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Abstract
To understand the drivers and consequences of malaria in epidemic-prone regions, it is important
to know whether epidemics emerge independently in different areas as a consequence of local
contingencies, or whether they are synchronized across larger regions as a result of climatic
fluctuations and other broad-scale drivers. To address this question, we collected historical malaria
surveillance data for the Amhara region of Ethiopia and analyzed them to assess the consistency of
various indicators of malaria risk and determine the dominant spatial and temporal patterns of
malaria within the region. We collected data from a total of 49 districts over years from 1999–
2010. Data availability was higher for more recent years and more data was available for
clinically-diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of
outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with
malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria
was spatially clustered, and these cluster locations were generally consistent from year to year.
Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the
hypothesis that regional climatic variability is an important driver of epidemics. Our results
suggest that decomposing malaria risk into separate spatial and temporal components may be an
effective strategy for modeling and forecasting malaria risk across large areas. They also
emphasize both the value and limitations of working with historical surveillance datasets and
highlight the importance of enhancing existing surveillance efforts.

Introduction
Malaria is one of the most common infectious diseases in the world and a major public
health problem throughout sub-Saharan Africa. Within this region, malaria epidemics occur
most frequently in highland and semi-arid zones and are often associated with interannual
fluctuations in rainfall and temperature (Abeku, 2007). These epidemics can be particularly
devastating because they occur in areas where large portions of the population lack
immunity to malaria. Better information about the timing and locations of malaria epidemics
would allow for more accurate targeting of resources for malaria prevention, control, and
treatment. Therefore, there is general agreement about the importance of malaria
surveillance for early detection of epidemics and the potential value of malaria early-
warning systems based on environmental monitoring and seasonal climate forecasting
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(DaSilva et al., 2004). To develop effective early-detection and early-warning systems, it is
essential to first understand the underlying pattern and scale of malaria occurrence in both
time and space. In particular, it is important to know whether epidemics emerge
independently in different areas as a consequence of local contingencies, or whether they are
synchronized across larger regions as a result of climatic fluctuations and other broad-scale
drivers.

As with other diseases, malaria is spatially autocorrelated over a range of scales from local
to global (Ernst et al., 2006, Brooker et al., 2004, Hay et al., 2009). The geographic
distribution of malaria is strongly influenced by climate, and is restricted to areas where
there is enough rainfall to create mosquito breeding habitats, sufficient humidity for high
activity and survival of vector mosquitoes, and high temperatures that support rapid
gonotropic and sporogonic cycles (Stresman, 2010). In mountainous regions, there is
typically an elevation limit above which stable malaria transmission is limited by low
temperatures (Abeku et al., 2003). Malaria epidemics occur in areas of unstable
transmission, which are often located in marginal climates where environmental conditions
conducive to high rates of malaria transmission do not occur every year and human
populations have low immunity. At more localized scales, topography and land cover
influence the pooling of water to form breeding sites and the microenvironments in which
mosquito larvae develop (Cohen et al., 2008, Munga et al., 2009). Other human impacts,
such as dam construction and irrigation management, also affect local hydrology,
development of mosquito breeding sites, and the resulting spatial patterns of malaria risk
(Lautze et al., 2007).

Malaria often exhibits strong seasonality, reflecting seasonal patterns of precipitation,
temperature, and land use (Mabaso et al., 2007). In the highlands of East Africa, seasonal
peaks in malaria cases generally follow the major periods of monsoon rainfall. Interannual
variability in malaria incidence arises as result of endogenous dynamics of susceptible,
infected, and immune individuals as well as climatic variability (Alonso et al., 2011, Laneri
et al., 2010). Numerous studies have shown that malaria case numbers exhibit lagged
responses to patterns of temperature and precipitation, although the strength of these
relationships, the relative importance of different weather variables, and the time lag of the
climatic effects all vary with geographic locale (Zhou et al., 2004, Olson et al., 2009,
Teklehaimanot et al., 2004). In general, it is expected that precipitation will be the major
environmental driver of malaria outbreaks in semi-arid regions; whereas, the effects of
temperature are greater in cooler highland areas (Abeku, 2007). There is considerable
anecdotal information suggesting that large malaria epidemics in the Ethiopian highlands
tend to be synchronized across broad regions, with climatic variability often implicated as a
putative driver (Abeku et al., 2003, Fontaine et al., 1961). However, lack of historical data
has limited our ability to quantify spatio-temporal patterns of malaria risk and identify the
scales of spatial synchrony.

