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ABSTRACT The nature of stable equilibrium configurations
is described for general nonepistatic and generalized symmetric
viability regimes in multilocus systems under conditions of tight
and loose linkage. The influence of epistasis and symmetry can
be better understood in terms of these standards. A dichotomy
in the nature of stable polymorphisms emerges. More recom-
bination, bisexuality, and multideme interactions facilitate the
establishment of central type polymorphisms.

This paper reports results providing some principles of multi-
gene selection-linkage interactions. There are three principal
components inherent to multilocus selection linkage structures:
(i) The recombination process; (ii) the selection regime; (iii) the
gamete frequency configurations and their description and
classifications.
Some natural n loci recombination distributions (sets of re-

combination rates) are described in ref. 1. For n loci there can
occur up to 2n-1 - 1 basic recombination outcomes. Two im-
portant recombination distributions are those of no recombi-
nation Y?(0) and free recombination R(f). A mixture of the
recombination distributions of ](O) and I? (f) represents n loci
divided into linkage groups or gene clusters.
The comparisons of two recombination distributions is un-

ambiguous in the case of two loci because a single recombina-
tion rate is present. With more loci involving a vector of re-
combination rates it is not, a priori, clear how to order two re-
combination distributions. A problem of interest concerns the
quantification of "natural" and "more recombination" rela-
tionships. Some approaches to this matter are elaborated in ref.
1. In this paper we focus on selection regimes and character-
izations of their stable gamete configurations.
2. Parameterizations and classifications of multilocus
selection regimes
Two important classes of n loci selection regimes that are sub-
stantially tractable comprise the generalized nonepistatic se-
lection mode and the generalized symmetric viability regime.
To assess the significance of epistasis it is vital to properly
delimit the scope of nonepistasis. In the same way, to under-
stand the consequences of asymmetry in selection expression
it is essential to characterize forms and levels of symmetry. The
generalized nonepistatic selection regime encompasses com-
binations of multiplicative and neutral viability effects dis-
tributed across loci. The generalized symmetric selection regime
is an extension of the notions of symmetric over and under-
dominance at a single locus. In the latter model, fitness depends
on which loci are homozygous or heterozygous and otherwise
is not influenced by the allelic composition at each locus.

Generalized Nonepistatic Selection. The concept of
nonepistasis involves selection coefficients at the separate loci.
For purposes of illustration we begin with three loci. Let the
intrinsic fitness matrix for the kth locus with mk alleles be Wk
= iw = 1 specifying components of the fitnesses associated

Table 1. Fitness matrix

Matrix Entry Description

W(1,1,1) w~l~w(2m w3 Multiplicative factors from all loci
W(1,1,O) w~l~w521 Multiplicative selection at loci 1, 2
W(1,0,1) w(')wJ3) Multiplicative selection at loci 1, 3
W(O,1,1) w(2)wi Multiplicative selection at loci 2, 3
W(l,0,0) w) Selection acting only at locus 1
W(0,1,0) w(2) Selection acting only at locus 2
W(O,0,1) w(2) Selection acting only at locus 3
W(0,0,0) 1 Neutral

with the marginal genotypes A (k) Ask). These matrices combine
in eight ways (2n for n loci) to generate the basic selection re-
gime underlying generalized nonepistatic selection. We present
these matrices in tabular form (Table 1) indicating the fitness
associated with the genotype A(') A(2) A?)/A(') A( In this
notation generalized nonepistasis connotes a fitness matrix
combining linearly the types in Table 1 to the form
r = c(1,1,1)W(1,1,1) + c(1,1,O)W(1,1,O)

+ c(1,O,1)W(1,O,1) + c(O,1,1)W(O,1,1)
+ c(1,O,O)W(1,O,O) + c(O,1,O)W(O,1,O)

