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Abstract
Here, we review the research we have conducted on social contagion. We describe the methods we
have employed (and the assumptions they have entailed) to examine several datasets with
complementary strengths and weaknesses, including the Framingham Heart Study, the National
Longitudinal Study of Adolescent Health, and other observational and experimental datasets that
we and others have collected. We describe the regularities that led us to propose that human social
networks may exhibit a ‘three degrees of influence’ property, and we review statistical approaches
we have used to characterize interpersonal influence with respect to phenomena as diverse as
obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word,
but we do believe that it provides some novel, informative, and stimulating evidence regarding
social contagion in longitudinally followed networks. Along with other scholars, we are working
to develop new methods for identifying causal effects using social network data, and we believe
that this area is ripe for statistical development as current methods have known and often
unavoidable limitations.
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1. Introduction
In 2002, we became aware of the existence of a source of raw data that had not previously
been used for research purposes. Although limited in certain ways, these data offered
important strengths and opportunities for the study of social networks. As described below,
we were able to exploit previously unused paper records held by the Framingham Heart
Study (FHS), a longstanding epidemiological cohort study, to reconstruct social network ties
among 12,067 individuals over 32 years. In particular, a very uncommon feature of these
data was that the network ties themselves were longitudinally observed, as were numerous
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attributes of the individuals within the network. We called the resulting dataset the ‘FHS-
Net’.

In 2007, we began to publish papers using this dataset — and also other datasets, including
the National Longitudinal Study of Adolescent Health (AddHealth, a public-use dataset with
social network information on 90,000 children in 114 schools) [1], online social network
data that we extracted on both small [2] and large [3] scale, de novo data that we have
collected regarding populations as diverse as American college students and Hadza hunter-
gatherers [4,5], and experimental data in which interaction networks or influence paths were
artificially created [3,6,7] — to examine various network phenomena. These datasets have
complementary strengths and weaknesses, as do the various analytic approaches we have
employed.

There are two broad classes of investigations of networks that we have undertaken: studies
of network topology (and its determinants), and studies of the spread of phenomena across
network ties. Although we have done work on the former [5,7–13], here we will focus
primarily on the latter, discussing analyses of the flow of behaviors, affective states, or
germs. Our work on social networks and human behavior thus covers several domains and
relies on diverse data and approaches. It builds on prior research on ‘peer effects’ and
interpersonal influence by examining data in which individuals are embedded in networks
much larger than two people. We summarize this work and describe critiques, extensions,
and confirmations of our findings by other scientists.

Using similar modeling approaches and exploiting data from many sources, we have
examined the ‘spread’ of obesity [14, 15], smoking [16], alcohol consumption [17], health
screening [18], happiness [19], loneliness [20], depression [21], sleep [22], drug use [22],
divorce [23], food consumption [24], cooperative behavior [6], influenza [4], sexuality and
sexual orientation [25], and tastes in music, books, and movies [26]. We have also
conducted experiments regarding the spread within networks of altruism [6, 7] and of
political mobilization [3]; in such experiments, causal inference with respect to network
effects is more robust (although experiments have limitations of their own). We have
previously summarized this work, and also the work of numerous other scholars who have
investigated social networks and interpersonal influence, in our book, Connected, published
in 2009 [27], and in a 2008 review article focused on health [28].

In our work, we have used the best currently available methods. Network statistics is a fast-
growing field (for useful reviews of the topic, see [29–36]), and it is clear that perfect
methods, free of any limitations or assumptions, do not exist for every sort of question one
might want to ask with observational (or even experimental) data. Basic issues in coping
with missing data (missing nodes, ties, covariates, waves), sampling (design effects and
incomplete network ascertainment), computation of standard errors, and even of the causal
interpretation of model parameters, for example, are still being addressed.

However, rather than foreswear observations regarding social network phenomena, we have
chosen, in our papers, to analyze available data, and we attempt to characterize known
limitations and assumptions in available methods. Also, of course, as scientists identify
limitations in current methods, many will, we hope, also take the next step to innovate and
propose alternatives, because all statistical methods have limitations and they frequently rely
on untestable or awkward assumptions. We hope our own work has played a part in
stimulating interest in developing statistical methods for network data; we are interested to
deploy new and better methods, and we are attempting to contribute to progress in this area,
as described below. Hence, we invite suggestions regarding how to analyze such data if
current approaches have limitations that some find overwhelming.
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This paper proceeds as follows. First, in Section 2 we describe a key dataset that we
assembled and first analyzed, the so-called FHS-Net. Although we describe the FHS-Net in
detail, we note that we and others have replicated our findings using other datasets and
methods, as discussed below, including by using experiments. In Section 3 we describe
basic analyses involving permutation tests that show clustering of various traits within
various observed social networks. Section 4 addresses a set of concerns regarding the nature
of potential biases introduced to estimates of clustering by the limited nature of social ties
available in the FHS-Net. Section 5 describes the longitudinal regression models we
deployed to analyze peer effects within the network, at the dyadic level. We attempt to
provide a comprehensive review of the assumptions and biases present in such models. Also,
we summarize model output as applied to more than one dataset. In Section 6, we describe a
novel identification strategy we proposed in 2007 involving the exploitation of the
directionality of some social ties. We also describe extensions and limitations since
characterized by other scientists. Section 7 describes how geographic location information
might be used to help address certain types of confounding with observational network data.
Section 8 describes how the FHS-Net data has been publicly available since 2009, and
where other data regarding longitudinally evolving networks might also be obtained. Section
9 concludes and also summarizes much work that has been conducted in recent years by
other scholars documenting spreading processes in networks.

2. The FHS-Net data and its pertinent features
We start by describing a key (but not the only) dataset that motivated our work. The
Framingham Heart Study was initiated in 1948 when 5209 people in Framingham, MA,
were enrolled into the ‘Original Cohort’ [37]. In 1971, the ‘Offspring Cohort,’ composed of
many of the children of the Original Cohort, and their spouses, was enrolled [38]. This
cohort of 5124 people has had almost no loss to follow-up other than because of death (only
10 cases in the Offspring Cohort dropped out and were uncontactable by the study
managers, and there was a similarly low loss to follow-up in the other cohorts). In 2002,
enrollment of the so-called ‘Third Generation Cohort’ began, consisting of 4095 of the
children of the Offspring Cohort. The Framingham Heart Study also involves certain other
smaller cohorts. Participants in all the cohorts come to a central facility for detailed physical
examinations and data collection every 2–4 years.

For many decades, the FHS has maintained handwritten tracking sheets that administrative
personnel have used to identify people close to participants for the purpose of facilitating
follow-up. These documents contain valuable, previously unused social network information
because they systematically (and, in some cases, comprehensively) identify relatives,
friends, and coworkers of study participants. To create the network dataset, we computerized
information about the Offspring Cohort from these archives.

In the field of social network analysis, procedures for identifying social ties between
individuals are known as ‘name generators’ [39, 40]. The ascertainment of social ties in the
FHS was both wide and systematic. The FHS recorded complete information about all first-
order relatives (parents, spouses, siblings, children), whether alive or dead, and also about at
least one ‘close friend’ (the set-up and question asked were ‘please tell us the name of a
close friend, to whom you are not related’ with whom ‘you are close enough that they would
know where you are if we can't find you’). This information was collected at each of seven
exams between 1971 and 2003. Detailed home address information was also captured at
each time point, and we computerized and geocoded it. Information about place of
employment at each wave allowed us to identify ties to coworkers within the network (by
seeing whether two people worked at the same place at the same time). As noted below, all
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of a person's contacts of the foregoing types were recorded, whether those contacts were also
themselves participants in one of the FHS cohorts, and we computerized all this information.

