in 4 gene expression
databases (TCGA Affymetrix platform, TCGA Agilent
platform, REMBRANDT, and Erasmus). Data for SLIT3
were available only in the TCGA Agilent database,
and LINGO1 data were not available in the TCGA
Affymetrix database. In 3 gene databases, fibulin-1 expres-
sion was found to be significantly higher (P , .01) in mes-
enchymal GBM, whereas LINGO1 expression was found
to be significantly higher (P , .0001) in proneural GBM.
Inall4databases, spondin1expressionwas found tobesig-
nificantly higher (P , .05) in proneural GBM, whereas
Plexin-B2 expression was found to be significantly higher
(P , .0001) in mesenchymal GBM. SLIT3 expression
was found to be significantly higher (P , .0001) in mesen-
chymal GBM compared with proneural GBM.

Fig. 2. Spondin1, SLIT3, and Plexin-B2 levels are higher in high-grade (HG) gliomas compared with the levels in low-grade (LG) gliomas. (A)

Graph showing average IHC scores for biomarkers VEGF, HIF-1a, GLUT-1, fibulin-1, SLIT3, spondin1, LINGO1, or Plexin-B2 in high-grade

gliomas (50 patients: 21 female and 29 male) and low-grade gliomas (21 patients: 10 female and 11 male). Scores were obtained using the

following grading criteria—0: 0%; 1: 0– ,25%; 2: 25– ,50%; 3: 50– ,75%; 4: 75–100% detection of IHC stain. Significant differences in

marker levels between HG and LG were established when *P , .05, **P , .01, or ***P , .001. Actual P-values for each biomarker are:

.0161 for VEGF, .0227 for HIF-1a, .0013 for GLUT-1, .2081 for fibulin-1, .0069 for SLIT3, .2054 for LINGO1, .0004 for spondin1, and .0035

for Plexin-B2. (B) Graph showing the percentage of patients that expressed biomarkers stained by IHC in high-grade gliomas (50 patients)

and low-grade gliomas (21 patients). A negative expression (NE) result was attributed to IHC scores of 0 or 1. A positive expression (E) result

was attributed to IHC scores of 2–4.
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Discussion

We found that each of the algorithmically predicted bio-
markers was found in high levels within human gliomas
in general, as assessed by IHC, and that some of the bio-
markers, such as SLIT3, spondin1, and Plexin-B2, were
expressed at significantly higher levels in high-grade

gliomas than in low-grade gliomas (Fig. 2A) and may be
useful diagnostic markers for high-grade gliomas
(Fig. 3). Both fibulin-1 and LINGO1 were found to be pos-
itively expressed inbothhigh-grade and low-grade gliomas
with high IHC scores (Fig. 2B), although they did not
significantly discriminate between the grades, and these
2 markers may serve as general glioma markers for all

Fig. 3. VEGF, HIF-1a, GLUT-1, SLIT3, spondin1, and Plexin-B2 levels are elevated in high-grade gliomas compared with low-grade gliomas. (A)

Representative IHC staining for VEGF in a GBM (Ai), an oligodendroglioma (Aii), and normal brain (Aiii). (B) Representative IHC staining for

HIF-1a in a GBM (Bi), a low-grade astrocytoma (LGA) (Bii), and normal brain (Biii). (C) Representative IHC staining for GLUT-1 in a GBM

(Ci), an oligodendroglioma (Cii), and normal brain (Ciii). (D) Representative IHC staining for SLIT3 in a GBM (Di), an LGA (Dii), and normal

brain (Diii). (E) Representative IHC staining for spondin1 in a GBM (Ei), an LGA (Eii), and normal brain (Eiii). (F) Representative IHC staining

for Plexin-B2 in a GBM (Fi), an oligodendroglioma (Fii), and normal brain (Fiii). (G) Representative IHC staining for fibulin-1 in a GBM (Gi), an

LGA (Gii, an example of low expression), an oligodendroglioma (Giii, an example of high expression), and normal brain (Giv). (H)

Representative IHC staining for LINGO in a GBM (Hi), 2 oligodendrogliomas (Hii, an example of low expression; and Hiii, an example of high

expression), and normal brain (Hiv). White arrow heads depict regions that highly stain for each biomarker. Magnification of all panels is 40×.
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tumor grades. Examples of both high and low levels of
these markers are depicted in Fig. 3. SLIT3, spondin1,
and Plexin-B2 also all fare well in comparison with more
traditional IHC markers currently used to diagnose
GBM, in that the expression levels of these 3 biomarkers
were similar to those of currently investigated glioma
markers, including VEGF, HIF-1a, and GLUT-1. HIF-1a
has been well documented to be an important diagnostic
marker for gliomas, and this marker can be targeted for
therapeutic intervention.32–38

From the gene expression results, we have also demon-
strated that therewasa strong association with expression
offibulin-1,LINGO1, spondin1,andPlexin-B2ingrade IV
gliomas compared with either grade II or grade III gliomas
(Fig. 4). Interestingly, both fibulin-1 and Plexin-B2 were
found to be more highly expressed in grade IV gliomas,
whereas LINGO1 and spondin1 were found to be less
expressed in grade IV tumors compared with either
grade II or grade III gliomas. In addition, when we
looked at the GBM tumor subtypes, it looked like there
was a significant increase with gene expression of
fibulin-1, Plexin-B2, and SLIT3 for the mesenchymal
subtype versus the proneural subtype, which was better
associated with increased gene expression of LINGO1
and spondin1 (Fig. 5). These findings were consistent in
3 gene databases for fibulin-1, LINGO1, spondin1, and
Plexin-B2. Unfortunately, SLIT3 gene data were usable in
only the TCGA Agilent database. It is reasonable to con-
cludethatspondin1andPlexin-B2expressiondata inpartic-
ular are both strong biomarkers of grade (also supported by
theIHCdata),withPlexin-B2increased inthemesenchymal
subtype and spondin1 elevated in the proneural subtype.