+ c(O,O,l)W(O,O,1) + c(O,O,O)W(O,O,O). [2.1]
The matrix W(1,1,1) is the Kronecker product matrix W1 0 W2
0 W3 and W(1,1,O) is the Kronecker product W, 0 W2 0 E3,
in which E3 is the matrix of order m3 X m3 exhibiting only unit
elements, W(1,O,1) = W1 0 E2 0 W3, etc.
The classical multiplicative nonepistatic form has the spec-

ification c(1,1,1) = 1 with the other cs = 0. Classical additive
nonepistasis follows the prescription c(1,0,O) = c(O,1,O) =
c(0,0,1) = 1, and the other cs = 0. The choice c(1,1,0) = c(0,1,1)
= 1 with the remaining cs =0 entails multiplicative nonepistasis
between the first two loci, but additive nonepistasis between
the gene complex of the first two loci and the third locus.
The existence of epistasis for the three-locus model will be

understood such that the array of fitness values cannot be rep-
resented in the form of Eq. 2.1. The extent of epistasis may be
measured by an appropriate "distance" of the fitness matrix
to the class of Eq. 2.1.
A generalized nonepistatic n-locus selection regime has the

following structure: (i) each locus has an intrinsic fitness matrix
that specifies the fitness values of the marginal genotypes; (ii)
selection may or may not act at each locus; (iii) the fitness of an
n-locus genotype is determined as multiplicative contributions
of the marginal viabilities or neutral values of the constituent
loci genotypes. Formally, we prescribe for each locus k an in-
trinsic fitness matrix Wk admitting mk possible alleles. Let Ek
be the neutral fitness matrix of order mk of all unit entries. We
propose for an n-locusgeneralized nonepistasis regime a fitness
matrix of order K = IlF= 1 mk of the form

r = Z C(n) (W'1) 0 Wn7O2... 0 WW)),11~~~~~~~~~~
Abbreviation: H-W, Hardy-Weinberg.
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in which the sum is extended over all n-tuples X = ('1, f12.
In7), ni = 0 or 1, subject to the special convention

WP)= Wk, WV9) = Ek. [2.3]

Accordingly, for each a, the fitness matrix W(q) = (Wi7) @
W972) @ ... 0 We")) prescribes a standard multiplicative
nonepistatic fitness regime with selection forces operating at
those component loci where r1k = 1 while the other loci act
neutrally. The collection of fitness matrices, $W(i7)j, joined as
in Eq. 2.2 induce a nonepistatic regime based on the intrinsic
fitness matrices $WkJ. The coefficients c(X) contrast nonepistatic
selection differentials and neutral effects distributed among
groupings of loci.

Generalized Multilocus Hardy-Weinberg (H-W) Equi-
libria. Assume the existence of a polymorphic equilibrium (xij),
xk) . . ., AM) = for the one locus Mk-allele system having the
intrinsic fitness matrix Wk. We may construct an n-locus
gamete frequency array by multiplying the marginal
frequencies of the constituent alleles. Accordingly, the fre-
quency of the haplotype AV') AI2) . A is xi I2 ..

This haplotype frequency array is an equilibrium of the
fitness model of Eq. 2.2 independent of the recombination
distribution and the coefficients c(q). A population state com-
posed by multiplying the marginal loci genotype frequencies
is called a multilocus H-W configuration. In the two-locus case
a H-W state signifies linkage equilibrium, and in the multilocus
case zero measures of association of all orders.
Where Xk is a polymorphic equilibrium for the separate loci

fitness matrices Wk, k = 1, 2,.. n,n. respectively, then the H-W
equilibrium x = xl0 x2 @... 0 xn of components Xi )x.2)...
Xjn) is referred to as a H-W polymorphic equilibrium.

