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Abstract
Genome wide association studies (GWAS) have been shown to be a powerful approach to identify
risk loci for neurodegenerative diseases. Recent GWAS in Parkinson’s disease (PD) have been
successful in identifying numerous risk variants pointing to novel pathways potentially implicated
in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of
previously identified risk alleles in PD patients and controls from Greece. We showed that
previously published risk profiles for Northern European and American populations are also
applicable to the Greek population. In addition, while we were largely underpowered to detect
individual associations we replicated 5 of 32 previously published risk variants with nominal p-
values <0.05. Genome-wide complex trait analysis (GCTA) revealed that known risk loci explain
disease risk in 1.27% of Greek PD patients. Collectively, these results indicate that there is likely a
substantial genetic component to PD in Greece similarly to other worldwide populations that
remains to be discovered.
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1. Introduction
The dissection of the genetic basis of Parkinson’s disease (PD) started with the identification
of a-synuclein (SNCA) mutations in 1997 (Polymeropoulos, et al., 1997). Fifteen years later,
the cause of most PD cases still remains unknown as Mendelian mutations collectively
account for less than 5% of the disease (Pankratz, et al., 2012). More recently, driven by the
common disease-common variant (CDCV) hypothesis (Reich and Lander, 2001), several PD
genome wide association studies (GWAS) (Edwards, et al., 2010, Hernandez, et al., 2012,
Pihlstrom, et al., 2013, Saad, et al., 2011, Satake, et al., 2009, Simon-Sanchez, et al., 2009,
Simon-Sanchez, et al., 2011) and large scale meta-analyses (International Parkinson’s
Disease Genomics Consortium and Wellcome Trust, Case Control Consortium 2, 2011, Do,
et al., 2011, Lill, et al., 2012, Nalls, et al., 2011, Pankratz, et al., 2012) have shown that
variants within 26 loci increase the risk for PD. Despite these advances, there is evidence
that a large number of causative loci still remain to be discovered (Keller, et al., 2012).

It has been previously argued that studies in isolated populations with limited genetic
heterogeneity are valuable for studying the genetic basis of disease (Hernandez, et al., 2012)
with an illustrative example being the Finnish population (Kere, 2001, Peltonen, et al., 1999)
in which ALS GWA studies (Laaksovirta, et al., 2010) paved the road to the discovery of
C9orf72 repeat expansions as a major cause of ALS/FTD (DeJesus-Hernandez, et al., 2011,
Renton, et al., 2011, Traynor, 2012). However, a recent PD GWAS completed in the Finnish
population following a similar rationale failed to identify such high risk variants
(Hernandez, et al., 2012).

Similarly to the Finnish population, there is evidence that the Greek population is an isolated
population (Mok, et al., 2012) with subtle genetic intricacies when compared to other
European populations (International HapMap Consortium, 2003, Stathias, et al., 2012). This,
in combination with the location of Greece in the crossroad between Europe, Africa and the
Middle East serving as a “genetic pool” for transiting populations (Di Giacomo, et al., 2004,
Hughey, et al., 2013, King, et al., 2011, Semino, et al., 2004, Stathias, et al., 2012) renders
genetic studies in the Greek population both promising and informative for other European
populations. Motivated by these observations, we undertook a PD case-control analysis
targeting variants previously implicated in risk for PD by GWA studies.
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2. Materials and methods
All samples were collected in accordance to institutional ethical procedures after providing
written informed consent. Individuals originated from 4 geographic locations in Greece
(Athens, Crete, Syros, Thessaly for details see Table 1 and Table S1). The total number of
samples was 1154 cases and 997 controls. Parkinson’s disease patients were diagnosed
according to the Queen Square brain bank criteria (Gibb and Lees, 1988, Gibb and Lees,
1989). Controls were healthy individuals with no signs or symptoms of parkinsonism whose
close relatives were also free from parkinsonism based on self-report or available clinical
data if possible.