Over the course of follow-up, the participants spread out across the USA, but they
nevertheless continued to participate in the FHS. As a person's family changed because of
birth, death, marriage, or divorce, and as their contacts changed because of residential
moves, new places of employment, or new friendships, this information was captured. For
any given ‘ego’ (the person of interest) in the data, a particular ‘alter’ (a person who has a
relationship with the ego) may usually be placed in one mutually exclusive category: spouse,
sibling, parent, friend, and so on, although, depending on the analysis, we can also allow
multiple categories (for example, a coworker or neighbor might be a friend or sibling).
Further details about our data development process are available in our published work.

We used the Offspring Cohort as the source of 5124 egos to study. Any person to whom
these subjects were linked in any sort of relationship — in any of the FHS cohorts, including
the Offspring Cohort itself — can serve as alters. In total, there were 12,067 egos and alters
across all cohorts of the FHS who were connected at some point during 1971 to 2003.

We observed ties to individuals both inside and outside the sample. For example, an ego
might be connected to two siblings, one of whom was also a participant in the FHS and one
of whom was not. For those who were also participants, we could observe their attributes
(for example, their health status) longitudinally. Overall, as of 2009 and wave 7 of data
collection, there were 53,228 observed familial and social ties to the 5124 subjects observed
at any time from 1971 to 2009, yielding an average of 10.4 ties per subject within the
network (not including ties to residential neighbors). Fully 83% of subjects’ spouses were
also in the FHS and 87% of subjects with siblings had at least one sibling in the FHS. We
also know the identity of spouses, siblings, and other contacts who are outside our sample;
and although they are not in the FHS, we have basic information about them (e.g., their
residential location and vital status).

Importantly, 45% of the 5124 subjects were connected via friendship to another person in
the FHS at some point, which allowed us to observe outcomes for both the naming friend
and the named friend. In total, there were 3542 such friendships for an average of 0.7
friendship ties per subject. For 39% of the subjects, at least one coworker was captured in
the network at some point. For 10% of the subjects, an immediate (nonrelative) residential
neighbor was also present (more expansive definitions, such as living within 100 m, resulted
in many more subjects having identifiable ‘neighbors’).

Our published papers and supplements contain detailed analyses of the possible biases in
terms of who among an ego's alters are in and out of the network sample. In general, the
pattern is one of limited difference. Egos who name social contacts who are also participants
in the FHS are not significantly different from those whose contacts are not in the FHS with
respect to their weight [14], smoking behavior [16], alcohol consumption [17], happiness
[19], loneliness [20], or depression [21].

The types of alters that we identified for each ego, the number we identified, and the number
we were able to also include in our actual sample, are generally not far from data gathered
on unrestricted, national samples. For instance, work by others using the General Social
Survey identifies the size of people's ‘core discussion group’ as being about 4 – 6 people,
including one's spouse, siblings, friends, and so on [41, 42]. In our own work with a
representative sample of 3232 Americans collected in conjunction with a Gallup
Organization, we find that, on average, in response to the commonly used name generators
(‘Who do you spend free time with’ and ‘Who do you discuss important issues with’),
Americans identify an average of 4.4 ± 1.8 alters. Also, the average respondent lists 2.2
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friends, 0.76 spouses, 0.28 siblings, 0.44 coworkers, and 0.30 neighbors who meet these
name-generator criteria [43]. Finally, although the FHS is almost exclusively white and
tends to have somewhat more elevated education and income than a representative group of
Americans, it appears that subjects’ health-related attributes are similar to broader
populations of Americans.

The FHS-Net underwent ongoing development over the course of our work, and we are still
upgrading it. For instance, coworker ties were not available in 2007, but were by 2008; an
8th wave of data collection has recently become available; and we have extended the number
of individuals about whom we have geocoding and network data substantially.

3. Basic analyses and findings: clustering
One of the first types of computations we performed with most of the network phenomena
we have studied involved assessing whether there was more ‘clustering’ of a trait of interest
(that is, co-occurrence of the trait in connected individuals) than might be expected because
of chance alone.‡ To do this, we implemented the following permutation test: we compared
the observed clustering in the network to the clustering in thousands of randomly generated
networks in which we preserved the network topology and the overall prevalence of the trait
of interest, but in which we randomly shuffled the assignment of the trait value to each node
in the network [44,45].

That is, for any given time interval (e.g., for a survey wave), the network topology is taken
as static. Then, nodes are randomly assigned to have the trait of interest, subject to the
constraint that the prevalence of the trait is fixed. This is done repeatedly. The statistic that
is then calculated, for each geodesic distance, is the percentage increase in the probability
(i.e., a risk ratio) that an ego has the trait of interest given that an alter also has the trait,
compared with the probability that an ego has the trait of interest given that the alter does
not. If clustering is occurring, then the probability that an alter has a trait of interest (e.g.,
obesity) given that an ego has the trait should be higher in the observed network than in the
random networks.§ This procedure also allows us to generate the range of values that might
occur because of chance (with 95% probability), and we show these ranges as confidence
intervals around the observed value (specifically, we show the distribution of the observed
value minus the permuted values). This permutation test thus provides a way to test the null
hypothesis that the observed value minus the permuted value is equal to zero. If the range
crosses zero, it means that the observed value falls between the 2.5th and 97.5th percentile of
the permuted values and we cannot reject the possibility that the observed value could have
arisen because of chance.¶

Thus, we can measure how far, in terms of geodesic distance (i.e., the number of steps taken
through the network), the correlation in traits between ego and alters reaches before it could
plausibly be explained as a chance occurrence. In many empirical cases, we found that this
relationship extended up to three degrees of separation. In other words, on average, there is a

‡This type of ‘clustering’ is not the same as another frequently described type of clustering in network science, namely, the clustering
coefficient, which captures the degree to which two people tend to share the same social connections.
§It is worth noting that, as executed, the null distribution is a completely random distribution of the pertinent traits on the network.
This allows us to reject the most simple of models. However, it does not demonstrate that the data are more clustered than predicted
based on, for example, homophily on age or on other attributes that one might want to hold in place while examining phenomena of
interest. Moreover, there could be still more complex assumptions, such as an assumption that persons with a particular trait have
higher degree. However, the possible specification of such null models is very broad. Also, developing such tests is not a trivial
exercise. In the supplements to some of our papers, we do evaluate whether clustering in the networks is occurring above and beyond
homophily on certain attributes, such as education, by using adjusted values (we take the residual value from a regression that includes
the atrribute and treat this as the outcome of interest).
¶An alternative way to present the same information is to show the permuted range around zero, and then test the null hypothesis that
the observed value falls inside the permuted range. See Ref. [46] for some recent, additional exposition of such issues.

Christakis and Fowler Page 5

Stat Med. Author manuscript; available in PMC 2013 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



statistically significant and substantively meaningful relationship between, say, the body
mass index (BMI, which is weight divided by height squared, in units of kg/m2/ of an ego
and the BMI of his or her friends (geodesic distance 1), friends’ friends (geodesic distance
2), and even friends’ friends’ friends (geodesic distance 3).

At least one author has raised the concern that incomplete ascertainment of the network
could be driving these results, because we might not know that friends’ friends’ friends
were, in actuality, directly connected to an ego [47]. However, other data sets with more
complete ascertainment of ties than the FHS-Net still often show clustering to three degrees.
Figure 1 demonstrates significant clustering up to three degrees for various outcomes in the
FHS-Net and also in other data sets, such as AddHealth, Facebook, and even laboratory
experiments [6]. Many of these data sets have virtually complete network ascertainment,
capturing all relevant ties. This suggests that censoring of out-degree is not the sole source
of the conclusions drawn from analyses of the FHS-Net. Moreover, we find similar effect
sizes in terms of obesity in both the FHS-Net and AddHealth [15]. Finally, as discussed
below, work by other groups with diverse datasets has confirmed our findings; and, in any
case, as also discussed below, incomplete sampling would not perforce inflate estimates of
geodesic distance.