Generalized Symmetric Viability Regimes. These incor-
porate far-ranging extensions of the two- and three-locus,
two-allele symmetric fitness models, (2, 3). It is helpful to ex-
emplify first the case of three loci involving {A,al, IB,bj, fCcj
at the respective loci. The fitness values are as follows:

a, in which all loci are homozygous; Ali, in which locus
number i is heterozygous while the other two loci are
homozygous; bi, in which locus i is homozygous while
the other two loci are heterozygous; oy, in which all three
loci are heterozygous. [2.4]

The construction of the n-locus model goes as follows. We single
out for locus k the matrices Ik = identity matrix of order mk
Xmk andJk I uiju ItUi= 1 fori # j andOwheni =j. The
matrix Jk is a one-locus viability matrix in which all heterozy-
gotes carry the same fitness value 1 while all homozygotes are
lethal. The central frequency state xk = (1/Mk, 1/Mk).
1/Mk) is a stable and unstable equilibrium for Jk and Ik, re-
spectively.

Parallel to Eq. 2.2 we form the extended fitness matrix

[2.5]S = Fy('1 )(Jy t J2 0 ... In)

subject to the convention (different from Eq. 2.3) that

it = A, Ak = Ik [2.6]

and y(n) are nonnegative weights. The summand in Eq. 2.5 of
index i7 singles out the combination of loci positions identified
by the unit components in X that yield a relative contribution
(An) to fitness. Where y(n) depends only on the number of
heterozygous loci and not the location of these loci, so that y(n)
= Yr for In I = =n 17a = r, then Eq. 2.5 reduces to

n
R= YrPr with Pr = JIj @ J2 ... J1n. [2.7]

r=O0 17r

Thus, the fitness regime R confers fitness yr if a genotype in-
volves r heterozygous loci independent of their locations. The
model 2.5 exhibits the central H-W equilibrium state c* = x;
0X @.... 0 xn in which all gametes share equal frequency.
3. Stability conditions for central type equilibria
Under the assumption that each marginal fitness matrix Wk,
k = 1, 2, . . , n is "overdominant," (in the sense that the one-
locus viability matrix Wk possesses an interior stable poly-
morphism), the generalized nonepistatic selection regime ad-
mits a unique multilocus H-W polymorphism. For the gen-
eralized symmetric selection regime there exists the central
polymorphism c*. The stability properties of these "central"
equilibria are summarized in Table 2.

Analytic conditions for stability of the H-W polymorphic
equilibrium under a generalized nonepistatic selection regime
and any specification of the recombination distribution are
given in refs. 4 and 6.

It is useful to record some analytic conditions for stability of
the central polymorphism in the case of no and free recombi-

Table 2. Existence and stability of the "central" equilibrium

Generalized nonepistatic Generalized symmetric selection
selection regime, 2.2 regime, 2.5

The existence of a H-W
polymorphic equilibrium
occurs for any level of
recombination provided each
intrinsic fitness matrix admits
a polymorphism (4).

The H-W polymorphism in the
presence of absolute linkage is
never stable.

The H-W polymorphism for
tight recombination is
generally not stable; the
exception is pure additive
nonepistasis (4).

The H-W polymorphism under
free recombination or loose

The central polymorphism c*
exists for any level of
recombination (5).

The central equilibrium for
some ranges of the selection
coefficients can be stable for
absolute linkage; cf. Eq. 3.1.

When the central poly-
morphism is stable for
absolute linkage, then it is
stable for any level of
recombination.

When increased heterozygosity
enhances fitness, then the

linkage is always stable and central polymorphism is
apparently uniquely stable (4). stable for moderate to loose

linkage (5) and uniquely
stable for free recombi-
nation; see Eq. 3.4.

If for a given level of recombination the H-W or central equilibrium
is stable, then it is stable for "more recombination" (4).

Bisexuality compared to a corresponding monoecious model facilitates
the stability of the H-W and central polymorphism (6).

Effects of migration. Stability of the H-W or central polymorphism
in each deme implies stability in the system with any form of mi-
gration. An increased level of migration entails more opportunities
for stability of the "central" polymorphism (7).