All samples were genotyped as part of a larger study using the NeuroX Array (Illumina)
which is an exome plus custom content genotyping array. The NeuroX contains 267,607
probes densely covering previously published PD GWAS associated loci, rare variants
identified through exome sequencing studies of neurodegenerative diseases, ancestry
informative markers, markers for determination of identity by descent, X chromosome SNPs
for gender determination, candidate loci for neurodegenerative disease GWAS, as well as
standard Illumina exome array content. After initial genotyping, genotypes were clustered
using Illumina GenomeStudio on default parameters. For SNPs previously associated with
PD, genotype clusters were manually inspected (see Figure S1).

Sample quality control (QC) was slightly more rigorous than standard GWAS due to the use
of an exome-based array with abundant rare variants and experimental content. All sample
QC was based on SNPs with Illumina GenTrain scores > 0.7, indicative of generally higher
quality genotyping. Initially, samples with less than 95% successful calls on a genome-wide
scale and gender estimated from X chromosome heterogeneity not matching clinical reports
of gender were excluded. X heterogeneity calculations were based on common SNPs from
the International HapMap Project that had genotypes with missingness < 5% and Hardy-
Weinberg equilibrium (HWE) p-values > 1E-5. For further data cleaning, a subset of the
genotype data was used, including only SNPs present in HapMap3 populations with
genotype missingness < 5%, HWE p-values > 1E-5 and a pairwise r2 < 0.5 across sliding
windows of 50 SNPs. Using this reduced dataset we estimated genome-wide rates of
heterozygosity, excluding any samples with observed heterozygosity divergence more than 3
standard deviations from the expected population mean. Following this exclusion, samples
were clustered using principal components analysis to evaluate European ancestry as
compared to HapMap3 populations at overlapping SNPs (International HapMap
Consortium, 2003, Patterson, et al., 2006, Price, et al., 2006, Yang, et al., 2011). At this
stage, samples were excluded if they were outside of 6 standard deviations from the means
of eigenvectors 1 or 2 based on the combined CEU (CEPH) and TSI (Tuscan) reference
samples (see Figure S2). Confirmed European ancestry samples were extracted and identity
by descent was quantified, allowing us to exclude any samples sharing proportionately more
than 12.5% of alleles indicating cryptic relatedness at the level of cousins. Within related
pairs, individuals were retained to maximize a 1:1 ratio of cases to controls and preserve
study power. At this time, 10 eigenvectors were estimated to account for population
substructure and to be used as covariates in all analyses.

Once sample quality control was completed, genotype data on all attempted SNPs was
extracted for samples meeting inclusion criteria. At this point, we excluded all SNPs with
MAF < 0.01, HWE p-values < 1E-5, differential missingness between cases and controls at
pvalues < 1E-5, differential missingness by haplotypes at p-values < 1E-5 and GenTrain
scores < 0.7. SNPs at MAF < 0.01 were not retained due to concerns about study power. For
analyses in this manuscript, we utilized a working sample size of 960 cases and 876 controls
genotyped at 48,805 SNPs.
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The purpose of this project was to investigate whether known PD-associated SNPs
contribute to PD risk in the Greek population both through mining data generated on the
single SNP level, but also by using genetic risk profiling to aggregate risk across all known
loci. We also attempted to estimate PD heritability in this population based on all available
SNP data and also only focusing in on known GWAS loci.

