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Abstract
The proper function of the nervous system depends on precise production and connection of
distinct neurons and glia. Cell fate determination of neurons and glia is tightly controlled by
complex gene expression regulation in the developing and adult nervous system. Emerging
evidence has demonstrated the importance of noncoding microRNAs (miRNAs) in neural
development and function. This review highlights current discoveries of miRNA functions in
specifying neuronal and glial cell fate. We summarize the roles of miRNAs in expansion and
differentiation of neural stem cells, specification of neuronal subtypes and glial cells,
reprogramming of functional neurons from embryonic stem cells and fibroblasts, and left-right
asymmetric organization of neuronal subtypes. Investigating the network of interactions between
miRNAs and target genes will reveal new gene regulation machinery involved in tuning the cell
fate decisions of neurons and glia.

Introduction
One fascinating phenomenon in the nervous system of invertebrates and vertebrates is the
precise regulation of cell fate determination. Distinct neurons and glia are derived from
neural stem cells (NSCs) or specific neural progenitors (NPs) and glial progenitors,
respectively, in different regions of the developing central nervous system (CNS) by
complex temporospatial gene regulation [1–5]. Even in adult brains, tightly controlled and
diverse neurogenesis is critical for proper brain functions [6–8]. Resulting from extensive
investigations of molecular mechanisms of cell fate determination, NSCs, specific
progenitors, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and even
fibroblasts have been programmed or reprogrammed into specific neuronal and glial types
for treatments of neurological disorders [9–12].

Emerging studies have shown that like protein coding genes, microRNAs (miRNAs) play
essential roles in cell fate determination. miRNAs, found in almost all eukaryotic cells, are a
group of 18–22 nucleotide (nt) highly conserved small noncoding RNAs, which normally
negatively regulate target gene expression by binding to messenger RNAs (mRNAs),
typically in the 3’ untranslated region (3’UTR) [13,14]. Exciting studies have demonstrated
important roles of miRNAs in neural development and neurological diseases [15–18]. In this
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review, we will highlight miRNA-mediated neuronal and glial specification from NSCs,
specific progenitors, ESCs, iPSCs and fibroblasts, and left-right organization of specific
neuronal subtypes in the nervous system.

miRNAs regulate expansion and differentiation of NSCs and NPs
A feature of NSCs is their ability to self-renew to expand the NSC pool. Some miRNAs
have been identified that promote self-renewal and proliferation of NSCs and NPs, and
inhibit differentiation in both the developing and adult nervous system (Figure 1 and Table
1). In the embryonic mouse cerebral cortex, miR-19 in the miR-17-92 cluster has been found
to promote NSC proliferation and radial glial cell (RGC) expansion by targeting Pten [19●].
Interestingly, miR-92, another miRNA in the miR-17-92 cluster, has been shown to inhibit
transition of intermediate progenitors (IPs) from RGCs by targeting Tbr2 [19,20]. Dual
regulation by members of the miR-17-92 cluster on numbers of RGCs and IPs is critical for
controlling the proper progenitor pool and brain sizes [19]. miR-134 has been shown to be
essential for the maintenance of cortical NPs by targeting doublecortin (Dcx) and/or
Chordin-like 1 (Chrdl-1) [21].

In adult NSCs, Liu et al. have shown that miR-184 promotes adult NSC proliferation by
repressing Numb-like (Numbl) [22]. Meanwhile, miR-184 is suppressed by methyl-CpG
binding protein 1 (MBD1), suggesting that a regulatory network of miRNAs controls adult
NSC expansion [22]. A similar regulatory loop has been identified between MBD1 and
miR-195, which also positively regulates adult NSC proliferation [23●]. Moreover, miR-25,
a member of the miR-106-25 cluster, has been shown to promote adult NSC proliferation,
potentially through regulation of genes in the insulin/insulin-like growth factor-1 pathway
[24]. miR-137, which is regulated by DNA methyl-CpG-binding protein (MeCP2) and
transcription factor (TF) Sox2, promotes adult NSC proliferation and inhibits differentiation
by targeting Ezh2, a histone methyltransferase and Polycomb group protein [25]. In the
Xenopus retina, miR-129, miR-155, miR-214 and miR-222 have been found to promote
progenitor proliferation by targeting Oxt2 and Vsx1 [26].