An increased number of loci
generally depresses the
stability of the H-W
polymorphism (4).

Increased allelism generally
diminishes the stability
opportunities of the H-W
polymorphism.

Increasing the neutral
component in Eq. 2.2 does not
necessarily decelerate the rate
of convergence to the H-W
polymorphism (4).

An increased number of loci
facilitates the stability of
the central equilibrium (8).

The effects of increased
allelism depend on the
selection values and the
degree of recombination (8).

The introduction of more
neutral effects generally
leaves unchanged the
property of stability as
against instability of the
central equilibrium (8).

Proc. Natl. Acad. Sci. USA 76 (1979)
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nation. We find the central equilibrium c* for the selection
regime 2.5 stable under absolute linkage provided

E orX) (I1(m, 1) )<,t0(;,-)

for all O, = 0 or 1 and Ol not all zero. Where the number of
alleles per locus is constant m, = m and the fitness value of a
genotype depends on the number of heterozygous loci (model
2.7), the stability conditions reduce to the inequalities

E Yk(M- jk(- j)(k-j)<O = 1, 2,.. .,n.
k,j = o

[3.1]

With free recombination, the stability of the central poly-
morphism for the model 2.5 requires the single condition

n-i

X, (m - )k(n -')(Yk - Yk + 1) <0 [3.2]
k =O

Manifestly, if yo < 'yI< ... < tYn then the central polymor-
phism is stable under free recombination.
By virtue of Eq. 3.2 we can infer that the influence of mul-

tiple allelism generally diminishes the amount of recombination
needed to make the central equilibrium stable. There are ex-

ceptions for a fitness pattern satisying yo < 'yI < ... <'Yk - 1

< Yk > 'Yk + 1 > ... > hen, for some k < n. In this situation
stability of the central polymorphism is only possible if the
number of alleles m per locus is not too large. On the other
hand, if yo > 'y > ... > Yk <Yk + 1 < ... < 'yn for some k
< n, then increasing the extent of allelism facilitates the
maintenance of the central polymorphism.
4. The symmetric model for tight linkage
The stable realizations under small recombination rates can be
quite different from loose linkage. The following concepts of
one-locus multiallelic models are germane in the analysis of
multilocus systems for the case of tight linkage.

Allelic against Gametic Polymorphism. An equilibrium
under absolute linkage is called an allelic polymorphism if
every allele at each locus occurs with positive frequency. A
gametic polymorphism constitutes an equilibrium state in-
volving every gamete with positive frequency. The stable
equilibrium structures for absolute linkage can be delineated
as follows: (i) every stable equilibrium is an allelic polymor-
phism; (ii) at least one (but not every) stable equilibrium is an
allelic polymorphism; (iii) all stable equilibria entailfixation
at one or more loci.
The theory of small parameters (9) tells us that for small re-

combination rates a stable allelic polymorphism becomes a
stable gamete polymorphism approximately near the corre-

sponding equilibrium state existing for absolute linkage. With
category ii the equilibrium possibilities involve both stable
polymorphisms and population states having one or more loci
fixed and the evolution then depends finely on initial conditions,
founder effects, or other environmental factors.
To illustrate, we restrict attention to the case of two alleles

per locus, and to the aggregate heterozygosity fitness structure
of Eq. 2.7. A case of interest concerns the nature of the stable
gamete frequency realizations under the assumption

[4.1]

in which increasing heterozygosity enhances the fitness value.
In this situation under free recombination the central poly-
morphism is stable; cf. Eq. 3.2. However, the evolutionary
consequences for tight linkage are more sensitive to the order
and form of increase of 'Yki. Generally, the property, Eq. 4.1,
does not ensure stability of the central equilibrium without
recombination. Because more aggregate heterozygosity im-

proves fitness we would expect more opportunities of poly-
morphism at all levels of recombination. In this vein the fol-
lowing result prescribes the nature of polymorphism for tight
linkage.