Permutation tests like this, to test whether a set of observations can result from a chance
process, are widely used when the underlying distribution is unknown. There is a substantial
literature on this technique, starting with Fisher [48]; the technique has been applied to
networks by other scholars [44], and it is fairly widely used in network science research. At
least one commentator has suggested that this approach is generically limited [49]. We
would certainly welcome a closed-form test with well-understood asymptotic properties, but
the network dependencies make such a test difficult to describe analytically, and we invite
suggestions regarding alternatives.

Now, as explicitly noted in all our papers, there are three explanations (other than chance)
for clustering of individuals with the same traits within a social network: (1) subjects might
choose to associate with others exhibiting similar attributes (homophily) [50]; (2) subjects
and their contacts might jointly experience unobserved contemporaneous exposures that
cause their attributes to covary (omitted variables or confounding because of shared
context); and (3) subjects might be influenced by their contacts (induction). However, this
observation is nothing new.‖

All observational studies seeking to estimate causal processes must cope with the fact that
correlations may result from selection effects or spurious associations instead of a true
causal relationship. Correlation is — of course — not causation. However, this does not
mean that any observational evidence is uninformative. The challenge is to disentangle these
effects, to the extent possible, and to specify the assumptions needed before correlative
evidence can be taken as suggestive of causation. Distinguishing interpersonal induction
from homophily is easier when (subject to certain statistical assumptions) longitudinal
information both about people's ties and about their attributes (i.e, obesity, smoking) is

‖In fact, these issues were identified in the 19th century, when the study of the widowhood effect was first engaged (the widowhood
effect is a simple, dyadic, interpersonal health effect, and it is quite likely the earliest example of social network health effects to
receive scholarly attention, as discussed in Connected). Moreover, it is worth noting that all three of these phenomena are typically
present in most social processes. To be clear, it is not necessary for scholars to set up a false dichotomy — namely, that there is either
homophily or influence in some process. Both are typically always present (though there are obvious exceptions; for example,
similarity in race between friends is not due to influence whereby one person's race causes a change in the other's). Also, different
analysts might be focused on different phenomena, depending on their interests. Some might be interested in exogenous factors that
cause people to form ties or share an attribute; others might be interested in how sharing an attribute causes people to form a
connection; and still others will be interested in interpersonal influence. Depending on the analyst's interest, the other phenomena will
be nuisances that must be dealt with in estimation.
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available [51, 52], or when certain other techniques (such as the directional test described
below) are used. Of course, actual experimental data helps a lot here too, as in [3,6,7,53,54].

To be clear, what the observed values and confidence intervals from the permutation test
described above establish is this: if we do not know anything about a subject in a network
except one fact — that his friend's friend's friend has some attribute — then we can do better
than chance at predicting whether or not the subject has the same value of the attribute. Of
course, it is unclear whether this simple, uncontrolled association results from influence
(spread), homophily, contextual factors, or some combination of these, and this is why
further analytic approaches are needed.

To illustrate the baseline clustering that exists in the populations we study, we usually
present at least one image of the network that shows each individual's characteristics
(behavior, gender, and so on) and the social relationships they have. In most cases with large
datasets like ours, it is difficult to show the full network because it would be too intricate, so
we usually show only a part of the network. Two illustrative examples are in Figure 2. For
example, we either carefully select which kinds of social relationships to include (as we did
in our image of obesity) or we sample subjects (as we did in our image of happiness), and
we show a fully connected ‘component’ (every subject has a relationship with at least one
other subject in the group). We choose the largest component, which allows inspection of
individual relationships while still conveying the complexity of the overall data. We have
used the same techniques to choose subjects to include in movies of the network that show
how it evolves and changes over time, prepared with SONIA (examples of such videos are
available at our websites) [55].

We sometimes employ a technique we call ‘geodesic smoothing’ to make it easier to see
large-scale structure in the network. In this technique, we color each node according to the
average value of a characteristic (e.g., happiness) for a person and all of the person's direct
social contacts. This process is analogous to smoothing algorithms like LOESS that are used
to show trends in representations of noisy data. Geodesic smoothing tends to make it easier
to visualize clusters with distinct characteristics, but because it generates additional
correlation between the nodes in the network, we never use these values in our simulations
or our statistical tests. They are generated only for the purpose of visualization. In all cases,
these techniques are explicitly described in our papers. Similar techniques are described
elsewhere [36,56].

Some people unfamiliar with network visualizations have formed the impression that they
are entirely arbitrary; but they are not. The pictures are visual heuristics, and it is true that
their appearance can vary according to the algorithms used to render the image. However,
the topology of the network, which is a hyperdimensional object, is invariant to how it is
rendered in two-dimensional space — just like a three-dimensional building, which can be
photographed from many angles, remains the same regardless of how it is captured.
Conclusions and analyses do not rely solely on the visual appearance of a network. Also,
there are highly developed techniques of diverse sorts for optimally’ rendering a network in
two dimensions, which we exploit [57,58].

In Connected, we call the empirical regularity that clusters of behaviors or attributes extend
to three degrees of separation the ‘three degrees of influence rule’ [27]. We realize that this
telegraphic phrase can be seen as problematic by some. For instance, so far, the evidence
offered above pertains to clustering, not influence; moreover, the use of the word ‘rule’ may
imply a degree of determinism that is too strong. However, similar to the widespread use of
the expression ‘six degrees of separation,’ this turn of phrase is meant to be evocative, not
definitive. For instance, even the widely discussed ‘six degrees of separation’ is not
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precisely six, neither in Milgram's classic paper [59] nor Watts and colleagues’ clever, well
known email experiment [60].

Our objective — insofar as influence is concerned — is to make the point that (1) there is
evidence that diverse phenomena spread beyond one degree, and (2) there is evidence that
the association fades within a few degrees in what seems like a systematic way across
phenomena and datasets. Incidentally, work by other investigators on the spread of ideas
(such as where to find a good piano teacher or what information inventors are aware of)
similarly seems to identify an important boundary at three degrees at which meaningful
effects are no longer detectable [61,62]. Moreover, recent work using large twitter datasets
also confirm the clustering of happiness (as measured using text processing) to three degrees
of separation [63]. Finally, the boundary at three degrees does not need to be sharp, nor
would it be expected to be; rather, as discussed below, this empirical regularity probably
reflects the point at which effects are simply no longer statistically discernable even with
reasonably large datasets.

Regarding the role that interpersonal influence plays in clustering to three degrees of
separation, we frequently make the point that different things spread in different ways and to
different extents. Hence, we also find that the actual number of degrees of separation at
which any clustering is (statistically) detectable, and at which any spread is therefore likely,
varies depending on the behavior or the observational or experimental context. For instance,
Figure 1 shows that, using diverse data sets, we have found evidence of clustering (and
hence, possibly, of spread) to two degrees of separation (divorce) [23] and four degrees
(drug use, sleep) [22] Moreover, we have found evidence of spreading in the laboratory as
well; in an experimental study of cooperation in public goods games (with full ascertainment
of ties and no threat from homophily or confounding), we found that behavior spreads to
three degrees [6]. Whether three ends up being the modal pattern remains to be seen.
However, we do not think that the value itself is the issue. It is the fact that it is greater than
one that really interests us. Moreover, and on the other hand, it is not too great either: if a
given person's actions could indeed spread to six degrees of separation, what we know about
the connectedness of people on the planet would suggest a kind of global influence of a
single individual that seems very implausible.**

In most of our papers, we use regression methods to discern whether there is evidence for
person-to-person spread, and these methods often suggest that things do not spread. For
example, in our obesity paper, we find evidence of correlation between friends but not
between neighbors (see Figure 4 here). Moreover, some things like health screening
behavior [18] and sexual orientation [22], do not appear to spread across any observed social
ties in our analyses. This is noteworthy because we have never claimed that everything
spreads, and the same methods that have been used to develop evidence of spread in some
phenomena fail to show spread in other phenomena.