Epidemic malaria is a major public health issue in the Amhara region of Ethiopia, which
covers nearly 16 million hectares and has a population of more than 17 million. Previous
research in this region has included cross-sectional surveys of malaria prevalence and
assessments of the effectiveness of large-scale malaria prevention campaigns (Graves et al.,
2009, Jima et al., 2010, Otten et al., 2009, Baume et al., 2009). Other studies have examined
the influences of temperature and precipitation on temporal patterns of malaria cases at
selected sites within the region (Abeku et al., 2004, Teklehaimanot et al., 2004). Although
the presence of geographic, seasonal, and interannual variability in malaria risk is widely
recognized, to date there have been no spatially extensive, long-term data available to
facilitate regional analysis of these spatial and temporal patterns. To remedy this knowledge
gap, we collected and analyzed historical malaria surveillance data for the Amhara region of
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Ethiopia. Our specific objectives were to (1) assess the consistency of various indicators of
temporal variability in malaria risk, (2) test for the presence of spatial and seasonal patterns
of malaria cases, and (3) determine whether there is spatial synchrony in the interannual
variability of malaria cases.

Methods
Study Area

The Amhara region encompasses 157,000 km2 with elevations ranging from 506 m at the
bottom of the Blue Nile Gorge to 4533 m at Ras Dashen, the highest mountain in Ethiopia.
The region is characterized by a monsoon climate, with a dry season extending from
December through March, and a rainy season that begins in April with rainfall increasing to
a peak from June through August. Temperature generally follows an inverse relationship. In
Bahir Dar, the largest city in the region, mean daily temperatures range from 32.5 C at the
end of the dry season to 14.6 C at the peak of the rainy season. The region is densely
populated by more than 17 million inhabitants, and approximately 87.4% of the population
lives in rural areas and practices subsistence agriculture. As a result, the landscape is heavily
deforested and is dominated by croplands and pasture across most of the region.

Data Collection
Historical malaria surveillance data were collected from multiple woreda (district) health
offices and the Federal Ministry of Health, Public Health Emergency Management office by
the Health, Development, and Anti-Malaria Association, an Ethiopian NGO. In consultation
with the Amhara Regional Health Bureau, sixty epidemic-prone districts were initially
selected to encompass the ranges of environmental and sociocultural variability. Of these
districts, fifty-six were actually visited because of logistical constraints. Forty-nine districts,
encompassing 41% of the total area of the Amara region, were able to provide at least some
historical data.

Most of the data that were collected were obtained from the Integrated Disease Surveillance
and Response (IDSR) summary forms that are routinely used for surveillance of malaria and
other infectious diseases in the Amhara region. All data were in the form of aggregated
monthly, district-level statistics and did not include any information that could be used to
identify individual patients. Hard copies of these surveillance forms were digitized and
combined with other digital datasets into a unified database. The specific variables that were
collected included (1) total outpatient visits, which was the number of outpatients attending
the clinic for any reason, including malaria, (2) outpatient malaria cases, which was the total
number of suspected malaria cases based on clinical diagnosis, and (3) total numbers of
tested and of confirmed malaria cases. Confirmed cases were diagnosed via microscopy or
multi-species rapid diagnostic test (RDT) and were aggregated by malaria species
(Plasmodium falciparum, Plasmodium vivax, and mixed infection).

Data Analysis
To assess the concordance of temporal patterns of clinically-diagnosed outpatient malaria
cases with other indicators of malaria risk, we analyzed a subset of eight districts that had a
complete monthly record of outpatient malaria cases for at least eight years along with
records of total outpatient visits and confirmed cases for the majority of these years. We
computed Spearman’s rank correlation coefficients for each of these districts to quantify the
associations of monthly outpatient malaria cases with (1) the proportion of outpatients with
malaria, computed as the number of outpatient malaria cases divided by the total outpatient
visits, (2) confirmed malaria cases, and (3) the proportions of confirmed cases that were
identified as Plasmodium falciparum.
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To analyze temporal patterns of malaria risk, we used a subset of 12 districts that had
complete monthly outpatient malaria case data for 2001–2009. Mixed-effects models were
used to estimate variance components for district, year, and month. The natural logarithm of
outpatient malaria cases was the dependent variable, and district, year, and month were all
modeled as random effects. Likelihood ratio tests were used to detect statistically significant
seasonal (month) and interannual (year) effects in the dataset. Random effects and 95%
confidence intervals were plotted to determine which years and months exhibited the largest
deviations from the global mean.