Result I: If the fitness values in Model 2.7 increase for gen-
otypes with more heterozygous loci, then every stable equi-
librium for sufficiently tight linkage is a gametic polymorphism.
Equivalently, without positive recombination, every stable
equilibrium constitutes an allelic polymorphism.
The numerical analysis of Table 3 was performed for 200

selection determinations of the fitness matrix 2.7, each h~kI
independently uniformly distributed on [0,1].

Thus, with a random set of fitness values in Eq. 2.7, the
chance of at least one polymorphism for tight linkage in-
creases with more loci involved.

Symmetric Type Equilibria. To a large extent the relevant
equilibrium frequency states inherit much of the symmetry
(with respect to allelic and loci substitutions) of the viability
structure. The central polymorphism c* is symmetric in the
strongest sense. Another familiar frequency configuration
pertains to complementary gamete types such as ABC-abc,
ABc-abC, etc., in a three-locus, two-allele context. For n loci
with two alleles per locus, a pair of gametes is called comple-
mentary if each allele occurs in one of the two gametes. The
third class of natural symmetric equilibrium arrays in the n-

locus, two-allele model, consist of half of the gametes, the half
central symmetric equilibria. (The three-locus representatives
consist of the gamete arrays ABC-Abc-aBc-abC and abc-
aBC-AbC-ABc.) A half central equilibrium array can be
characterized as follows. This equilibrium involves half the
number of possible gametes (2n - 1) of equal frequencies in
which every combination of 1, 1 = 1, 2,.. , n - 1 alleles, one
per locus, occurs in 2n - 1 - gametes of this array. An example
of a half central symmetric equilibrium with four loci consists
of the gametes fABCD, aBCd, ABcd, aBcD, AbCd, abCD,
AbcD, abcd} each with frequency '/8. There exist further classes
of mixed symmetric type equilibria that can be stable under
absolute linkage, (8). Also, nonsymmetric stable equilibrium
types can occur with n > 3 loci for a restricted range of the
fitness space.
The precise conditions for local stability of the indicated

symmetric equilibrium types for the selection regime (2.5 n
loci, m = 2 alleles per locus) are as follows:

Result II: The central equilibrium is stable provided 3.1
holds. The half central equilibria are stable provided k = O

RYk(-1 )k(n) >0 and 2k = even 'Yk 7 I= O (-1)i(I)( -ji) < °
1, 2,. . ., n-1, hold. The complementary equilibria are stable
under the conditions 'Yn > Tyo and An + 'Y o> oYn k + 'Yk for
k = 1,2,. . . ,n-1.

Stability of the Symmetric Equilibria in Terms of Prop-
erties of a Fitness Function s(x). Having in mind the prospect
of a multilocus theory that is independent of the number of loci
involved ("a large number of loci"), we consider fitness as a

function of the proportion of heterozygous loci in the manner
that in the fitness regime of Eq. 2.7 we take -Yk = sp(k/n), k =
1, 2, . . , n in which the fitness function qp(x) is defined for 0

K x < 1. We are mostly interested in the connection between

Table 3. Numerical analysis

The nature of stable polymorphisms No. of loci
for tight linkage 2 3 4 5

Category (i) involving only allelic or gametic
polymorphisms 107 104 91 82

Category (ii) in which allelic polymorphisms
and stable boundary configurations coexist 107 122 124 124

Category (iii) having some loci nonsegregating 93 78 76 76

Population Biology: Karlin
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properties of the fitness function and stability of the symmetric
type equilibria. Important choices of the function sp are

P(x) = eXx, X > 0; so(x) = (x + c)a, a > 0, c > 0;

sp(x) = (x + a)a(l- x),, a, (3> 0. [4.2]

The first case of 4.2 means that the fitness pattern is both
symmetric and multiplicative with respect to loci and allele
viability effects. The third fitness form of Eq. 4.2 has the opti-
mum phenotype at an intermediate level of heterozygosity.
The family of fitness regimes engendered by the (power)

fitness function sp (x) = (x + C)a (a and c positive) offers a broad
class of selection contrasts. The marginal change in fitness due
to an additional heterozygous locus is increasing for a > 1 but
decreasing for 0 < a < 1. The selection regime with smaller a
induces a stronger epistatic selection interaction in comparison
to multiplicative selection which comes out for a co. A nat-

ural inquiry concerns what kind of regular pattern of fitness
function allows more opportunities for a stable central equi-
librium with tight linkage. The.following result obtains.