Not only is it the case that not everything spreads, but it is also the case that not everything
spreads by the same mechanism. For example, weight gain may spread via imitation of a
specific eating behavior (e.g., eating fried foods), imitation of a specific exercise behavior
(e.g., jogging), or adoption of a social norm that yields changes in overall behavior. If it is
the norm that is transmitted, then other specific behaviors may not be correlated: a person
who starts jogging may influence his friend to take up swimming or reduce eating, and both
individuals may lose weight as a result.

**Connectivity (either at six degrees or any other geodesic distance) sets an upper bound on influence. Moreover, it is worth
emphasizing that three degrees (plus or minus one degree) is actually a lot smaller than six, because the number of paths grows
exponentially (or even faster) as a function of geodesic distance.
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Interestingly, the permutation results raise the possibility that the spread of traits may skip
over a person in a given chain. If the only way something like obesity spreads is via
realization of a change at each step on the path between two individuals, and if there are
only three individuals connected by two social ties (i.e., if there is only one path — we
discuss this assumption in the next section), then the probability that a person affects his
friend's friend should be the square of the probability that he affects his friend. If Joe has a
20% chance of influencing John, and John has a 20% chance of influencing Mary, then Joe
should have a 4% chance of influencing Mary (if we assume that the probabilities are
independent). However, that is not what we find. The associations in traits do not decay
exponentially. As a consequence, it may be the case that some people can act as ‘carriers’
who transmit a trait without exhibiting it themselves (similar to certain pathogens). For
example, a person whose friend becomes obese may become more accepting of weight gain,
and as a consequence, may stop encouraging other friends to lose weight even if his own
weight does not change. Such latent transmission is additive to the manifest transmission.
This is one possible reason, among others, for why the effects observed are not simply or
exactly multiplicative.

There are at least two explanations for the apparent limit at roughly three degrees (we
discuss others in our book, Connected). The first and simplest is decay, or a decline in size
of meaningful or detectable effects. Like waves spreading out from a stone dropped into a
still pond, the influence we have on others may eventually just peter out. In social networks,
we can think of this as a kind of social ‘friction.’ Of course, ascertaining decay depends in
some sense on the sample size and the effect size. With big samples and/or big effects (and
with complete network ascertainment), any clustering that extends to further distances —
even if unimportant — could be detected. In short, the empirical regularity of three degrees
of influence may simply reflect a decay in the size of an effect to the point where the effect
is no longer detectable.

Second, influence may decline because of an unavoidable evolution in the network that
makes the links beyond three degrees unstable. Ties in networks do not last forever. Friends
stop being friends. Neighbors move. Spouses divorce. People die. The only way to lose a
direct connection to someone you know (geodesic distance 1) is if the tie directly between
you disappears. However, for a person three degrees removed from you along a (solitary)
simple chain, any of three ties could be cut and you would lose the connection. Hence, on
average, we may not have stable ties to people at four degrees of separation given the
constant turnover in nodes and ties all along the way. Consequently, we might not influence
nor be influenced by people at four degrees and beyond. The extent to which such an effect
holds empirically, however, will also depend on the nature and number of redundant paths
between people at various degrees of separation, as described below.

4. Partial observation of FHS-Net ties
Some commentators have expressed concern that our findings related to clustering to three
degrees of separation might relate to the nature of sampling in the FHS-Net. In particular,
subjects only name a limited number of friends (generally only one person at any given
time, a person who can be thought of as the subject's one ‘best friend’), which leaves open
the possibility of unobserved ‘backdoor’ paths between nodes. The concern is that if nodes
or edges are not observed, then two individuals who are actually one or two degrees apart
might be wrongly supposed to be three (or more) degrees apart. Stated another way, the
claim that a person's traits are related to the same traits of a person three degrees removed
from them might be an overstatement because a partially observed network might miss
pathways that would otherwise show these individuals to actually be only one or two
degrees removed.
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This is a sensible concern. However, the intuition that partial observation will necessarily
lead to overestimation of the length of the path over which influence is transmitted is
incorrect. First, it is important to distinguish between three types of paths: (1) the actual,
inherently unobservable, stochastic path taken by the germ, norm, or behavior that spreads;
(2) the shortest path, and hence the most likely single actual path, between the source and
target nodes in the fully observed network; and (3) the shortest path(s) between the source
and target nodes in a partially observed network. This is illustrated in Figure 3. Although the
actual paths cannot be observed in practice, one can nevertheless explore the relationships
between these three path lengths using simulations.

Extensive exploration of a network of 3.9 million cell phone users and the ties between
them, as captured by their call records, reveals that, counter-intuitively, the shortest paths in
a sampled (observed) network may be shorter than the actual paths [11]. In other words,
when specific paths of varying lengths taken by a diffusion process exist between pairs of
individuals within a network, and when these paths are sampled, it turns out that the sampled
path lengths can be shorter or longer than the actual paths. The specific outcome depends on
the extent of sampling of nodes and ties, but the actual paths are typically roughly 10% 30%
shorter than the shortest paths in the partially observed networks for many sampling frames.
Consequently, the intuition that partial observation will necessarily lead to an inflation in
measured path length (and hence possibly to a mismeasurement of clustering) is incorrect.

The reason for this is as follows. Imagine that the shortest path in the nonsampled (fully
observed) network connecting the source and the target nodes has a length of, say, three
steps. We would take this as the most probable path of spread of some phenomenon. Now
imagine that, because of the sampling process, part of this path vanishes (i.e., we can no
longer observe it). Following the same logic that the most probable infection path between
the source and the target nodes is the shortest path connecting them, we now find the
shortest path in the sampled (partially observed) network between the source and the target
nodes. This cannot be shorter than three, but it may be equal to three if there were multiple
paths of that length, and it may also be longer than three.

Suppose that the shortest observed path has a length of four. Although the shortest path is
the single most likely path between the two nodes, it is not the only path between them.
Depending on the structure of the network, there may be multiple paths of length four, and
although each of them taken separately is less likely to be observed than the path of length
three, the overall probability that the transmission happens through four steps versus three
steps depends on the number of paths of these lengths. In real human networks, it is
frequently the case that once we let a spreading front proceed a few steps from the source,
the length of the actual path between the source and target nodes is higher than the shortest
length. If that were the case in our example, detecting the shortest path of length three in the
fully observed network would lead to an underestimate of the actual path. Because partial
observation may inflate our estimate of the shortest paths, it may hence, counter-intuitively,
reduce the net bias of the estimated length of the actual path.

Furthermore, equally important with respect to the concern regarding partial observation, we
find similar clustering, to three degrees of separation, in data sets where networks ties were
almost fully observed, as shown in Figure 1. For example, in the National Longitudinal
Study of Adolescent Health, subjects were asked to name up to 10 friends, and 90% of them
named fewer than the maximum. Also, in a paper on the spread of sleep behavior and drug
use in this particular network, we actually find clustering up to four degrees of separation
[22].
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5. Basic analysis and findings: longitudinal regression models
The topological permutation tests described above test only simple null hypotheses of no
association (albeit in a way that permits more than dyadic ties). To explore the possible
reasons for the clustering described above, we studied more closely the person-to-person
relationship using a regression framework. We specified longitudinal regression models with

a basic form wherein the ego's status (e.g., obese or not) at time t + 1, denoted  (with

distribution ), was a function of various time-invariant attributes of egos, such as gender
and education (captured by the k variables denoted by x on the right), their status at time t

, and, most pertinently, the status of their alters at times t  and t + 1 .††

This model could be generalized to allow for time-varying control variables of the ego, and
to allow for attributes of the alter to be included as well.