Mapping and spatial analysis were carried out by computing the proportion of outpatients
with malaria for the main epidemic season (September-December) for all district/year
combinations that had available data on both outpatient malaria cases and total outpatient
visits. The proportion of outpatients with malaria was used to adjust for spatial variability in
total outpatient visits across different districts. The Moran’s I statistic was computed for
every year from 2001–2009 to quantify spatial autocorrelation using a spatial weights matrix
based on inverse distances. Statistical testing was carried out using a permutation test with
9999 replications.

Spatial synchrony of malaria cases was analyzed using outpatient malaria cases for
September-December for all district/year combinations that had available data. We used a
spline correlogram to quantify spatially lagged correlations between log-transformed time
series of outpatient malaria cases over a range of spatial scales (Bjornstad and Falck, 2001,
Bjornstad et al., 1999). High positive values of this correlation statistic indicate that districts
separated by a given distance exhibit synchronous patterns of interannual variability;
whereas, values close to zero indicate that temporal variability is independent. The spline
correlogram avoids the limitation of arbitrarily chosen distance classes by modeling
temporal correlation as a non-parametric function of distance in space. We used 9999
bootstrap resamples to generate 95% confidence intervals for the covariance function. All
districts and years with outpatient case data were used to fit the nonparametric correlation
function, and missing data was handled via pairwise deletion of missing values for each pair
of time series.

All analyses were carried out in the R statistical analysis environment (R Development Core
Team, 2011). The lme4 library (Bates et al., 2011) was used for random effects modeling,
the spdep (Bivand, 2012) library was used for spatial autocorrelation analysis, and the ncf
library (Bjornstad, 2009) was used to generate the spline correlogram.

Results
Historical malaria surveillance data were collected from a total of 49 districts within the
Amhara region for years between 1999 and 2010. Data availability generally increased over
this period. The percent of districts with outpatient malaria case data increased from 29% in
1999 to 98% in 2009. The percent of districts with data on total outpatient visits was slightly
lower, increasing from 22% in 1999 to 84% in 2009. Data availability was lowest for
confirmed malaria cases, which were obtained for only 14% of the districts in 1999
increasing to 59% in 2009. Within a given year, many districts also had missing data for one
or more months. The percent of months with missing data ranged from 16% for outpatient
malaria cases to 35% for total outpatient visits to 52% for confirmed malaria cases. Overall,
there were 20 districts that contained eight or more years of complete data on malaria
outpatient cases, compared to only 13 districts with comparable data on total outpatient
visits and 8 districts with comparable data on confirmed malaria cases.

Wimberly et al. Page 4

Trop Med Int Health. Author manuscript; available in PMC 2013 November 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



There were strong and statistically significant positive correlations between monthly
outpatient malaria cases and proportions of outpatients with malaria (0.72–0.91) in all eight
of the districts examined (Table 2). Correlations between monthly outpatient cases and slide-
confirmed cases were also statistically significant for all eight districts. These correlations
were relatively strong for four districts (0.70 – 0.84), and low-to-moderate for the other four
districts (0.32 – 0.58). There were relatively weak but statistically significant positive
correlations between monthly outpatient malaria cases and the proportion of P. falciparum
confirmed cases for five of the eight districts examined.

The variance components analysis revealed statistically significant seasonal (X2 = 139.0, df
= 1, p < 0.0001) and interannual (X2 = 257.7, df = 1, p < 0.0001) variability in the twelve
districts that were examined. October was the month with the largest positive random effect,
followed by November, September, and December. The random effects for October,
November, and September were all greater than 0 at a 95% confidence interval (Figure 2).
The years with the largest positive random effects were 2003, 2004, and 2005 and these
values were all greater than 0 at a 95% confidence interval. These interannual patterns were
also apparent in the line graphs of total outpatient malaria cases during the September-
December peak season plotted for individual districts (Figure 3). Most of the districts
exhibited a peak in 2002 or 2003, but the subsequent temporal patterns were more variable
across the different districts. Many of the districts also showed an increase in outpatient
malaria cases after 2008.

