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Abstract
The development of the brain is structure-specific, and the growth rate of each structure differs
depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate
brain development because of the high spatial resolution and contrast that enable the observation
of structure-specific developmental status. Currently, most clinical MRIs are evaluated
qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report
usually does not provide quantitative values that can be used to monitor developmental status.
Recently, the importance of image quantification to detect and evaluate mild-to-moderate
anatomical abnormalities has been emphasized because these alterations are possibly related to
several psychiatric disorders and learning disabilities. In the research arena, structural MRI and
diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the
pediatric population. To interpret the values from these MR modalities, a “growth percentile
chart,” which describes the mean and standard deviation of the normal developmental curve for
each anatomical structure, is required. Although efforts have been made to create such a growth
percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the
anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader
variability about the anatomical boundary definition, and hence, to increase the precision of
quantitative measurements, an automated structure parcellation method, customized for the
neonatal and pediatric population, has been developed. This method enables quantification of
multiple MR modalities using a common analytic framework. In this paper, the attempt to create
an MRI- and a DTI-based growth percentile chart, followed by an application to investigate
developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome,
have been introduced. Future directions include multimodal image analysis and personalization for
clinical application.
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1. Introduction: quantitative image analysis for the pediatric population
Quantitative measurements play essential roles in the clinical evaluation of human fetal and
neonatal development. During pregnancy, fetuses are measured for the diameter of the
gestational sac, crown-rump length, biparietal length, and femur length. After birth, neonates
are measured for their height, body weight, and head circumference. The height and body
weight are periodically measured throughout childhood to monitor developmental status.
These measurements are typically interpreted based on a growth percentile chart. The
measured values that are outside two standard deviations of the normal developmental
curves are identified as a “developmental abnormality” and further evaluations are
warranted to identify the cause of the abnormality.

The human brain is an organ that develops non-linearly from the fetal stage to adolescence
(Bennett and Baird, 2006; Giedd et al., 1999). The development is structure-specific and the
growth rate of each structure differs depending on the age of the subject (Kinney et al.,
1988; Wiggins, 1986; Yakovlev and Lecours, 1967). Therefore, an imaging modality with a
clear contrast that enables the identification of various anatomical structures in the brain is
required for the structure-specific evaluation of the developmental status. Magnetic
resonance imaging (MRI) is often used for this evaluation because of the high spatial
resolution and contrast (Berman et al., 2005; Cascio et al., 2007; Dubois et al., 2006, 2008;
Gao et al., 2009; Huppi et al., 1998; Shaw et al., 2008). The sensitivity and specificity to
detect developmental brain abnormalities is often higher with MRI than with other
neuroimaging modalities (Arnould et al., 2004; Inder et al., 2003; van Wezel-Meijler et al.,
2011). The non-invasiveness and the lack of ionizing radiation of MRI are ideal for the
evaluation of fetuses and individuals during early developmental stages, since they are more
vulnerable to radiation then (Pearce et al., 2012). In extreme cases, such as xeroderma
pigmentosum, which is a genetic disorder of DNA repair that causes brain atrophy in
childhood, MRI is exclusively used (Ueda et al., 2012) because imaging modalities using
radiation, such as X-ray computed tomography, must be avoided.

Currently, radiologists routinely read clinical MRIs qualitatively, based on their a priori
knowledge and experience about the changes in size and contrast throughout brain
development. Although the qualitative image reading is useful for the clinical decision-
making, it does not provide quantitative values that can be used to monitor developmental
status. If the volumes of particular anatomical structures can be quantified, clinicians can
interpret the development of particular volumes with regard to the age-appropriate growth
charts, similar to those used for body height and weight. Moreover, recent advancements in
the technological aspects of image modalities and the research findings from precise image
analyses suggest the importance of image quantification to detect and evaluate subtle
anatomical abnormalities, particularly in relation to neurodevelopmental abnormalities, as
well as several psychiatric disorders and learning disabilities (Arzoumanian et al., 2003;
Clouchoux and Limperopoulos, 2012; Eikenes et al., 2011; Lindqvist et al., 2011; Mathur et
al., 2010; Ment et al., 2009; Rose et al., 2009; Skranes et al., 2007, 2009; Soria-Pastor et al.,
2009; Vangberg et al., 2006).