Result III: Any convex fitness function cannot maintain the
central equilibrium stable with tight linkage. On the other hand,
if 0 < a < 1, and so(x) = (x + c)a, c > 0, the central equilibrium
is stable for any level of recombination.

That some extent of monotonicity of the fitness function y(x)
is consonant with enhanced stability of a central polymorphism
is anticipated. What is surprising is that for tight linkage "in-
creasing concavity" is associated with a stable polymorphism,
while "increasing convexity" is inconsistent with this attribute.
Further analysis of the consequences attendant to the fitness
functions 4.2 will be published elsewhere.

5. The generalized nonepistatic selection regime with
tight linkage
We deal with n loci, two alleles per locus having the marginal
fitness values at locus k, ak = fitness (AkAk), (k = fitness (akak),
and the heterozygote fitness (Akak) normalized to 1. We have
proved (10), for the multiplicative nonepistatic selection re-

gime.
Result IV: The only stable equilibria when ak = 13k, k = 1,

... , n for absolute linkage and pure multiplicative selection
consists of complementary gamete pairs.

In the following we contrast the fact of Result IV with the
nature of the stable equilibrium possibilities for a pure multi-
plicative viability regime, which is symmetric across loci, but
asymmetric with respect to intralocus homozygote types. Each
locus is assumed overdominant, but one homozygous form
confers greater fitness relative to the other homozygote: namely,
a = fitness (AjA ) > = fitness (aiaj), i = 1, 2, . . , n. We refer
to Ai as a "good" allele relative to aj. For ease of exposition, we
display the results for the three-locus case in Table 4.. Taking
account of the loci symmetry, we describe sets of gametes by
integer arrays in which we specify the numbers of good alleles
per gamete. Thus, 13,01 stands for the complementary pair

Table 4. Stable equilibrium arrays depending on the parameters
a and l, 0 < a < a < 1

Conditions Stable configuration types

f(a,fl) > 0 All complementary pairings
are stable

f(a,f3) < 0, g(a,f3) > 0, h(a,13) <0 [3,0], [3,2,1 - comp]
g(a,f3) < 0, k(a,,4) > 0, f(a,f3) < 0 [3,0], [3,2,1 - comp], [2,2,2]
Q(a) > 0, g(a,j3) > 0, h(a,f3) > 0 [3,0], [3,2,1 - comp], [2,2,2,1]
Q(a) > 0, k(a,fl) <0 [3,0], [3,2,1 - comp], [3,2,2,2]

f(a,4) = 1 - a2 - a(l -3)(1 + af3), g(a,43) = (2a - a2)(3 + 1 - 2a
h(a,4) = (3 + N/5)a - 1 - 5- 2a, k(a,f3) = af3 + 2 - 3a, Q(a)

= a2 + 5a - 5.