There was statistically significant positive spatial autocorrelation of the proportion of
outpatients with malaria in all years except 2001 and 2006 (Table 3). Maps showed that, in
most years, there were clusters of districts with high values in the low elevation areas around
Lake Tana (e.g., Libokemkem, Mecha, and South Achefer) and along the eastern edge of the
Amhara region (e.g., Artuma Fursi, Bati, and Dawa Chefa) (Figure 4). In contrast, districts
with lower proportions of outpatients with malaria were concentrated in the center of the
region and along the southern edge. The spline correlogram indicated statistically significant
spatial synchrony in outpatient malaria cases at distances from approximately 25 km to 300
km (Figure 5). The correlation coefficient was highest from 25 km and 75 km and decreased
slightly at longer distances. Confidence intervals overlapping zero at distances from 0 to 25
km reflected the threshold minimum distance between the centroids of adjacent districts.

Discussion
Data availability and data quality are two major limiting factors in long-term analyses of
malaria risk. As in many other parts of Africa, counts of clinically diagnosed malaria cases
were the most widely available indicator of historical malaria risk in the Amhara region. The
proportion of outpatients with malaria is recommended as an indicator of malaria epidemics
because it corrects for temporal variability in attendance at health facilities (Guintran et al.,
2006), but data on total outpatient visits were only available for a subset of the districts that
had outpatient malaria case counts. However, our analyses found strong correlations
between counts and proportions of outpatient malaria cases in the eight districts we
examined, indicating that the counts of outpatient malaria cases captured the temporal
variability of the outpatient malaria burden on the health system within a given district.

Data on confirmed malaria cases are preferred as indicators of malaria risk because the
specificity of clinical diagnosis is limited by the overlap between symptoms of malaria and
those of other tropical diseases (Wongsrichanalai et al., 2007). However, in the Amhara
region, routine microscopy is only conducted at health centers and hospitals and not at the
more peripheral health posts. Since 2005, multi-species RDTs have been increasingly used
at the health post level to confirm malaria diagnosis, as reflected in the increased availability
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of confirmed malaria case data over time. The effectiveness of malaria diagnosis through
either microscopy or RDTs is also influenced by fluctuating levels of parasitemia in the
individuals tested, inconsistency in the quality of microscopy, and variability in the accuracy
of RDTs (Guintran et al., 2006, O’Meara et al., 2007, Endeshaw et al., 2012). The
correlations between outpatient case counts and slide-confirmed case counts showed that the
major temporal fluctuations in these two data sources were generally concordant and
increased our confidence that malaria indicators based on clinically-diagnosed outpatient
malaria cases captured major seasonal and interannual patterns of malaria occurrence. The
correlations between outpatient case numbers and the proportion of slide-confirmed cases
that were P. falciparum further suggested that in many areas, but not all, malaria outbreaks
were driven by increases in the more severe P. falciparum malaria.

Results of the spatial autocorrelation analysis provided evidence of spatial clustering in most
years, and visualization of these patterns across multiple years suggested the presence of at
least two foci that have persisted in both epidemic and non-epidemic years. This finding is
in agreement with previous research suggesting that spatial clusters of high malaria risk tend
to remain in the same places over time (Ernst et al., 2006). Because of variability in data
availability across years, it was not possible to carry out a rigorous statistical test of the
temporal stability of these potential “hot spots”. However, future research efforts can
develop models based on spatial and temporal autocorrelation and relationships with
environmental covariates to created interpolated malaria risk surfaces covering the districts
not sampled (Gething et al., 2006, Wimberly et al., 2008).

The seasonal pattern of outpatient malaria cases supports the generally-accepted notion that
the main malaria season extends from September-December in the Amhara region, but also
emphasizes that seasonal peaks are highest in October and November. The variance
components analysis indicated a consistent pattern of higher outpatient malaria cases in
2003–2005 across the 12 districts with nine years of complete data, and lower case numbers
in 2001, 2008, and 2009 across the same 12 districts. The spline correlogram provided
further evidence of broad-scale spatial synchrony at distances up to 300 km, indicating that a
significant portion of the temporal variability in malaria risk is synchronized over large
portions of the Amhara region. The correlation coefficient remained above zero at distances
great than 300 km, suggesting that synchrony might be detectable at even larger distances if
a more extensive dataset was available.