An interesting observation of miRNA regulation is that it often forms a feedback loop with
its target genes in the process of controlling cell fate. Schwamborn et al. have shown that
Let-7 is a target of TRIM32 and suppresses NSC proliferation [27]. Let-7b enhances
differentiation by targeting the nuclear receptor TLX and the cell cycle regulator cyclin D1
[28]. Interestingly, further investigation has shown that let-7 normally suppresses lin-28
protein expression, and lin-28 also blocks let-7 expression by binding to the let-7 precursor
and inhibiting its biogenesis [29]. In addition, miR-9, a CNS-enriched miRNA, has been
shown to suppress mouse NSC expansion and induce differentiation through a feedback
regulation of TLX [30]. TLX further recruits histone lysine-specific demethylase 1 (LSD1),
which is a target of miR-137, and modulates proper expression of miR-137, which normally
suppresses NSC proliferation [31]. These studies suggest that miRNAs play a critical role in
ensuring proper numbers of NSCs and NPs by either directly silencing target genes, or
forming a regulatory loop with targets.

miRNAs that inhibit NSC self-renewal and enhance differentiation have also been
identified. In addition to targeting TLX, miR-9 has been shown to inhibit NP proliferation
and elevate differentiation by suppressing several genes in the fibroblast growth factor
signaling pathway such as Fgf8-1 and FgfR1 in zebrafish, and by targeting hairy1 in
Xenopus [32,33]. miR-26b has been reported to induce neuronal differentiation by
suppressing its host gene ctdsp2 in the zebrafish neural tube [34●,35]. In NSC cultures,
miR-125b has been found to inhibit NSC proliferation by repressing the neural precursor
marker Nestin [36]. miR-124 is another well-studied CNS-enriched miRNA that has been
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shown to induce differentiation of embryonic NSCs and NPs by targeting the global splicing
repressor PTBP1 and to promote nervous system-specific alternative splicing [37]. In the
adult brain, miR-124 plays a positive role in regulating neuronal differentiation of adult
NSCs in the subventricular zone (SVZ) by suppressing Sox9 expression [38,39].

As studies that examine the function of miRNAs in NSC/NP proliferation and differentiation
are accumulating, it is becoming clear that most miRNAs can be characterized into two
groups based on their general roles: they promote either proliferation such as the miR-17-92
cluster, or differentiation such as miR-9 and miR-124 (Figure 1). However, the diversity and
complexity of individual miRNAs in cell fate determination appear to rely on different
species, specific regions in the nervous system, distinct cell context, and mostly the
availability and direct physical interaction of their target genes.

Cell fate determination of neuronal subtypes by miRNAs
The complex functions of the nervous system depend on circuit formation built upon
specification and connection of distinct neuronal subtypes. miRNAs have also been shown
to play important roles in specifying neuronal subtypes. A profiling study has shown
specific expression of miRNAs in glutamatergic and GABAergic neurons, and subtypes of
GABAergic neurons [40●]. Due to their role in dopamine production, dopaminergic
neurons (DNs) are essential for normal cognitive functions and voluntary movement. A
negative feedback loop between paired-like homeodomain TF Pitx3 and miR-133b has been
identified in the midbrain during DN differentiation and maturation: Pitx3 induces the
expression of miR-133b, which also represses Pitx3 expression and suppresses DN
maturation and function [41]. miR-132 has been shown to be highly expressed in tyrosine
hydroxylase (TH)-positive DNs and to inhibit DN differentiation from ESCs by targeting
Nurr1, one of the key TFs in DN differentiation [42]. miR-7a has been found to suppress
DN differentiation by targeting Pax6 in the SVZ of postnatal mouse brains [43].

Genetic deletion of miR-9-2 and miR-9-3 results in malformation of the cerebral cortex in
mice, suggesting that miR-9 plays a role in regulating projection neuron development [44●].
Members of the miR-200 family have been shown to be critical for neurogenesis of
olfactory neurons by targeting Foxg1, Zfhx1 and Lfng [45]. In the spinal cord, miR-17-3p is
required for patterning of motor neuron progenitors by targeting Olig2 [46]. miR-9 has been
shown to modify spinal motor neuron subtype specification by balancing FoxP1 expression
levels [47,48]. Because a miRNA can have multiple targets, neuronal subtype specification
is likely achieved through cell type-specific miRNA expression and a balanced outcome of
overall target gene expression, which eventually favors generation of a specific cell type.

miRNAs and gliogenesis
Many miRNAs are also involved in gliogenesis, including astrogliogenesis and
oligodendrocyte differentiation. An in vitro study has shown that miR-125b positively
regulates astrogliogenesis and promotes astrocyte proliferation [49]. Deletion of Dicer in the
oligodendrocyte linage causes impaired oligodendrocyte differentiation, which can be
partially rescued by ectopic expression of oligodendrocyte lineage-specific miR-219 [50].
miR-219 and miR-338 promote oligodendrocyte differentiation by suppressing PDGFRα,
Sox6, FoxJ3, ZFP238 and Hes5 [50,51]. Moreover, studies have shown that miR-19b in the
miR-17-92 cluster promotes oligodendrocyte precursor proliferation by regulating Akt
signaling, and miR-7 enhances the generation of oligodendrocyte lineage cells by targeting
proneuronal differentiation factors such as Pax6 and NeuroD4 [52,53]. Furthermore, miR-23
has been shown to suppress Lamin B1 expression and promote oligodendrocyte
differentiation [54]. Compared to studies of miRNAs in neuronal specification, reports of
miRNAs in glial development are still sparse (Table 1). Whether miRNAs are directly
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involved in the cell fate switch between neurons and glia is unclear. Identifying more glial-
specific miRNAs will further advance our understanding of glial cell fate determination
[55].