There are two categories of images to be quantified. The first category is a qualitative image
with relative intensities, in which the intensity itself has an arbitrary scale, such as
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conventional structural MRI (e.g., T1- and T2-weighted images). To quantify these
qualitative images, the image contrast must be converted to quantitative values. For
example, morphological information, normalized intensity, or values derived from an
intensity histogram, such as skewness and kurtosis, are extracted (Jack et al., 2001). Among
these data, morphological information is often the target of analysis, in which the volume or
shape of the location of interest is quantified (Chang et al., 2004; Gimenez et al., 2006;
Lodygensky et al., 2008; Silk and Wood, 2011). Another category is a quantitative image in
which the intensity of each voxel represents useful information. The T2 map, which is
calculated from multiple anatomical MRIs with different echo times, and diffusion tensor
imaging (DTI), which is calculated from multiple diffusion-weighted images and a non-
diffusion weighted image, are quantitative MRI methods that are widely accepted in
pediatric studies (Gilmore et al., 2007; Neil et al., 1998). The T2 map is used to evaluate
myelination of the brain (Beaulieu et al., 1998; Ding et al., 2004, 2008; Dyakin et al., 2010;
Ferrie et al., 1999; Miot-Noirault et al., 1997; Miot et al., 1995). DTI provides quantitative
scalar images with rich anatomical information (Basser et al., 1994; Beaulieu and Allen,
1994; Berman et al., 2005; Conturo et al., 1996; Hsu and Mori, 1995; McKinstry et al.,
2002; Miller et al., 2002; Mori et al., 2001; Mukherjee et al., 2002; Neil et al., 1998;
Pierpaoli et al., 1996; Ulug and van Zijl, 1999), based on directionality of water diffusion
that coincides with the orientation of ordered structures. The fractional anisotropy (FA)
(Pierpaoli and Basser, 1996; Pierpaoli et al., 1996), which represents the degree of
anisotropy of the diffusion, and the mean diffusivity (MD), which represents the magnitude
of diffusion, are commonly used scalar measurements. When these quantitative images are
analyzed, the intensity itself is the target of interest.

Both structural MRI and DTI have been widely applied to quantify brain development in the
pediatric population. Similar to staining methods used for histopathology, each modality
includes different types of information, all of which represent the different background
anatomy. Past studies have aimed to create the “growth percentile chart,” which is necessary
for interpretation, based on the modality used and on study-specific database. Although
there is an ongoing effort to collect pediatric images from multiple institutes to serve as an
open-access database (2012; Almli et al., 2007; Evans, 2006; Waber et al., 2007), there is no
standardized growth percentile chart, created by using a common analytic framework for
both structural MRI and DTI, available for public use. This lack of a standardized growth
percentile chart is a current bottleneck that restricts the widespread use of image
quantification in the pediatric population, especially for clinical use with which pediatricians
must make clinical decisions for each patient without a normal control group.

One of the greatest challenges in the creation of a growth percentile chart is to standardize
the anatomical boundaries of the measured structures. When measuring the body weight or
head circumference, the names of the measurements themselves carry well-standardized
meanings, with little ambiguity. However, the definition of the anatomical boundary of each
brain structure is often ambiguous; for example, the reported normal hippocampal volumes
differ by up to 2.5-fold depending on the definitions of the boundary that is manually drawn
to measure the volume (Boccardi et al., 2011 ).To avoid inter-institutional, inter-reader, and
intra-reader variability of the anatomical boundary definitions, and thus, to increase the
precision of the quantitative measurements, computer-assisted automated segmentation of
the brain has been applied to adult brain MRI (Collins et al., 1995; Fischl et al., 2002;
Heckemann et al., 2006; Maldjian et al., 2003; Mallar Chakravarty et al., 2012; Mori et al.,
2008; Oishi et al., 2008, 2009; Tzourio-Mazoyer et al., 2002). Yet, an automated method to
define the anatomical boundaries of brain structural MRI and DTI in various developmental
stages had not been fully developed until recently (Shi et al., 2009, 2010).
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In this article, we will introduce the various methods to quantify qualitative image
(structural MRI) and quantitative image (DTI) data about the developing brain, using a
common analytic framework. We will also provide some research data to demonstrate
normal brain development, and how we can apply these quantitative approaches to
investigate developmental abnormalities associated with various diseases.