For all SNPs and samples passing quality control as described above, logistic regression
analyses were used to estimate risk associated with each SNP while adjusting for
eigenvectors 1 – 10 as covariates. All loci summarized in Keller, et al., 2012 were also
extracted to evaluate risk associated with previously discovered GWAS loci in our Greek
cohort (Table 2). Loci that reached genome-wide significance in previously published PD
GWASs were matched based on position to their corresponding NeuroX probes. Prior to
matching, human build (HB) 36 positions of published loci were converted to HB37 through
dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) when an rsID was available, or else
through UCSC genome lift (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Suitable proxies
were located through SNAP (http://www.broadinstitute.org/mpg/snap/) or 1000 genomes
(http://www.1000genomes.org/) for published SNPs that were absent from the NeuroX, did
not pass quality control or had non-satisfactory cluster plots. Proxies selected fulfilled all of
the following criteria: r2>0.5 and distance <500kb from SNP of interest as derived from
calculations in the European ancestry populations with which imputations were conducted in
the initial discovery GWAS, or the 1000 Genomes Project’s phase 1 alpha freeze if no
imputation was used in the original report or the imputation reference was unavailable. If
more than one suitable proxy were located for a candidate SNP, proxies with the largest r2
and smallest distance were preferred. Previously published SNPs or their proxies with a
MAF< 0.01 were included in the study if the MAF was similar to the one catalogued in 1000
genomes and if the cluster plot was satisfactory. After this step, SNPs remaining without
suitable proxies were excluded from the study. Power calculations were undertaken with the
online tool CaTS (http://www.sph.umich.edu/csg/abecasis/CaTS/index.html) (Skol, et al.,
2006) for 3 levels of significance (0.05, 0.002, 5E-8) assuming a disease prevalence of 0.002
under an additive disease model; the power to detect association was calculated separately
for each of the 32 variants included in our replication study using the smallest ORs and
MAFs reported in previous PD GWAS meta-analyses or in the meta-analyses results
cataloged in PD gene (http://www.pdgene.org/) (Lill, et al., 2012). QQ plot and genomic
inflation factor were also calculated for all SNPs passing QC (figure S3).

Risk profiles were calculated incorporating 30 of the 32 published SNPs (or their proxies)
included in our study (Table 2) as previously described, one monomorphic and a second
near monomorphic SNP from the Greek dataset without sufficient proxies were excluded
(rs2102808, rs34637584). For the SNPs from published GWAS, aggregate risk allele
frequencies were calculated, weighted by the published odds ratio in a method described in
detail elsewhere (International Parkinson’s Disease Genomics Consortium and Wellcome
Trust, Case Control Consortium 2, 2011, Hernandez, et al., 2012, Nalls, et al., 2011, Ripatti,
et al., 2010). In brief, risk allele dosages were counted and a composite score across all loci
was generated. Per SNP risk alleles are scaled by their published odds ratios, or using
available data for proxy SNPs, giving larger weights to alleles with higher risk estimates.
Overall trend estimates were used to evaluate the significance of the risk score’s association
with PD status across the Greek cohort using logistic regression. At this stage, receiver
operator curves were generated to assess the clinical predictability of PD associated with the
cumulative risk score indicated by the area under the curve (AUC) (figure S4). In addition,
the dataset was divided into quintiles based on the genetic risk score. More logistic
regression analyses were conducted comparing the lowest risk quintile to the 2nd through 5th

highest risk quintiles, always using the lowest quintile as a reference group in the model
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(Table 3). All risk profiling analyses were adjusted for eigenvectors to account for
population substructure.

To ascertain narrow sense heritability estimates from this outbred sample series, the
restricted maximum likelihood method within the Genome-wide complex trait analysis
(GCTA) package was utilized (Lee, et al., 2011, Lee, et al., 2012, Yang, et al., 2010, Yang,
et al., 2012, Yang, et al., 2011). We calculated the variance in PD risk explained by all
genotyped SNPs passing quality control as well as second modeling scenario based on a
subset of all SNPs passing quality control limited to those within 1 MB of previously
identified GWAS loci assuming a PD prevalence in the general population of 0.002(Keller,
et al., 2012). These analyses were also adjusted for principal components 1–10 to account
for population substructure. This allows us to estimate heritability within the Greek
population attributable to genome/exome-wide assayed variation, as well as that attributable
to GWAS loci.

Finally, in order to assess the contribution to PD risk of loci previously identified through
candidate gene studies in the Greek population (table 4), association results were extracted
for suitable NeuroX SNPs or proxies selected as described above from the previously
generated logistic regression dataset.

