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Abstract
Introduction—Heart-rate variability reflects autonomic nervous system tone as well as the
overall health of the baroreflex system. We hypothesized that loss of complexity in heart-rate
variability upon ICU admission would be associated with unsuccessful early resuscitation of
sepsis.
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Methods—We prospectively enrolled patients admitted to ICUs with severe sepsis or septic
shock from 2009 to 2011. We studied 30 minutes of EKG, sampled at 500 Hz, at ICU admission
and calculated heart-rate complexity via detrended fluctuation analysis. Primary outcome was
vasopressor independence at 24 hours after ICU admission. Secondary outcome was 28-day
mortality.

Results—We studied 48 patients, of whom 60% were vasopressor independent at 24 hours. Five
(10%) died within 28 days. The ratio of fractal alpha parameters was associated with both
vasopressor independence and 28-day mortality (p=0.04) after controlling for mean heart rate. In
the optimal model, SOFA score and the long-term fractal alpha parameter were associated with
vasopressor independence.

Conclusions—Loss of complexity in heart rate variability is associated with worse outcome
early in severe sepsis and septic shock. Further work should evaluate whether complexity of heart
rate variability (HRV) could guide treatment in sepsis.

Keywords
Sepsis; Shock; Physiological Variability; Heart Rate Variability

Introduction
Severe sepsis and septic shock, the life-threatening manifestations of severe infection, afflict
750,000 patients annually in the USA with an associated mortality of 25–50%.1,2 While
current consensus emphasizes early intervention to control sepsis,3,4 which intermediate
endpoints and predictors are most useful for guiding interventions is not clear; nor are early
markers of severity well established. Non-invasive assessments of cardiovascular function
may be useful in this regard because cardiovascular dysfunction is common and central to
overall organ dysfunction. The sinus node of the heart integrates many inputs to determine
the interval between successive heartbeats. Heart rate variability (HRV), a measure of both
sympathovagal balance and the overall integrity/health of the baroreflex system, has been
shown to offer unique insights into severity of illness in primary cardiac disease,5–7 acute
trauma8 and sepsis.9,10 Connections between the parasympathetic nervous system and
inflammation suggest the possibility that HRV and inflammation may be interdependent.11

In addition to allowing identification of balance between the sympathetic and
parasympathetic nervous systems, HRV exhibits nonlinear patterns of complexity, including
fractal self-similarity across time scales.12,13 Fractal complexity is commonly measured via
detrended fluctuation analysis13 (DFA, depicted in detail in eFigure 1), which measures the
amount of fluctuation/variability as a function of the number of inter-beat intervals
measured. In health, the relationship between fluctuation and number of inter-beat intervals
for small numbers of inter-beat intervals (measured by a short-term fractal scaling
coefficient usually called α1) is similar to the relationship between fluctuation and number
of inter-beat intervals for large numbers of inter-beat intervals (measured by a long-term
fractal scaling coefficient usually called α2). The ratio of the short-term scaling coefficient
α1 and the long-term scaling coefficient α2 approaches 1 in health but is commonly less than
1 in disease. Whether the fractal scaling coefficients or their ratio measured early in severe
sepsis or septic shock is related to outcome is not yet known.

Observations about complexity are not only theoretical: Moorman and colleagues have
demonstrated in a randomized trial that monitoring the complexity of HRV (primarily via
entropy, a measure of complexity derived from information theory) improved outcomes
among premature infants at risk for sepsis in a neonatal ICU.14,15 We hypothesized that
measures of HRV, with an emphasis on the fractal scaling coefficients from DFA, obtained
within the first 6 hours of ICU admission among patients with severe sepsis and septic shock
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would predict liberation from vasopressor medications 24 hours after ICU admission, which
we defined a priori as a clinically meaningful measure of successful early resuscitation.

The Intermountain Institutional Review Board approved this study; we obtained written,
informed consent from all patients or legally authorized representatives. We have reported
early results from this work in abstract form.16

Materials and Methods
Setting

Two intensive-care units, the 24-bed Shock Trauma ICU, and the 12-bed Respiratory ICU,
at Intermountain Medical Center, a 452-bed tertiary-care, academic hospital in Murray,
Utah, USA.

Patients
We prospectively identified adult (> 15 years of age) patients with severe sepsis or septic
shock (as defined in consensus guidelines17) admitted to study ICUs from September 2009
to May 2011. We excluded pregnant patients, patients with admission DNR/DNI orders, and
patients with non-sinus rhythm. We only included patients the first time they were admitted
to a study ICU with sepsis during the study period. Patients were only included at the time
of their initial admission to the ICU; we excluded patients who developed sepsis after their
admission to the ICU.