Broad-scale spatial synchrony of malaria risk is consistent with the hypothesis that climatic
variability is a key driver of malaria epidemics in the Amhara region and other parts of East
Africa (Zhou et al., 2004). There is considerable spatial variability in climate across this
region that arises from the interaction of heterogeneous topography with multiple major air
streams and convergence zones. However, interannual deviations from these climatic
normals are correlated across much larger areas, reflecting atmospheric teleconnections with
large-scale climate modes (Nicholson, 1996). In Ethiopia, for example, temporal patterns of
rainfall are correlated across large watersheds (Cheung et al., 2008). Other factors besides
climatic variability, including large-scale population movements and public health
campaigns at regional to national levels, may also contribute to broad-scale synchrony in
malaria cases. In the Amhara region, the mass distribution of LLIN in 2006 and 2007 likely
accounts for at least some of the observed temporal variability in malaria cases (Otten et al.,
2009), although synchronous patterns of malaria cases were also observed prior to 2006.

An important public health implication of these spatial and temporal patterns is that the
problem of modeling and forecasting malaria risk can potentially be decomposed into
separate spatial and temporal components. Spatial clusters of high potential malaria risk can
be identified based on land use, topography, hydrology, and other aspects of the landscape
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that vary at relatively slow rates. These clusters are expected to remain relatively static,
although rapid land use changes, building of dams and irrigation projects, or population
movements can trigger localized outbreaks. Despite these local effects, a significant
component of the interannual variability in malaria risk is likely to be synchronized across
larger areas as a result of climatic fluctuations. This synchrony suggests a potential for
extrapolating malaria early detection results and early warning forecasts from sentinel sites
or modeling temporal fluctuations in malaria risk using data aggregated across multiple
districts.

In summary, our results document temporally consistent geographic patterns of malaria risk
and broad-scale spatial synchrony in malaria outbreaks in the Amhara region of Ethiopia, a
malaria epidemic-prone region. These patterns provide indirect evidence that malaria
epidemics are at least partially driven by regional climatic variability. This hypothesis is
further supported by recent studies that have found lagged associations between remotely-
sensed climatic anomalies and temporal patterns of malaria cases in the Amhara region
(Midekisa et al., 2012, Wimberly et al., 2012). Further research is still needed to more
clearly elucidate the types of climatic anomalies that trigger malaria outbreaks, and the need
for greater availability of climate data to support this type of work has recently been
emphasized (Thomson et al., 2011). Our research also underscores the importance of long-
term epidemiological datasets for conducting these types of assessments and demonstrates
the potential insights that can be gained despite the limitations of historical surveillance
data. There is need both to acquire spatially explicit, long-term historical data where they are
currently available and to expand and enhance current malaria surveillance efforts to ensure
that data availability and quality will continue to improve in the future.
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Figure 1.
Map of the Amhara region with outlines of the 49 surveyed districts. The 15 districts
referenced by name in the paper are labeled.
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Figure 2.
Random effects and 95% confidence intervals (plotted on the x-axis) for (A) month, and (B)
year from a random effects model with the natural logarithm of outpatient malaria cases as
the dependent variable and month, year, and district as independent variables.
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Figure 3.
Interannual variability in clinically-diagnosed outpatient malaria cases during the peak
malaria season (September-December) for 12 districts with complete data.
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Figure 4.
Maps of the proportion of outpatients clinically diagnosed with malaria during the peak
malaria season (September-December) from 2001–2009, including all districts in each year
that had data on both outpatient malaria cases and total outpatient visits. Water bodies are
displayed in blue.
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Figure 5.
Spline correlogram illustrating the nonparametric spatial covariance function and 95%
confidence interval for the natural logarithm of clinically-diagnosed outpatient malaria cases
during the peak malaria season (September-December).
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Table 3

Spatial autocorrelation of the proportion of outpatients with clinically-diagnosed malaria (POM) for nine years
in the Amhara region of Ethiopia.

Year I N† P-value

2001 −0.12 18 0.691

2002 0.30 19 0.017

2003 0.18 24 0.041

2004 0.43 28 < 0.001

2005 0.21 31 0.015

2006 0.12 32 0.070

2007 0.17 32 0.031

2008 0.26 35 0.003

2009 0.20 33 0.019

†
Number of districts with available POM data for September-December in the given year
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