We used generalized estimating equations (GEE) to account for multiple observations of the
same ego across waves and across ego-alter pairings [64]. Also, we only included
observations in which ego and alter had a relationship at both time t and time t + 1 — on the
grounds that people who are disconnected from each other should not influence each other
that much, if at all (though this is a constraint that can — informatively — be relaxed)
[65].‡‡ In general, interpersonal ties within the FHS-Net were very stable [9].

Our basic model is thus

(1)

where g() is a link function determined by the form of the dependent variable. For
continuous data, g(a) = a and for dichotomous data, g(a) = log(a/(1 – a)). In most of our
articles, we specify both link functions, for instance, studying dichotomous obesity and
continuous BMI, or studying dichotomous heavy smoking and continuous measures of how
many cigarettes per day a person smokes.

Because we are using GEE, we also estimate the covariance structure of correlated

observations for each ego. The covariance matrix of Yego is modeled by 
where ϕ is a scaling constant, A is a diagonal matrix of scaling functions, and R is the
working correlation matrix. We assumed an independence working correlation structure for
the clustered errors, which has been shown to yield asymptotically unbiased and consistent,
although possibly inefficient, parameter estimates (the β and γ terms) even when the
correlation structure is misspecified [66].

To be clear, our basic model assumes that there is no correlation of ego's weight at t + 1 with
alter's weight at t + 1 except via influence, and no other effects on ego's weight at t + 1
except via the effect of ego's past weight at time t and the effect of the measured covariates,
that is, conditional on no unobserved confounding. These are common assumptions in
regression models of observational data, of course. However, a special consideration here is
that this assumption implies that there is no unobserved homophily beyond that on the
observable variables. Moreover, pertinently, these models are specified for each alter type

††These models are similar to models described by Valente [51].
‡‡Here, this kind of ‘disconnection’ is different than another kind: people can be disconnected from each other (in the sense that there
is no path at all between them through the network) or they can be disconnected in that they have no direct connection (and have only
an indirect connection — for example, they are a friend's friend). In the latter case, as argued here, they can affect each other via a
sequence of dyadic ties.
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independently (unless comparisons between types of alters are sought, in which case one
could, for instance, specify a ‘sibling’ model and index the kind of siblings at issue).

The time-lagged dependent variable (lagged to the prior exam) typically eliminates serial
correlation in the errors when there are more than two time periods observed in the case of
AR(1) models in which the Markov assumption holds. We test for significant serial
correlation in the error terms using a Lagrange multiplier test [67], and, in all cases we have
studied, the correlation ceases to be significant with the addition of a single lagged
dependent variable. Inclusion of this variable also helps control for ego's genetic endowment
or any intrinsic, stable predilection to evince a particular trait.

The lagged independent variable for an alter's trait helps account for homophily (especially
with respect to the observed trait that is the object of inquiry) because it makes ego's current
state unconditional on the state the alter was in when the ego and alter formed a connection
[51] Conditioning on the lagged alter's trait, however, would not comprehensively deal with
homophily on unobserved traits that are both time-varying and also associated with the
outcome of interest (for instance, if people who unobservably knew they wanted to lose
weight preferentially formed ties with other similar people). This term also does not address
the issue of a shared context (confounding).

Note also that our base model can be regarded as an equation expressing the effect of alter's
baseline weight and alter's change in weight. The generative interpretation is that the control
for alter's and ego's baseline weight controls for homophily on weight, and the other terms
address the impact of a change in weight. Thus, our model is closely related to auto-
distributed lag and error correction models that are frequently used in time-series
econometrics to evaluate the extent to which two series that tend towards an equilibrium
coupling covary [68]. In particular, one can think of the coefficient on the contemporaneous
alter characteristic as a measure of the ‘short run’ or one-period effect of the independent
variable on the dependent variable (in this case, of the alter on the ego) [69] According to
this interpretation, an alter may experience a shock to some attribute (they may gain 10
pounds, for example) and the coefficient on alter weight would then tell us the size of the
first change back towards the equilibrium coupling of ego and alter weight. Figure 4
illustrates some of the results we have published using such longitudinal models.

Importantly, we also specify models with further lags in the alter variables in most of our
work, evaluating how the change in a trait in an alter between t – 1 and t is associated with
the change in a trait in an ego between t and t + 1. Although these models are underpowered
compared with the approach we describe above, they typically suggest comparable positive
effect sizes. As noted by VanderWeele et al. [70], this approach effectively responds to
many of the concerns articulated by one critic [49], including any concerns about model
consistency or test validity.

We have tried to be clear about other assumptions underlying our technical specifications
both here and in our prior published work. For example, we do not believe it is necessary to
specify a single, joint model for all the effects present. Notably, in our exploration of various
datasets, we sometimes interact key variables with the relationship type, but these models
have never suggested that we would arrive at different conclusions by modeling multiple
relationship types at the same time in a single dyadic model. Moreover, whether particular
assumptions are required for model estimates to be taken as identifiable will often depend on
the eye of the beholder — for instance, whether it is plausible to assume that there is no
meaningful homophily on unmeasured traits that also affect the trait of interest. Even given
such constraints and restrictions, however, we believe that the results of such modeling
exercises are of interest; moreover, they give other scholars an opportunity to explore how
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the estimates change when variables are added to the model or model assumptions are
relaxed.

We also note that there are certainly other valuable ways of analyzing such data, albeit with
other strengths and limitations (such as constraints on network size and on parameter
interpretation), including the so-called ‘actor-oriented’ models [71, 72]; see Ref. [73, 74] for
illustrative applications. These models also involve their own assumptions, of course, and
these models do not escape some of the general criticisms of the use of observational data,
despite any claims to the contrary.§§ In our case, we did not use this approach, ably
described by Snijders and colleagues, because our sample sizes were bigger than the models
could accommodate. Also, of course, there is a long-standing appreciation of the difficulty
of causal inference of peer effects, for which an early and lucid articulation was provided by
Manski [76].

Our basic modeling framework has attracted some specific criticisms about the extent to
which homophily and confounding can indeed be purged from the causal estimates [15],
about whether this model is capable of offering any insight into the effects at hand at all
[77], or about the nature of various biases that might by introduced by changes in network
topology across time [78].¶¶ In most cases, we discussed these potential limitations in our
original papers. We have also previously published two discussions of some of these
concerns [15,79], and we describe some of the other, newer issues below. We recognize the
valuable contribution that these critiques have made to advancing the field of estimating
network effects using observational data.

However, it is also fair to say that these critiques in some cases simply restate the generic
claim that it is difficult (some say impossible) to extract causal inferences from
observational data at all. However, here we do not engage this essentially nihilistic position:
it is not specific to our own work or even to the issue of causal inference using network data,
and so it is well beyond our present scope.‖‖ Another paper, among other things, basically
asserts that any modeling of observational data is suspect because such modeling must rely
on assumptions [49]; not only do we reject this nihilistic position as well, but the claims of
this author have either been retracted by the author (in an erratum published after the fact) or
substantially refuted by others [70]. In short, we believe that the key issue is the extent to
which one can be explicit about one's assumptions, and the reasonableness of those
assumptions, in work analyzing social networks as in any other statistical work.