2. Methods to quantify information from images: voxel- and atlas-based
quantification

The simplest and the most established method for image quantification is a region-of-
interest (ROI)-based method, in which a selected set of ROIs is placed on the structures to
retrieve and quantify the values (e.g., volume of the structure). This approach is suitable
when investigating the normal developmental pattern of selected anatomical structures, such
as the hippocampus (Jacob et al., 2011), or when targeting a specific disease with a
developmental abnormality in known anatomical structures. However, if there is no clear a
priori knowledge, or if multiple diseases with different distributions of anatomical
abnormalities are evaluated, arbitrarily selected ROIs are not adequate. To explore the
unknown effects of a particular disease, or to quantify the developmental status of the
pediatric population, including a wide range of diseases, whole-brain analysis is the method
of choice.

There are several approaches to whole-brain analysis. If information with high spatial
resolution is needed, a voxel-based analysis (VBA) can be performed, in which each voxel
is regarded as one ROI. For a group analysis, each voxel at the same anatomical location
must be identified across subjects. To fulfill this requirement, all MRIs are mathematically
transformed to a common space. This common space serves as the basis for common
anatomical locations on multiple MRIs to allow voxel-by-voxel analysis. VBA has been
widely used in the pediatric population in children over four years old (Wilke and Holland,
2003; Wilke et al., 2002, 2003), and, more recently, for even younger populations (Gimenez
et al., 2008). Because of the small size of the voxels, VBA could potentially provide
information about changes in confined anatomical areas or about a small portion of a
structure. The drawbacks are related to the small size (thus inherently noisy) and the large
number of ROIs to cover the entire brain, which would lead to lower statistical power after
correction for multiple comparisons. VBA is not suitable for detecting small but widespread
change in the brain (Davatzikos, 2004). In addition, there are residual misregistrations after
image transformations, which might affect the image quantification. For the DTI analysis,
the tract-based spatial statistics (TBSS) method could reduce the effect of misregistration
and low signal-to-noise-ratio (Ball et al., 2010; Smith et al., 2006), although the volume of
the brain structures cannot be quantified by this method.

The simplest approach to ameliorate these issues related to VBA is to enlarge the size of the
ROI. For example, isotropic spatial filtering is commonly used to enlarge the ROI. The
larger the ROI, the higher the signal-to-noise ratio, which leads to a higher statistical power.
The larger ROI can also reduce the effect of misregistration. As a result, in general, a large
ROI is suitable to detect small but widespread changes in the brain. There are many ways of
grouping voxels to shape ROIs, and the choice depends on scientific or clinical interests. For
the evaluation of brain development, the goal is to evaluate the developmental pattern of
each anatomical structure. Therefore, the contour of each ROI should follow the boundary of
the anatomical structures. If there is a pre-segmented set of ROIs that covers the entire brain
in the common space, which is often called a “parcellation map,” this can be transformed to
the original image to quantify the volume of each anatomical structure, as well as to measure
the intensities of the quantitative images (Aljabar et al., 2009; Collins et al., 1995;
Heckemann et al., 2006, 2010; Jia et al., 2012; Joshi et al., 2004; Klein and Hirsch, 2005;
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Maldjian et al., 2003; Mori et al., 2008; Oishi et al., 2008, 2009; Tzourio-Mazoyer et al.,
2002; Warfield et al., 2004). More recently, a multi-atlas approach has emerged, in which
multiple brain atlases with heterogeneous anatomies are mapped to the target image. The
parcellation results from these atlases could be combined either with equal weighting or with
weighting based on various types of information, such as nonlocal or local anatomical
similarity between the atlas and the image to be parcellated. The multi-atlas approach has
the potential to accommodate the large anatomical variability encountered in clinical images
and to deliver a high level of parcellation accuracy (Aljabar et al., 2009; Artaechevarria et
al., 2009; Fischl et al., 2002; Heckemann et al., 2006; Klein and Hirsch, 2005; Langerak et
al., 2010; Mori et al., 2013; Rousseau et al., 2011; Tang et al., 2013; van Rikxoort et al.,
2010; Warfield et al., 2004; Wu et al., 2007; Yushkevich et al., 2009). Statistical analysis
can be performed in a structure-by-structure manner, which is called “atlas-based analysis
(ABA),” in contrast to the voxel-by-voxel manner in VBA. The parcellation map used for
the ABA can be considered a standard definition of brain structures to achieve a high
precision in image quantification, which is an essential step in establishing a standard
growth percentile chart that can be shared by multiple institutions.