Clinical Data
We calculated admission APACHE II18 and SOFA19 scores in all study patients. Infusion
rates of vasopressors (norepinephrine, epinephrine, dopamine, phenylephrine, and
vasopressin) are automatically uploaded in real-time to the hospital Electronic Medical
Record (EMR) as part of routine clinical care. We analyzed all vasopressors administered
during the first six hours after ICU admission, converting them to norepinephrine equivalent
dosages according to standard equivalencies.20 We also noted symptomatic congestive heart
failure at admission or left ventricular ejection fraction < 45% (when clinical
echocardiogram was obtained).

Physiological Data Acquisition and Processing
We sampled EKG (lead II) from bedside Philips Intellivue monitors using the
synchronization slave port, and digitized, at 500 Hz, that analog signal using a National
Instruments (Austin, Texas) DAQ™ device and custom-written software within the
LabView™ development environment. We identified the peak of the R wave using custom-
written software within the LabView™ development environment. We identified (and
excluded) ectopic and post-ectopic beats as well as uninterpretable segments of EKG signal
(generally related to patient motion or displacement of electrodes) using the same custom-
written software. We thereby generated tachograms—time series of RR intervals in
milliseconds—for each patient for six hours.

Using standard algorithms implemented within the LabView™ development environment,
we calculated metrics from the time-, frequency-, and complexity- domains of tachograms
across the first six hours after ICU admission (the relevant equations are presented in the
Appendix; the DFA technique is also depicted in eFigure 1). Because we were interested in
early prediction, we calculated measures from the first 30 minutes of EKG recording for our
calculations.
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Clinical Outcomes
We chose as our primary outcome vasopressor independence at 24 hours after ICU
admission, an a priori clinical outcome we felt represented successful early resuscitation of
sepsis.21 To meet criteria for vasopressor independence at 24 hours, a patient had to be alive
and liberated from vasopressor therapy from 24 through 48 hours after ICU admission.
Secondary outcomes included all-cause 28-day mortality, vasopressor-free days and ICU-
free days, all measured at 28 days after ICU admission. We determined all-cause 28-day
mortality from the Intermountain Death Record, which incorporates data from Utah state
vital statistics.

Statistical Methods
HRV metrics (mean, number and proportion of consecutive beats separated by more than
50msec, sample entropy, Poincare plot standard deviations, fractal exponents from
detrended fluctuation analysis, power spectral density measurements including total power
and power across the high-, low- and very low-frequency bands; predictors described in the
Appendix) were incorporated as predictors alongside APACHE II and SOFA scores, age,
sex, exposure to vasopressors, presence of shock into a multivariate naïve Bayesian
classification model22 of primary (vasopressor independence at 24 hours) and secondary
(28-day mortality) study outcomes. (We selected naïve Bayesian classification over logistic
regression given the relatively small number of deaths in our study cohort and prior
experience with the technique.) We employed a forward selection process to select the
predictors which improved the out-of-bag area under the receiver operating characteristic
curve (AUC) of the classification.23,24 The technique assesses two and three-way interaction
terms and protects against collinearity. Final model discriminatory performance was
assessed using the out-of-bag AUC over 2,000 bootstrap samples. This resulted in two
separate models of outcome, one for the primary outcome of vasopressor independence at 24
hours, the other for the secondary outcome of 28-day mortality. For each model, predictors
were selected on the basis of whether a given predictor improved the AUC of the given
model. We display the association between significant predictors and the primary outcomes
using effect plots, which describe the associations in greater detail than simple parameter
estimates/odds ratios.25 Statistical analysis and hypothesis testing was performed within the
R statistical package (version 2.12).26

Results
We enrolled 48 patients who met inclusion criteria. Figure 1 depicts the flow of patients
through screening and analysis. Table 1 depicts patient demographics, measures of disease
severity, and sources of sepsis. The majority of patients (60%) were vasopressor
independent by 24 hours; five (10%) patients died. Forty-two (88%) patients were admitted
to the ICU from an Emergency Department; the other six patients were admitted from the
hospital ward. Thirty (63%) of patients had shock requiring vasopressors at time of
enrollment. Table 2 depicts the baseline measures of HRV, divided into time domain,
frequency domain, and complexity domain measures.

Primary Outcome
On bivariate logistic regression, the ratio of short-term to long-term fractal scaling
coefficients (α1/α2) was associated (p = 0.05) with vasopressor independence at 24 hours,
after controlling for mean heart rate.

The multivariate naïve Bayesian model of vasopressor independence that optimized the
AUC incorporated admission SOFA score and the long-term fractal exponent (α2). The
resulting out-of-bag AUC (95% CI) for the model was 0.86 (0.68–0.99). Figure 2 displays
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effect plots of predictors that were significantly associated with vasopressor independence at
24 hours. Admission SOFA score and ratio of short-term and long-term fractal scaling (α1/
α2) coefficients displayed moderate correlation (adjusted R2 = 0.17, p = 0.002; Spearman
correlation coefficient −0.4). Other metrics of HRV complexity, including Sample Entropy
and the standard deviations of the Poincare plot, were not associated with either the primary
or secondary outcome.