{ABC, abcj; [12,1}- (comp)] signifies any of the complementary
gamete pairs fABc, abAj, fAbC, aBcj; and IaBC, Abc}; and class
[13,2,1}- (comp)] can refer to {ABC, ABc, abCj, {ABC, AbC,
aBcj, . . ., in which 12,1} of 13,2,1} consists of complementary
gametes. Unambiguously, 12,2,21 = $ABc, AbC, aBCj, 13,2,2,21

{ABC, ABc, AbC, aBC}.
It is clear that where a and : differ sharply or are close to 1,

an abundance of noncomplementary stable equilibrium types
are relevant, contrary to the dictum of ref. 11 predicting ex-
clusive high complementary equilibrium realizations. When
asymmetry in both allelic and loci effects occurs even for
multiplicative nonepistasis, the most common stable equilib-
rium involves, for tight recombination, an intermediate number
of gamete types (in excess of two), while for moderate to loose
linkage a central H-W equilibrium takes over; cf. Section 3.
With two loci some aspects of the influence of asymmetry in
viability expression are expounded in ref. 10.
We summarize the results of Sections 4 and 5 concerning

tight linkage in Table 5.

6. Summary and discussion
We need a standard in order to understand epistasis and
asymmetry. We described two classes of nonepistatic and
symmetric multilocus selection regimes and reported extensive
results on the attendant stable equilibrium configurations.
Tables 2 and 5 summarize the salient qualitative properties of
the equilibrium realizations under conditions of loose and tight
linkage, respectively.
Some general principles on polymorphism (not necessarily

universally valid, but of wide scope) are suggested by our results,
which we now discuss.

Principle I: If there exists a stable polymorphic equilibrium
in the presence of no recombination, then there exists a stable
polymorphism for any positive recombination.

In line with Principle I, an essential dichotomy in the nature
of stable polymorphisms emerges: (i) The selection interactions
are predominant, establishing the polymorphism, while the

Table 5. Nature of the stable equilibrium types for absolute
linkage (and consequences for tight linkage)

Generalized nonepistatic Generalized symmetric
selection, Eq. 2.2 selection, Eq. 2.7

With general marginal selection A whole spectrum of symmetric
components, no symmetric equilibrium types always ex-
equilibrium states exist. ists, highlighting comple-

mentary, half-central, central,
and mixed symmetric forms.

With marginal strong overdomi- Where fitness increases with
nance, every stable equilibrium increasing heterozygosity,
constitutes an allelic polymor- then only polymorphisms are
phism. stable for sufficiently tight

linkage.
Stability of complementary equi- Stability of complementary

librium arrays is likely only equilibrium arrays is likely
where fitness is invariant under under conditions of convexity
allelic substitutions while un- of the fitness function (see
likely with loci or allelic asym- Result III) (5, 9).
metry in fitness expression.

The H-W equilibrium is essentially The central equilibrium is only
never stable; see Table 2 (4). stable for a strongly concave

fitness function (see Result
III).

Stable equilibria generally involve Mostly mixed symmetric types
a few to an intermediate number constitute the stable equilib-
of gametes. rium arrays involving an in-

termediate number of gam-
etes.
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recombination mechanism exerts minor effects. (ii) Selection
forces alone without recombination would lead to the elimi-
nation of certain gamete types; but with some recombination
the full complement of gamete types are sustained. The char-
acteristics of the polymorphic outcomes of i and ii markedly
differ. For situation i, usually a single rather central, globally
stable polymorphism is predominant for each set of recombi-
nation rates. In case ii, a multiplicity of stable polymorphisms
are feasible for tight linkage of the form that the gamete arrays
divide into two groups such that the frequencies in one group
are rare, while the gamete frequencies in the other group are
more discernible. Such polymorphic states generally manifest
second or higher order moderate to strong linkage disequili-
brium values. With moderate-to-loose linkage these polymor-
phisms are usually not maintained.
We can refine Principle I as follows:
Principle II. Consider the class of one locus multiallelic vi-

ability regimes that induce a stable polymorphism. The pop-
ulation system obtained by superposition on such viability re-
gimes of one or several of the following mechanisms: (i) re-
combination, (ii) bisexuality, (iii) multidemic interactions (e.g.,
migration or population subdivision) usually evolves to a glo-
bally stable polymorphism.