miRNAs promote the neuronal fate from ESCs, iPSCs and fibroblasts
Because of the therapeutic potential, induction of different types of neuronal cells from
ESCs, iPSCs and fibroblasts has become a hot topic. Excitingly, miRNAs have been found
to play roles in the reprogramming process. A miRNA profiling study has shown that miR-9
and miR-124a are highly expressed in ESC-derived culture during neuronal differentiation,
which is consistent with their roles in promoting differentiation of NSCs and NPs [56],
although one study has shown that miR-9 elevates proliferation of NPs that are derived from
human ESCs [57]. Let-7 and miR-125 have been found to be strongly induced during
neuronal differentiation from ESCs [29,58]. Further investigation has shown that miR-125
promotes neural conversion of human ESCs into SOX1-positive NPs by repressing SMAD4,
suggesting that miR-125 is involved in the Bone Morphogenetic Protein (BMP)-mediated
classic signaling transduction of neural lineage commitment from ESCs [59]. A study that
analyzes 13 human ESC lines and 26 human iPSC lines has found that an increased
miR-371-3 expression level favors the neurogenic differentiation propensity of human ESC
and iPSC lines [60●].

Together with other TFs, some neural-specific miRNAs have been used to directly induce
reprogramming of fibroblasts into neuronal lineages. miR-9/9* and miR-124, along with
three neurogenic TFs NeuroD2, Ascl1 and Mytl1, have been shown to efficiently convert
human fibroblasts into functional neurons [61●]. Another investigation has shown that
miR-124, together with two TFs MYT1L and BRN2, is able to reprogram postnatal and
adult human fibroblasts into functional neurons [62●]. These studies suggest that although
miRNAs alone are not sufficient for neuronal reprogramming of ESCs, iPSCs and
fibroblasts, neural-enriched miRNAs elevate the efficiency of reprogramming.

miRNAs specify neuronal left-right asymmetry
The nervous system is mostly bilaterally symmetric at the anatomical level, but also displays
morphological and functional left-right asymmetry to some extent. miRNAs have been
shown to play a role in neuronal left-right asymmetry in the nervous system of C. elegans.
lsy-6 was the first identified miRNA that controls the left-right asymmetry of ASE left
(ASEL) and ASE right (ASER) gustatory neurons by targeting cog-1, a negative regulator of
ASEL neuronal cell fate [63]. Further investigation has shown that a C2H2 zinc finger TF
lsy-2 regulates ASEL/R asymmetry by modulating transcription of lsy-6 in ASEL neurons
[64]. Another zinc-finger TF die-1 has been shown to activate the expression of lsy-6 only in
ASEL, but not in ASER. miR-273, an ASER-specific miRNA, has been found to repress
die-1 expression to determine ASEL/R asymmetry [65]. Furthermore, miR-71 has been
observed to play a role in regulating left/right identification of Amphid Wing Cell C (AWC)
olfactory neurons by repressing TIR-1/SARM1 adaptor proteins in the calcium signaling
pathway [66]. A most recent study has further identified a mechanism by which the lsy-6
locus is primed in the precursor for the left neuron by chromatin decompaction [67●].
However, the role of miRNAs in asymmetric neuronal organization in the vertebrate nervous
system is still unknown.

Conclusions
It is becoming evident that cell fate determination of neurons and glia is tightly controlled by
both protein coding genes and noncoding miRNAs. Because one miRNA has multiple target
genes, cell fate specification by miRNAs is likely an overall outcome of balanced protein
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outputs, even though one or a few targets are probably major players. miRNA-mediated
gene expression regulation shares similarities with that of TFs, which normally have binding
motifs on promoters of multiple genes, including miRNAs, even though TFs act as both
activators and repressors, while miRNAs largely negatively control target gene expression.
For example, genome-wide quantification has revealed a range of genes that are directly or
indirectly regulated by TFs such as Pax6 and Tbr1 in the mouse cortex [68–70]. Similarly,
perturbing miRNA expression also affects many target genes, including TFs, in neurons
[71–73].

Therefore, miRNAs, in parallel with TFs, form networks with target genes in gene
expression regulation. Using genome-wide approaches in combination with functional
analyses should advance mechanistic knowledge of miRNA actions in cell fate
determination. Moreover, identifying more tissue- and cell type-specific miRNAs and
uncovering how their expression is regulated by TFs will further accelerate research in
miRNA-mediated cell fate determination.
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Highlights

miRNAs are small noncoding RNAs that normally silence target gene expression.

Many miRNAs have enriched expression in the central nervous system.

miRNAs are required for proliferation and differentiation of neural stem cells.

Neuronal subtypes are specified by miRNAs by suppressing specific target genes.

Networks of miRNA-target are critical in cell fate determination of neurons and glia.
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Figure 1.
A scheme of the roles of miRNAs in cell fate determination. miRNAs that regulate neural
stem cell (NSC) self-renewal and proliferation, neuronal differentiation, astrogliogensis, and
oligodendrocyte differentiation are listed.
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