§§For example, Lewis et al. [75] claim that SIENA models suffer less from the threats to causal inference posed by observational data.
However, SIENA is susceptible to contextual effects and indirect homophily just like any other statistical model of observational data.
Moreover, their study has a number of other noteworthy limitations that subvert the plausibility of its conclusions, including, (1) it
treats ‘weak tie’ Facebook friends the same as the ‘strong tie’ real friends among a person's Facebook friends; it should have been
expected that tenuous ties to acquaintances would not evince much influence; (2) it starts with 1600 people, but only analyzes 200 for
whom they have complete data, and the analyses do not account well for this missingness; (3) perhaps because they have only 200
cases, their confidence intervals are wide, though the point estimates for interpersonal influence are actually typically large; (4) it
reports that many of their models did not converge (a problem that plagues SIENA); (5) there is no evidence that the models they
report converged (they do not report any convergence diagnostics such as the Raftery–Lewis test). In contrast, a study of ours
involving a randomized controlled trial of 61,000,000 people in Facebook shows significant levels of interpersonal influence online
[3].
¶¶We note, however, that the levels of change in friendship seen in the FHS-Net (as documented in [9]) are sufficiently modest that
they would not be consistent with much bias of the kind suggested by Noel and Nyhan in any case (even judging from the estimates in
the Noel and Nyhan paper).
‖‖We are of the opinion, however, that the world is knowable and that careful observation of the world has a very important role to
play in knowing it, and even that it is indeed possible to make causal inferences from observational data. One of our favorite
illustrations of this is that we know that jumping out of a plane is deadly, even though there has never been a randomized trial of this
‘treatment.’ One tongue-in-cheek paper that attempted to do a meta-analysis of use concluded: ‘As with many interventions intended
to prevent ill health, the effectiveness of parachutes has not been subjected to rigorous evaluation by using randomised controlled
trials. Advocates of evidence based medicine have criticised the adoption of interventions evaluated by using only observational data.
We think that everyone might benefit if the most radical protagonists of evidence based medicine organised and participated in a
double blind, randomised, placebo controlled, crossover trial of the parachute’ [80].
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One paper that attempted to refute the regression approach embodied in Equation (1)
claimed to document the spread in adolescents of phenomena which were assumed to be
intrinsically incapable of spread, such as acne, headaches, and height [81]. Interestingly, and
in accord with this assumption, the authors indeed find no effect for the first two outcomes
(acne and headaches) at conventional levels of statistical significance (p = 0:05). However,
they stretch the threshold to p = 0.10 so they can make the claim that these outcomes do
spread, even in a dataset that is large (over 5000 people). Then they make their argument:
because these outcomes could not possibly spread, the regression framework must
necessarily somehow be intrinsically wrong.

It is worth noting, however, that, in addition to not being statistically significant at
conventional levels, the effect sizes for these phenomena were also small, substantially
smaller than the effects observed, for example, for obesity and smoking in the networks we
have studied, including both the FHS-Net and AddHealth data. Indeed, these effects (for
acne, headaches, and height) are not robust to sensitivity analyses for the role of homophily
or shared context, as shown by formal sensitivity analyses conducted by others [82].

Moreover, it is in fact not inconceivable that such small contagion effects for acne,
headaches, and even height (in adolescents) might indeed exist First, it must be remembered
that, unlike the FHS-Net, the dataset used in these analyses (AddHealth) captures only self-
reported outcomes. Hence, if an ego has a friend who complains of headaches, the ego might
find it easier to complain of headaches (either because he has been given license to, or
because he finds it normative). Conversely, perhaps the ego's friend has discovered an
effective means to treat headaches and has communicated it to the ego, and so both ego and
alter might take medication for headaches, thus explaining the diffusion of the presence or
absence of headaches [83]. As for acne, whether an ego deems the few pimples on her face
to be worthy of report as ‘acne’ may be influenced by her friend's perceptions of her
problem or her friend's appearance or what her friend has told her that she should think
about these pimples. Or, the friend might encourage the ego (or show her how) to treat the
acne, such that the ego's acne status does indeed come to be influenced by the friend's.

At first pass, it would seem that height should not spread. Yet, in adolescents, it is not
inconceivable that it might, and environmental factors explain a significant portion of the
variance in height (around 20%) prior to adulthood [84]. To the extent that adolescent
growth is, as is well known in the medical literature, influenced by exercise, nutrition, and
smoking, it is entirely possible that an adolescent's height could depend (to some degree) on
the height of his friends, to the extent that they share smoking or exercise habits, for
example. Moreover, adolescents with tall friends could (and perhaps would) again report
that they are taller than they really are, or that they were gaining height faster than they
really were — because, unlike the FHS-Net where height was measured by nurses, in
AddHealth, it was self-reported. Hence, overall, like the spread of obesity, it is not literally
the obesity or height that spreads, but norms and behaviors (e.g., about exercise, nutrition,
smoking) that do. These could induce a correlation in height gain between friends that is not
induced between strangers.

Thus, from our perspective, even if the authors had shown that all three phenomena (acne,
headaches, and height) spread among growing adolescents at conventional levels of
significance, this would not have been a fatal blow to the statistical methods that they are
criticizing, let alone to the claim that health phenomena can spread.*** And, again our own
work with various outcomes in this modeling framework has often yielded results that show
that phenomena do not spread.
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Moreover, a recent paper by VanderWeele is very informative [82]. He applied sensitivity
analysis techniques [85] to several of our papers, and to some analyses conducted by others.
In particular, he estimated how large the effect of unobserved factors would have to be to
subvert confidence in the results. He concluded that (subject to certain assumptions)
‘contagion effects for obesity and smoking cessation are reasonably robust to possible latent
homophily or environmental confounding; those for happiness and loneliness are somewhat
less so. Supposed effects for height, acne, and headaches are all easily explained away by
latent homophily and confounding.’

This does not mean, of course, that the modeling framework of Equation (1) is in fact free of
any bias or is perfectly able to capture causal effects. This is one of the reasons we described
exactly what models we implemented both here and in our published papers and their
supplements, as well as additional innovations that we attempted within this framework,
such as a novel identification strategy exploiting tie direction.

6. An identification strategy involving directional ties
In our first paper, we proposed an identification strategy that we thought could provide
additional evidence regarding the causal nature of peer effects. Just as researchers use the
directional nature of time to establish a sequence that is consistent with a causal ordering,
we tried to use the directional nature of ties to do the same. Specifically, we suggested that
differences in effects according to the asymmetric nature of social ties could shed light on
the possibility of confounding because of extraneous factors [14].

A key element of sociocentric network studies involving friends is that all subjects in the
specified population identify their social contacts. As a result, we have two pieces of
information about every friendship: (1) whether the ego nominates the alter as a friend, and
(2) whether the alter nominates the ego as a friend. Because these friendship identifications
(unlike, say, spouse or sibling ties) are directional, we can study three different kinds: an
‘ego-perceived friend’ wherein ego nominates alter but not vice versa; an ‘alter-perceived
friend’ wherein alter nominates ego but not vice versa; and a ‘mutual friend’ in which the
nomination is reciprocal. We theorized that the social influence that an alter has on an ego
would be affected by the type of friendship we observe, with the strongest effects occurring
between mutual friends, followed by ego-perceived friends, followed by alter-perceived
friends.††† For alter-perceived friends, we might even expect no effect at all, because ego
might not be aware of alter, let alone alter's actions. The model in Equation (1) can be
specified for different sorts of ego–alter pairings including different ‘kinds’ of friends. Of
course, in the case of friendship, these models can be specified for friends in general and an
indicator can be added to index the kind of friendship.

Figure 4 shows that this pattern of results generally exists for a wide range of behaviors and
affective states — in two different data sets. Evidence regarding the directional nature of the
friendship effects is important because it suggests that covariance in traits between friends is
unlikely to be the result of unobserved contemporaneous exposures experienced by the two
persons in a friendship. If it were, there should be an equally strong association, regardless
of the directionality of friendship nomination. We also proposed a similar argument, using

***The further claim by these authors that adding additional controls for environmental factors attenuates the effect is also limited,
and we examined this possibility in the FHS-Net in a variety of ways. It is important to note that friends in AddHealth are all
physically proximate (they are in the same school), whereas this is not necessarily the case in the FHS-Net. If our estimates are biased
because they capture community-level correlation, one implication is that the increased geographic distance between friends will
reduce the effect size (because distant social contacts are not contemporaneously affected by community-level variables). However, as
noted below, we find that the relationship does not decay with physical distance, even up to hundreds of miles away.
†††A paper by Mercken et al. [86] highlights the socially more important role of reciprocated friendships compared with
unreciprocated friendships but does not pursue this difference as an identification strategy.
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just triads of people (specifically, men paired with their wives and ex-wives) in another
paper [65]. Also, in another recent paper, we lay a foundation that could allow the use of an
asymmetry in ties that is continuous rather than dichotomous [10].