Secondary Outcomes
On bivariate logistic regression, the ratio of short-term to long-term fractal scaling
coefficients (α1/α2) was associated (p = 0.04) with 28-day mortality, after controlling for
mean heart rate. The multivariate naïve Bayesian model of 28-day mortality that optimized
the AUC incorporated only admission APACHE II score. The resulting out-of-bag AUC
(95% CI) for the model of 28-day mortality was 0.97 (0.88–1.00). Admission APACHE II
score and ratio of short-term and long-term fractal scaling (α1/α2) coefficients displayed
moderate correlation (adjusted R2 = 0.14, p = 0.006; Spearman correlation coefficient −0.4).
Figure 3 depicts the relationships between 28-day mortality, APACHE II, and the ratio of
fractal α coefficients from DFA. All deaths occurred among patients whose ratio of short-
term and long-term fractal scaling coefficients (α1/α2) was < 0.75 and whose admission
APACHE II was > 35. (Within our study cohort, no patients died between 28 days and 60
days; mortality outcomes are thus identical for 28-day and 60-day mortality.)

Short-term and long-term fractal scaling coefficients correlated modestly with normalized
power spectra for low (α1) and very low (α2) frequency (adjusted R2 = 0.21 for each
comparison). eFigure 2 depicts the association between the ratio of LFν/VLFν and the ratio
of α1/α2 (slope=0.5, adjusted R2= 0.42, p < 0.01). The LFν/VLFν ratio was not significantly
associated with either the primary (p=0.2) or the secondary (p=0.07) outcome.

Discussion
Substantial research on the autonomic nervous system, including especially its baroreflex
control system, has suggested that increased complexity in HRV denotes relative health,
while a loss of complexity is associated with pathologic states or poor prognosis.27–31 Our
prospective study of 48 ICU-admitted patients with early severe sepsis and septic shock
confirms this finding, while observing that much of this effect is collinear with overall
disease severity and multiple organ dysfunction, as assessed by the SOFA (associated with
vasopressor independence) or APACHE II (associated with 28-day mortality) scores.

Other studies have suggested that loss of complexity or changes in sympathovagal balance
in HRV heralds the onset of sepsis in at-risk populations32,33 predicts development of shock
and/or organ dysfunction among patients with initial severe sepsis,10,30,34 or identifies
differential rates of stress during sedation interruption.35 Our study suggests that loss of
fractal complexity, as assessed by the scaling coefficients (“fractal exponents”) from
detrended fluctuation analysis, is associated with the success of early resuscitation in early
severe sepsis and septic shock. Our endpoint, while intermediate, was defined a priori and
represents a reasonable clinical definition of early successful resuscitation of sepsis.

Loss of complexity in HRV likely derives from multiple sources, including reduction in
variance in variables with high mean values, intrinsic pacemaker dysfunction especially
related to the “funny current”36, disordered regulation of respiration, autonomic nervous
system dysfunction and parasympathetic coupling to immune function.37 Which of those
mechanisms might be amenable to therapeutic intervention is a matter for future research.
Although it may be early on the basis of animal data alone, some authors have begun to
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suggest equipoise for study of the administration of, e.g., beta blockers38 in early sepsis or
perhaps manipulation of the cholinergic anti-inflammatory pathway.11

This study does not allow us to decide whether the loss of complexity of HRV is causal or
epiphenomenal: is the loss of complexity of HRV merely something that happens to people
with severe general organ dysfunction, or is it a cause of worse organ dysfunction? Larger
cohorts and, ultimately, therapeutic trials, will be required to answer that question
definitively. While we studied patients early in their ICU stay, we were unable to
demonstrate whether HRV patterns were related to the phase in the natural history of sepsis
at which the patients were admitted to the ICU. Patients presenting very late in the course of
their sepsis to the hospital may have different HRV patterns than those patients who present
early in the course of their sepsis.

Current therapies for severe sepsis and septic shock (other than control of the inciting
infection) are limited to volume expansion and administration of intravenous
catecholamines. Noninvasive assessment of the balance of the cardiovascular system may be
relevant to improving the clinical use of these therapies early in the treatment of sepsis.
Patients with a particular profile of HRV may benefit from particular vasoactive agents or
particular combinations of such agents. This question should be evaluated in further studies.
Further studies should also investigate the stability over time and optimal window size for
measurements of HRV commplexity in clinical cohorts.