For a selection structure in which increasing heterozygosity
enhances the fitness, every stable equilibrium (with absolute
linkage) constitutes an allelic polymorphism, and concomitantly
with sufficiently tight linkage only bona fide polymorphisms
occur (cf. Result I). In this light, large apparent allelic poly-
morphism as reported for xanthine dehydrogenase (12) and for
esterase V (13) may correspond to clusters of tightly linked
genes with a selection mechanism of the approximate structure
2.5, in which yo < yI < ... <<yn. Where the genomic complex
consists of clusters of many tightly linked genes subject to small
nonzero recombination (e.g., intragenic recombination), the
expectation is that a few to several gametes occur with moderate
frequency, while most gametes occur in trace frequency.

Another qualitative inference based on the study of the
generalized symmetric selection regime 2.5 is as follows. Where
the existence of appropriate heterozygosity at a few loci con-
tributes significantly to fitness, then a "central frequency array"
is stable irrespective of the extent of recombination. In partic-
ular, if a trait manifests a significant number of segregating
types, each occurring with reasonable frequency and consis-
tently observed in population samples at different locations, and
where further cytological evidence or pedigree analysis attests
to the property that the genes involved are mostly tightly linked,
then an approximation to a selection regime of the form 2.5 may
provide a basis for the observed variability.
The four-locus HLA complex in man covering about 1 map

unit manifests approximately the frequency pattern just de-
scribed. A mechanism consistent with the analytic theory
proposes that a few loci may be decisive to fitness and carry
numerous other loci (not necessarily closely linked) polymor-
phic. This inference conforms with the existence of the immune
response gene documented in the parallel H2 system in mice.
A similar proposal may apply for the variegated immuno-
globulin variability involving clusters of tightly linked genes.

In contrast, consider a phenomenon in which a partial set of
gamete types is mostly observed with trace amounts of other
gamete possibilities. Suppose also that in different sampled
populations the frequency data have the principal gametes
often disparate across the population range. Where the
underlying genes are recognized to be relatively tightly linked,
then an explanation along the lines of Result IV states that

Principle I states that if a stable polymorphism exists without
recombination, then the recombination mechanism can displace
it but not destroy it. A further proposition in this vein asserts that
where a central type polymorphism is stable at some recom-
bination level, then it persists stably when "more recombina-
tion" is in force (4, 8). This property does not apply for the near

boundary equilibrium configuration in which such polymor-
phisms are generally not maintained under conditions of
moderate to loose recombination rates.

It is established in refs. 6 and 8 that the redistribution of se-
lection differentials from a monoecious population to a corre-

sponding dioecious context, retaining the same recombina-
tion-segregation mechanisms, facilitates the establishment of
a stable central H-W polymorphic equilibrium. Concomitantly,
the contingencies of other polymorphic type equilibrium, in
which only a partial set of haplotypes predominates, tend to be
reduced with the advent of separate sexes as against a corre-
sponding monoecious population.
What is the evolutionary advantage of cases of low recom-

bination in the heterogametic sex with higher rates in the
homogametic sex? The problem is considered enigmatic. A
recent review of contrasts in rates of recombination between
the sexes is given in ref. 14. Two aspects of increased chiasmata
are widely recognized. The first is the need for chiasmata to
ensure proper disjunction of the two homologous chromosomes
at meiosis. The second is the evolutionary flexibility attendant
to recombination events. It is of interest to consider evolutionary
advantages in sex-dependent recombination rates in terms of
the nature of polymorphism for dioecious as against monoecious
selection recombination structures.

Multilocus theory (6) suggests that with loose linkage there
is an increased tendency for the existence of polymorphism,
entailing a gamete frequency configuration in near linkage
equilibrium of all orders. With tight linkage, in contrast, the
nature of polymorphism when extant involves a partial set of
gametes manifesting some strong measures of genic associations.
It appears that distinct sex differences in recombination
frequencies can more easily accommodate the coexistence of
both these types of polymorphisms, and which is established
depends on initial conditions and environmental factors.
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