One commentator has asserted that we have somehow misrepresented these results [49]. In
most cases, the confidence intervals for the three types of friendships overlap; in our papers,
we have noted the ordering of the effects and reported their confidence intervals to evaluate
the directionality pattern. All explicit claims of significance that address pairwise
differences in point estimates have contained confidence intervals or p-values for the
comparison (derived from a single model with an interaction term).

Moreover, it is important to note that answering the question about whether or not the
pattern (mutual tie > ego-perceived tie > alter-perceived tie) is true (i.e., can be stated with
confidence) depends on the null hypothesis. For example, what is the probability that all
three of the different kinds of relationships are drawn from the same distribution? How
likely is the order of the effects to be as specified? Such considerations would give a
different result than a test of whether or not two of them were drawn from the same
distribution. And what is the likelihood that we would find this ordering over and over
again, including in different network data sets (as shown in Figure 4)?

The strengths and limitations of this network directionality test have since been explored by
computer scientists [87], econometricians [88], statisticians [77], and others [78]. Possibly,
there are papers from before 2007 exploiting the directionality of ties as well, of which we
are unaware. One paper in particular identifies two further, important assumptions that may
be necessary or implicit in the directional test [77]. Specifically, it argues that if two
conditions are met, the test becomes less reliable as a way to exclude confounding. These
two conditions are (1) the influencers in a population differ substantially and systematically
in unobserved attributes (X) from the influenced in a population, and also that (2) the
different neighborhoods of X have substantially different local relationships to Y (the
outcome). How likely such circumstances are to occur in real social networks is unclear, and
how big any resulting biases might be is also unclear; again, like so many discussions of
statistical methods, the utility of the method critically hinges on the question of what
assumptions are ‘reasonable.’ We believe that the foregoing circumstances do not
realistically hold to a large extent, at least in general, given what is known about social
systems.

Finally, a recent paper by Iwashyna et al. [89] uses agent-based models to generate network
data with varying processes of friend selection and influence. The authors then perform a
GEE regression analysis like the one we have used to measure its sensitivity and specificity
in detecting influence and homophily in data where the underlying processes are known.
They show that the model works well to detect influence, with a very high sensitivity and
high specificity, but that it does not work well to detect homophily. A particularly important
feature of this work is that it addresses the ‘latent homophily’ argument made by Shalizi and
Thomas who argue that covariates that affect both homophily and the outcome can bias the
model (although Shalizi and Thomas do not quantify this bias) [77]. Iwashyna et al. actually
test a specification where people make friends based on an unobservable characteristic
related to the outcome, and yet they still find that the GEE model for inference yields high
sensitivity and specificity for detecting influence. Thus, although there may be some
theoretical objections based on unknown amounts of bias that could be present in our results,
applied research is generally pointing to the utility of the approach in generating informative
estimates of the possible interpersonal influence present.
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7. Using geographic information to address certain types of confounding
Another important advantage of the FHS-Net is that, in addition to the social network, we
also have information about place of residence (including as it changes across time). This
means that we can calculate not only social distance, but also geographic distance, between
any two people. Also, because participants in the FHS-Net have spread out over the country,
there is substantial variation in this measure; ordered by distance between friends’
residences, the last sextile of the distribution averages nearly 500 miles. This is important
because it helps us to discern whether or not changes in the local physical or social context
might explain the correlation in outcomes between two people who have a relationship. For
example, the opening of a popular fast food restaurant might cause many people in an area
to gain weight, and this contextual effect might cause us to falsely infer that peers are
influencing one another.‡‡‡

Instead, we found in the obesity paper and in other follow-up studies of health behavior
(smoking, drinking) that distance played no discernable role in the correlation in outcomes.
An interaction term between geographic distance and alter's outcome at time t + 1 yields a
coefficient that is near 0 and insignificant. In other words, a friend who lives hundreds of
miles away appears to have a similar effect as a friend who lives next door. Social distance
appears to matter much more than physical distance. Because these models, as before,
condition on the lagged trait value for the egos and the alters, homophily on the trait of
interest is also an unlikely explanation.

On the other hand, when we turned to studies of affective states (happiness, loneliness, and
depression) we found a different result. Associations were only positive for friends and
siblings who lived nearby (within a few miles). One interpretation of this result is that
affective states require physical proximity to spread, and this would be consistent with the
psychological literature on the spread of emotions via face-to-face contact [27]. However, it
is also possible that these results are being driven by contextual effects: people in a given
neighborhood, exposed to the same environment, might tend to react by changing moods in
the same direction to the same stimuli. To evaluate this possibility, we compared the
associations in outcomes for next-door neighbors to those for same-block neighbors (people
who live within 100 m of one another). Although we had many more observations at the
block level, the association in outcomes was significant for the next-door neighbors and not
for others. Thus, although it is still possible that contextual effects explain some of the
association, they would need to be ‘micro-environmental’ contextual effects that would not
affect everyone on the same block.

8. Availability of data and code
Some commentators have asked about data availability. We have developed and placed into
the public domain much network data and code (including for the Facebook network,
biological networks [91], experimental networks [6], and various political network datasets
[92–95], and we have promptly shared our code and supplementary results with anyone who
has asked (e.g., [78]) Of course, the AddHealth is a publicly available dataset, so anyone
wishing to explore new analytic approaches to network data, or the assumptions required to
analyze such data, may take advantage of it. There are many other sources of social network
data as well (e.g., online data), although longitudinal data are still somewhat scarce.

‡‡‡Interestingly, a careful analysis of the FHS reveals no effect of proximity to fast food estabilishments, so this example is just
hypothetical; see Block et al. [90].
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With respect to the FHS-Net, we worked closely with FHS administrators to release the
data. Regrettably, given the origin of these data in clinical records and given FHS rules, not
all the data were releasable, which affects the replicability of our results (at least those
results with FHS data) by outside researchers. However, we have shared data with
collaborators using our secure servers. Also, in 2009, the study's administrators, with our
assistance, posted a version of these data in a secure online NIH repository that requires
formal application procedures. FHS implemented a variety of changes to the data to help
protect subject confidentiality, however, before posting. Specifically: (1) all date
information was changed to a monthly resolution rather than daily; (2) only 9000 cases
rather than 12,000 could be posted (e.g., all nongenetically related relative ties such as
adopted siblings, step-children, etc., were removed); (3) individuals who did not consent to
the release of ‘sensitive information’ were excluded; and (4) the available covariates (e.g.,
geographic coordinates) were restricted. We have rerun some of our analyses on this
restricted dataset, and many — but not all — of our results survive these restrictions. This
dataset is distributed via the SHARE database at dbGAP (http://www.ncbi.nlm.nih.gov/gap).

9. Social influence and social networks
We believe that we have been careful in interpreting our findings and that we have
summarized our results with the proper caveats. For instance, the first two paragraphs of the
Discussion in our 2007 paper on obesity read as follows:

‘Our study suggests that obesity may spread in social networks in a quantifiable
and discernable pattern that depends on the nature of social ties. Moreover, social
distance appears to be more important than geographic distance within these
networks. Although connected persons might share an exposure to common
environmental factors, the experience of simultaneous events, or other common
features (e.g., genes) that cause them to gain or lose weight simultaneously, our
observations suggest an important role for a process involving the induction and
person-to-person spread of obesity.