Since each parcel of the parcellation map contains many voxels, there is less information
about anatomical localization than is provided by VBA. For example, if the atrophy is
restricted to a part of the anatomical structure (e.g., anterior portion of the hippocampus),
but the ROI includes the entire structure (e.g., whole hippocampus), the localized atrophy
might be misunderstood as an atrophy of the entire hippocampus, or the atrophy might be
diluted and be undetectable by ABA (Oishi et al., 2011b). VBA and ABA observe the brain
from very different granularity levels (VBA: typically more than 100,000 voxels; ABA:
typically 30–200 structures) and are complementary to each other for a multi-modal whole
brain analysis.

3. MRI and DTI atlases for neonatal and pediatric image analyses
For the whole-brain analysis, a common space that serves as the basis of common
anatomical locations is required. One simple option is to use a single-subject image or a
population-averaged image as a template to transform all images. For adult brains, there are
several standardized atlases that can be used as a template, such as ICBM atlases (http://
www.loni.ucla.edu/ICBM/Downloads/Downloads_Atlases.shtml) and the Talairach atlas
(Talairach and Tournoux, 1988). The advantage of using these standardized atlases is that it
enables the reporting of research findings in a standardized coordinate system, which is
convenient for comparing data from different studies. There are several brain parcellation
maps created on these standardized atlases that are available for the ABA (Collins et al.,
1995; Maldjian et al., 2003; Tzourio-Mazoyer et al., 2002). However, if there are substantial
differences in contrast, shape, or size between the atlas and the images, the transformation
accuracy might be poor (Lobel et al., 2009; Muzik et al., 2000; Wilke et al., 2003).
Therefore, for pediatric studies with different age groups, or when there is a considerable
amount of anatomical variation, study-specific templates, which are customized to fit to the
anatomical features of the study population, are often employed (Wilke et al., 2008). Whole-
brain analysis for the pediatric population is often performed for morphometric analysis
based on VBA. ABA is less common because study-specific templates usually do not have a
parcellation map.

To create a standardized atlas for the pediatric population that could serve as a common
language by which to compare results from multiple institutes and researchers, the target
age-range should be specified to increase the transformation accuracy. This is especially
important for the younger population since the contrast in anatomical MRI changes rapidly
during brain development, mainly due to the ongoing myelination process (Barkovich et al.,
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1988; Huppi et al., 1998; van der Knaap and Valk, 1990). Moreover, the gray and white
matter contrast of anatomical MRIs of the younger population, especially children under one
year old, is not as clear as that seen in the older pediatric population. The poor contrast is
disadvantageous for whole-brain analyses that use image transformation, since the
transformation algorithm usually uses contrasts to guide the co-registration of identical
anatomical structures from the two images. Therefore, accurate anatomical co-registration is
difficult in brain areas that have little or no MRI contrast between different tissues. One
solution is to incorporate DTI to guide the transformation (Ceritoglu et al., 2009; Oishi et al.,
2009; Studholme, 2008). DTI is capable of depicting well-aligned structures, such as axonal
bundles, and hence provides rich contrast within the white matter, even for the neonatal
brain with less myelination (Fig. 1); in fact, most of the white matter structures seen in the
adult brain with DTI have already been established in the neonatal brain and can be
visualized by DTI (Huang et al., 2006; Zhang et al., 2007). This motivated us to create co-
registered MRI-and DTI-based, age-specific atlases, with parcellation maps, for the pediatric
population (Fig. 2). Compared to a transformation based on T2-weighted contrast, DTI-
based contrast achieved higher accuracy for the co-registration of white matter structures
(Oishi et al., 2011c, 2012). The MRI/DTI atlas for neonates, and for 18-, and 24-month-olds
is now available through the website (http://cmrm.med.jhmi.edu/).

While a population-averaged template is one of the most widely used templates that
represents the averaged anatomy of the population of interest, image averaging leads to
blurring of anatomical definition, which could interfere with the higher-order diffeomorphic
deformation that is used for accurate normalization. Single-subject atlases do not have this
blurring problem, but the anatomy is biased, which could adversely affect the accuracy of
subsequent quantification, as well as the detection of abnormalities. There are several
strategies to improve the atlas for accurate identification of brain anatomical structures. The
use of a Bayesian template is one of the solutions, in which averaged features of the
population are included, while maintaining the sharp contrast comparable to that of the
single-subject image (Zhang et al., 2011b).