In elegant analytical work corroborated by experiments in healthy volunteers, Francis and
colleagues demonstrated that the short- and long-term scaling coefficients of detrended
fluctuation analysis represent, respectively, the normalized low frequency power (LFν) and
very low frequency power (VLFν) in the power spectrum of HRV.39 Our cohort partially
corroborates these findings. Unfortunately, measures from the power spectrum were less
predictive of clinical outcome than the ratio of fractal exponents despite the moderate
correlation. Power spectral density measurements assume stationarity in the underlying time
series (i.e., the mean heart rate does not change significantly), while detrended fluctuation
analysis does not require stationarity. We suspect that the lack of stationarity, related to
changes in the average heart rate in our critically ill patients, accounts for the difference
between our results and theirs. Our inclusion of older patients may also affect the association
between power spectral density measurements and clinical outcome. It is not clear why
Sample Entropy and standard deviations on the Poincare plot were less associated with
outcome than the scaling coefficients of detrended fluctuation analysis. These methods do
measure slightly different elements of HRV complexity. Future research should clarify
which elements of which metrics of HRV complexity are most relevant in specific clinical
circumstances.

We acknowledge that we studied patients at different phases of their severe sepsis or septic
shock, a persistent problem with clinical studies of sepsis. While we focused on the very
early phase of ICU admission, patients present to medical care at various phases of
infection. While this reality complicates most clinical research in acute sepsis, we chose this
population because they are a clinically important population and our research questions
relate to best management of patients early in their ICU stay.

In summary, in a prospective cohort of 48 patients with severe sepsis or septic shock, the
long-term fractal exponent (α2), a standard measure of complexity in HRV was associated
with successful early resuscitation, even after control for covariates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

APACHE II Acute Physiology and Chronic Health Evaluation II

AUC Area Under the Curve

CI Confidence Interval

EMR Electronic Medical Record

HF High Frequency
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LF Low Frequency

SOFA Sequential Organ Failure Assessment
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Figure 1.
Summary of Study Enrollment
Flow diagram depicting how the 48 patients included in the study were identified.
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Figure 2.
Effect Plots for Predictors of Vasopressor Independence at 24 hours
Effect plots specifying the association, with other predictors held constant, of a given
predictor from the multivariate regression model of vasopressor independence at 24 hours.
Dotted lines represent 95% confidence intervals for the association.
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Figure 3.
α1: α2 Ratio vs. APACHE II Score
Ratio of fractal exponents as compared to the admission APACHE II score. Circles indicate
non-survivors, while diamonds depict survivors. Note the clustering of non-survivors in the
left upper quadrant, with high APACHE II and low ratio of fractal exponents.
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Table 1

Demographics, Severity and Outcome

Attribute Central Tendency and Variation*

Age (years) 57 (40–63)

Female sex (%) 54

Admission APACHE II (points) 18.5 (14.8–29.2)

Day 1 SOFA (points) 9 (6–11)

Day 2 SOFA (points) 4 (3–10)

Day 3 SOFA (points) 3 (2–7)

Vasopressors at ICU admission (%) 63

Vasopressor independent at 24 hours (%) 60

28-day Mortality (%) 10

Vasopressor-free days at 28 days 27 (25–28)

Baseline symptomatic CHF (%) 6

Ejection fraction < 45% (%) 15

Sepsis source (%)

 Pneumonia (N=14) 29

 Urinary (N=11) 23

 Skin/soft tissue (N=8) 17

 Other/uncertain (N=7) 15

 Abdominal (N=4) 8

 Bacteremia (N=4) 8

*
Mean (standard deviation) or median (inter-quartile range), depending on normality of the data
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Table 2

Measures of RR interval time series, first 30 minutes

Attribute Central Tendency Spread*

Time Domain Measures

Mean RR (msec) 633.7 121.5

Variance 155 69–523

Coefficient of Variation 0.26 0.1–0.7

NN50 2.0 0–22

PNN50 0.09 0–0.7

RMSSD 8.0 4.0–15.5

Frequency Domain Measures**

 Auto-regressive

High-frequency power 0.37 0.2–0.5

Low-frequency power 0.63 0.5–0.8

Ratio of Low- to High- frequency power 1.74 1.1–5.6

Complexity Domain Measures

Poincare standard deviation 1 5.7 2.8–10.9

Poincare standard deviation 2 24.23 18.2–38.8

Sample Entropy 0.82 0.4

DFA short-term coefficient 0.98 0.4

DFA long-term coefficient 1.10 0.3

Ratio of DFA coefficients 0.87 0.6–1.2

*
Inter-quartile range for non-normal data; standard deviation for normal data.

**
All values are normalized.

NN50: number of RR intervals that differ from the preceding by at least 50msec; PNN50: proportion of RR intervals that differ from the preceding
by at least 50msec; RMSSD: Root mean square difference of successive RR intervals; DFA: Detrended Fluctuation Analysis.
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