3. Results
Based on prior knowledge, a number of recent GWAS identified loci show marginal
associations at p-values < 0.05 (Table 2). This could technically be viewed as a form of
replication if prior knowledge of these robust associations is considered, even though this
study itself is immensely underpowered compared to the initial discovery and replication
cohorts within the original reports. While the astounding strength of the STK39 association
is impressive, lower significance associations are seen at SNCA (p-value 0.019), RIT2/
SYT4 (p value 0.002), GAK (p-value 0.025), and CCDC62/HIP1R (p-value 0.048), all
agreeable with the directionality of allelic effect as seen in previous studies (International
Parkinson’s Disease Genomics Consortium and Wellcome Trust, Case Control Consortium
2, 2011, Do, et al., 2011, Lill, et al., 2012, Nalls, et al., 2011).

Our risk profiling analysis yielded results quite similar to those published in (International
Parkinson’s Disease Genomics Consortium and Wellcome Trust, Case Control Consortium
2, 2011, Hernandez, et al., 2012, Nalls, et al., 2011) (Table 3). We show a highly significant
trend for risk profile scores calculated to assess the cumulative risk attributable to all known
GWAS loci associated with PD (p-value < 1E-12) with an odds ratio of 2.44 associated with
membership in the highest quintile of PD risk compared to those in the lowest quintile of PD
risk. Like previous studies of PD GWAS, the predictability of risk profiles based on GWAS
data does not rise to clinical utility we would have hoped for, with an area under the curve
(AUC) from receiver operator curve analyses being only 0.5934.

Heritability analyses show roughly 1.27% of the variance in PD risk is attributable to the
regions surrounding known GWAS loci. On the other hand, heritability estimates from all
assayed SNPs passing quality control suggest that there is a total variance explained by the
SNPs assayed on the NeuroX array to be around 17.55%. This suggests that future studies in
larger samples sizes with dense sequencing data (among other sources of genetic data) may
explain this remaining 16.28% genetic variation in risk similar to what was seen in Keller, et
al., 2012.

We failed to replicate the results of previous candidate gene studies in the Greek population
at a nominal significance level of <0.05 though the association was of similar directionality
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and effect size for all 3 previously identified significant SNPs (Fung, et al., 2006,
Michelakakis, et al., 2012) (table 4).

4. Discussion
Even though the existence of common variants of large effect size is unlikely in the Greek
population based on this relatively underpowered analysis, we have replicated the
association of 5 previously reported variants of lower effect size within the SNCA, STK39,
RIT2/SYT4, GAK, and CCDC62/HIP1R loci (International Parkinson’s Disease Genomics
Consortium and Wellcome Trust, Case Control Consortium 2, 2011, Do, et al., 2011, Lill, et
al., 2012, Nalls, et al., 2011, Pankratz, et al., 2012) with nominal p-values <0.05. There are
two possible explanations for the failure to replicate the association for the remaining
individual risk variants. First, our study had limited power to detect associations with
variants of small MAF and effect size (table 2). Second, as it is likely that the variants
identified in previous GWA studies are just proxies for the putative functional variants,
population-specific differences in linkage disequilibrium patterns and allele frequencies
could be responsible for the lack of replication (Singleton, et al., 2013).

We were able to replicate the previously reported risk profiles in the current dataset, and the
observed effects are relatively consistent with previous work (International Parkinson’s
Disease Genomics Consortium and Wellcome Trust, Case Control Consortium 2, 2011,
Hernandez, et al., 2012, Nalls, et al., 2011) indicating that there probably is a contribution of
previously reported variants to PD risk in the Greek population.

In conclusion, the results from GCTA and the interpretation of our findings in the context of
previous GWASs, coupled with positivity of family history for PD in 17.2% of our cases
show that there probably is a substantial, unknown genetic component for PD in the Greek
population which should be addressed in future studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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