Noneof the5proteinshadbeendocumentedasdiscrim-
inately present on the surface of glioma cells, although
SLIT3wasfoundinapreviousstudytobehypermethylated
in glioma and colorectal cancer cell lines.39 Spondin1,
SLIT3, and fibulin-1 also had previously reported

associations with different cancers. Spondin1 was previ-
ously found to be overexpressed in ovarian/peritoneal car-
cinomas,40–43 and SLIT3 was widely expressed in human
hepatocellular carcinomas.44 Fibulin-1 was associated
with gastric,45 breast,46 colon,47 and prostate48 cancers,
and its promoter hypermethylation was associated with
tumor progression in human hepatocellular carcinomas.49

SLIT3 is a predominant ligand transcribed in the early
mouse heart and is expressed in the ventral wall of the
linear heart tube and subsequently in the chamber.50 The
SLIT3 gene at human chromosome 5q34-q35.1 is involved
in encoding large secreted proteins functioning as ligands
for Roundabout (ROBO) receptors, and the SLIT-ROBO
signaling pathway is implicated in angiogenesis and endo-
thelial cell migration.51

Neither Plexin-B2 nor LINGO1 has been previously
associated with cancer, although some function is
known for these genes. Plexins are a family of genes that
are expressed in several organ systems and have been im-
plicated in cell movement and cell–cell interaction.52

Plexin-B2 has been reported to be associated with the
negative regulation of interleukin-12/interleukin-23p40
in dendritic cells.52 Plexins are cell surface receptors
widely studied in the nervous system, where they
mediate migration and morphogenesis through the Rho
family of small GTPases.53 Plexin-B2 is highly expressed
on cells of the innate immune system in the mouse, includ-
ing macrophages and dendritic cells, and may serve as a
negative regulator of basal cell motility.52 Although
Plexin-B2 has not been associated with cancers,
Plexin-B1hasbeen reported tobe involvedasa tumor sup-
pressor in melanoma cells,54 and Plexin-B in general is in-
volved in invasive growth55 and angiogenesis.56 LINGO1
has been found to be a potent regulator of neural stem cell
maturation to neurons, and inhibition of LINGO1 during
the first days of neural stem cell differentiation results in
decreased neuronal maturation.57,58 LINGO1 is a

Fig. 4. Increased expression of fibulin-1, LINGO1, spondin1, or Plexin-B2 biomarkers is associated with higher grade in gliomas in the

REMBRANDT gene expression database. Fibulin-1 and Plexin-B2 expressions were found to be significantly higher in grade IV gliomas, and

conversely LINGO1 and spondin1 expressions were significantly lower compared with grade II and grade III glioma data sets. Significant

differences between grades II and III or grades II and IV are shown for each marker. For statistical analysis, a Welch’s 2-sample t-test was used.
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Fig. 5. Biomarker gene expressions in GBM subtypes. (A) Fibulin-1 (FBLN1), (B) SLIT3, (C) LINGO1, (D) spondin1 (SPON1), and (E) Plexin-B2

(PLXNB2) expression for mesenchymal (Mes) (left bar) or proneural (PN) (rightbar)GBMsubtypesobtained fromTCGA—either (i)Affymetrixor

(ii) Agilent, (iii) Rembrandt, or (iv) Erasmus databases. Increased fibulin-1 (A), SLIT3 (B), and Plexin-B2 (E) expressions are associated with

mesenchymal phenotype in GBM (compared with the proneural subtype), whereas increased LINGO1 (C) and spondin1 (D) expressions are

associated with the proneural subtype. P-values for each marker are shown for each database. For statistical analysis, a Welch’s 2-sample

t-test was used.
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central nervous system transmembrane protein that
simultaneously interacts with the Nogo-66 receptor and
p75neurotrophin receptoror tumornecrosis factor recep-
tor superfamily member 1 (TROY) on neurons to form a
receptor complex responsible for myelin-mediated
neurite outgrowth inhibition59 and thus is a negative reg-
ulator of myelination and repair of damaged axons.60

The results presented strongly suggest that the associat-
ive transcriptional network analysis method used in this
study was able to accurately identify fibulin-1, LINGO1,
spondin1, Plexin-B2, and SLIT3 as glioma-associated bio-
markers. SLIT3, FBLN1, and SPON1 are predicted to in-
fluence glioma progression by their role in the extracellular
matrix. SLIT3 has established associations with angiogen-
esis and cell migration, and several genes with known roles
in extracellular matrix remodeling, such as SPARC and
vascular-endothelial–cadherin, are predicted to be rele-
vant to the SLIT3’ network. Fibulin-1 has predicted associ-
ations with cell motility and invasion, and spondin1 is
specifically predicted to exert its influence via collagen
matrix attachments. PLXNB2, however, is predicted to
be more relevant to cell proliferation and to be relevant
to the Wnt/b-catenin pathway. LINGO1 is probably the
most neural-specific protein of the group and, based on
the IHC scores, appears to be increasingly important as
tumor grade increases. Each marker has either known or

predicted associations with different aspects of glioma
tumor growth, and each marker or combination could
provide valuable diagnostic information for gliomas.
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Supplementary material is available online at Neuro-
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