‘Our findings that the weight gain of immediate neighbors did not affect the chance
of weight gain in egos and that geographic distance did not modify the effect for
other types of alters (e.g., friends or siblings) helps rule out common exposure to
local environmental factors as an explanation for our observations. Our models also
controlled for an ego's previous weight status; this helps to account for sources of
confounding that are stable over time (e.g., childhood experiences or genetic
endowment). In addition, the control in our models for an alter's previous weight
status accounts for a possible tendency of obese people to form ties among
themselves. Finally, the findings regarding the directional nature of the effects of
friendships are especially important with regard to the interpersonal induction of
obesity because they suggest that friends do not simultaneously become obese as a
result of contemporaneous exposures to unobserved factors. If the friends did
become obese at the same time, any such exposures should have an equally strong
influence regardless of the directionality of friendship. This observation also points
to the specifically social nature of these associations, because the asymmetry in the
process may arise from the fact that the person who identifies another person as a
friend esteems the other person [14].

We stand behind this summary.

Some who have found fault with our analyses or conclusions have seemed, in reality, to find
fault with second-hand accounts of the work. One of the more frustrating experiences we
have had is to be criticized for overlooking limitations in our data or methods that we did
not, in fact, overlook, but that were instead overlooked by others who were describing or

Christakis and Fowler Page 18

Stat Med. Author manuscript; available in PMC 2013 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ncbi.nlm.nih.gov/gap


summarizing our work (often for a lay audience). In reality, we carefully laid out and
explored nearly all of these limitations in our published research and our public
presentations to scientific audiences. While we have sometimes speculated about
mechanisms of interpersonal effects, we have avoided making strong mechanistic claims in
our scientific papers (though we have been a bit more willing to hypothesize in Connected,
intended for a nonscientific audience).

Our work depends, of course, on many who came before us, and there is a long tradition of
looking at peer effects in all sorts of phenomena, particularly in dyadic settings. Our
writings cite prior work by many other scientists. Moreover, since we published our work, a
variety of articles by other investigators have used other data sets and approaches and
confirmed our findings and, in many cases, even the magnitude of the effects we observed.
Pertinent recent work with obesity, weight gain, weight loss, and the mechanisms and
behaviors related to this (e.g., eating, exercise) that mostly confirm our findings is quite
diverse, including everything from observational studies, to natural experiments, to de novo
experiments, to twin studies that account for genetic similarity, to clever studies involving
electronic monitoring of interactions [24, 96–109]. One experimental study documented the
spread of weight loss across spousal connections; the spouses of individuals randomly
assigned to weight loss interventions were tracked, and evidence of a ripple effect was
apparent from the subjects to their (untreated) spouses [53]. Of course, much work, as
expected, has also confirmed the existence of homophily with respect to weight (e.g.,
[9,110]). Still other studies have used experimental and observational methods to confirm
the idea that one mechanism of interpersonal spread of obesity might be a spread of norms,
as we speculated in our 2007 paper (e.g., [102,107,111,112]).

There is also a longstanding literature on emotional contagion, of course [113], but recent
social network papers that have confirmed our findings have also appeared [114–116]. Other
outcomes have also recently received a reevaluation, such as smoking (which, of course, has
its own longstanding literature with respect to peer effects) [117–119], with many papers
identifying the obvious importance of both homophily and influence, especially in
adolescent populations (see, e.g., [73, 74]). Indeed, there have been a number of randomized
controlled trials of smoking cessation interventions that target students based on their
network position and that have documented peer effects, an approach that was thoughtfully
pioneered by Valente et al. [120,121] and Campbell et al. [122].

A key consideration, therefore, is what the standard for evaluating our findings is. Is the real
issue whether such interpersonal influence for these interesting phenomena (obesity,
emotions, etc.) occurs? In that case, confirmatory work of various types by various
investigators should be taken to support our findings. Here, the standard is whether an
observation is true or not. In this regard, we think the body of evidence accumulated about
peer effects — if not network effects — is very persuasive, and we are joined in this view by
many social and biomedical scientists.

Or is the key issue here that interpersonal effects are hard to discern with confidence, and
that data and methods are imperfect and subject to assumptions or biases? If so, we quite
agree. This is one of the reasons we have tried to be transparent about the methods used in
our work. This is also one of the reasons that we ourselves, and others working
collaboratively with us, have proposed new approaches, such as experiments (both offline
and online) [3, 6, 7, 123],§§§ and instrumental variable methods involving genes as
instruments [125], both of which might be able to provide different sorts of confidence in
causal inference. Here, the standard is whether an accurate observation is scientifically

§§§Aral and Walker have also been advancing this area; see, for example, Ref. [124].
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possible. We think it is. Because network data are likely to become increasingly available in
this era of computational social science [126], and because questions regarding the structure
and function of social networks are of intrinsic importance, it seems clear that innovation in
statistical methods will be required. We are eager to hear of any practical approaches to the
analysis of large-scale, observational social network data that shed additional light on the
interesting and important phenomenon of interpersonal influence.
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Figure 1.
Results from network permutation tests, using five different observational and experimental
datasets, show significant associations up to between 2 and 4 degrees of separation for a
variety of 15 different behaviors and affective states. The Y axis represents the percentage
increase in probability that an ego has the trait of interest given that an alter has it, compared
with the probability that an ego has the trait given that the alter does not have it. Vertical
black lines indicate 95% confidence intervals. For more details, see the related manuscripts
cited in the text. Colors indicate data source: yellow: Framingham Heart Study Social
Network [14]; blue: AddHealth [1]; green: lab experiment [6]; red: Facebook strong ties [2];
orange: Hadza hunter gatherers [5].
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Figure 2.
Network visualizations showing clustering in obesity (top) and happiness (bottom) in the
Framingham Heart Study Social Network in 2000. The top graph shows the largest
connected component of friends, spouses, and siblings for whom information about body
mass was available. Node border indicates gender (red=female subject, blue=male subject),
node color indicates obesity (yellow=BMI>30), node size is proportional to BMI, and tie
colors indicate relationship (purple=friend or spouse, orange=family). The bottom graph
shows a portion of the largest component of friends, spouses, and siblings for whom
information about happiness was available. Each node represents a subject and its shape
denotes gender (circles are female, squares are male). Lines between nodes indicate
relationship (black for siblings, red for friends and spouses). Node color denotes the mean
happiness of the ego and all directly connected (distance 1) alters, with blue shades
indicating the least happy, and yellow shades indicating the most happy (shades of green are
intermediate). The bottom image involves both ‘geodesic smoothing’ and sampling, as noted
in the text.
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Figure 3.
Schematic of a network infection and sampling process. (A) The full (unobserved) network
with the initially infected node colored green (upper left corner of the network). (B) The
shortest path from the source node to the target node colored red (lower right corner of the
network) corresponds to the most likely infection path in the fully observed network and has
a length of 2. (C) The (unobservable) spreading process unfolds in the (unobserved)
network. The actual path taken by the infection is shown with wavy edges. The target node
is reached in three steps giving a length of 3. (D) The partially observed network has some
nodes and links missing depending on the sampling. The shortest path from source to target
has a length of 3 (shown in the dotted lines), corresponding to the length of the most likely
path taken by the infection. In this case, using the shortest path length in the fully observed
network to estimate the actual path length would result in an underestimate of path length,
whereas using the path in the partially observed network correctly yields a path length of 3.
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Figure 4.
Illustrative results from longitudinal regression models for various relationship types and
outcomes. Horizontal bars show 95% confidence intervals derived from GEE models by
simulating the first difference in alter contemporaneous outcome (changing from 0 to 1)
using 1000 randomly drawn sets of estimates from the coefficient covariance matrix and
assuming all other variables were held at their means.
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