4. Exploring the developmental pattern of normal brains
Although the MRI/DTI images are transformed to the atlas for VBM, or the parcellation
map in the atlas space is transformed to the individual MRI/DTI images for ABA, the
quantified values must be interpreted based on a “growth percentile chart,” which would
provide new ways to evaluate MRI/DTI. Namely, the quantified values of various brain
regions of normal brains (e.g., volume, FA, or MD) would enable researchers to conduct
statistical comparisons between diagnostic groups, as well as to investigate the relationships
between brain anatomy and neurologic symptoms and future neurologic outcomes. This
method is potentially useful for detecting previously hard-to-define abnormalities in each
individual. In the following sections, actual data are introduced from our studies to
demonstrate the efficacy of the quantitative approaches.

4.1. Babies (37–53 post-menstrual weeks)
The ABA was applied to analyze 22 DTIs and 13 T1- and T2-maps from healthy full-term
babies (Oishi et al., 2011c). The babies were scanned without sedation, while they were
sleeping. They were comfortably placed in a vacuum stabilizer, modified for size. The
motion was monitored by the research staff, and re-scanned when motions were observed.
Approximately half the babies were re-scanned more than once. Neonatal ear covers were
used to attenuate sounds emitted from the MR system. The scans were performed on a 3T
scanner with 12-channel head array coil, using single-shot echo planar imaging (EPI) with
SENSE (reduction factor of 2) acquisition for DTI, double-echo fast spin echo to calculate
the T2 map, and 3D inversion recovery to calculate the T1 map. For DTI, diffusion
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weighting was applied along 12 axes with b = 1000 s/mm2. Tensor calculation was
performed on DTIstudio (Jiang et al., 2006), in which an automated outlier rejection method,
based on modified RESTORE (Chang et al., 2005; Li et al., 2010) to remove corrupted data
points, is implemented. The resolution was 1.0 mm × 1.0 mm × 2.0 mm for DTI and 1.7 mm
× 1.7 mm × 5 mm for T1 and T2 maps. The total imaging time was approximately 20min.
There was a general trend toward decreasing T1, T2, and MD, and increasing FA with age,
with a structure-specific maturation pattern. Namely, there was a posterior-to-anterior and a
central-to-peripheral direction of maturation. In Fig. 3, four representative areas with
markedly different slopes and intercepts are shown to provide an idea about the relationships
between data variability and effect size.

4.2. Pediatric population
There is a biphasic development of the brain – rapid growth in the first two years of life,
followed by slower and subtler developmental changes. The ABA was used to investigate
this later developmental change detected by DTI (Faria et al., 2010). Data from a total of 35
subjects from our pediatric database, open to public use (www.lbam.med.jhmi.edu)
(Hermoye et al., 2006), were used. Images were acquired using a SENSE head coil
(reduction factor of 2.5) on a 1.5 T scanner. An eight-element arrayed radio frequency coil,
converted to a six-channel to be compatible with the six-channel receiver system, was used
(detailed in Hermoye et al. (2006)). A single-shot EPI was used, with diffusion gradients
applied in 32 directions and b = 700 s/mm2. The resolution was 2.3 mm × 2.3 mm × 2.3 mm
for individuals between two and five years old and 2.5 mm × 2.5 mm × 2.5 mm for older
subjects. Tensor calculation was performed in DTIstudio. The ABA was performed in the
original image space, by warping the anatomical parcellation map in the atlas space to the
original MRI. In terms of volume, the ABA showed an age-dependent increase that was
mostly uniform across the WM, although regions that are rich with projection fibers (e.g.,
the corona radiata, the internal capsule, the cerebral peduncle, and the corticospinal tract in
the pons) tended to have higher age-dependent slopes, as well as R2 values. There were no
areas with decreasing volumes with age (Fig. 4).

The DTI analyses (Fig. 5) revealed an increase in FA with age in the WM, among which the
brainstem, the thalamus, and the anterior limb of the internal capsules had the greatest age-
dependent FA increase. In contrast, some cortical areas had age-dependent decreases in
diffusivity measurements. The frontal WM showed a greater age-dependence than that in
other regions.

4.3. Future directions: standardization of quantified values
Data standardization is one of the general requirements for clinical tests. The measured
values are normalized to standardized units for inter-institutional comparison. Similarly,
although the normal developmental database of MRI/DTI-derived parameters from a single
scanner and protocol is useful for interpreting within-institute images, methods to
standardize data from different scan protocols or scanners are necessary for generalization of
research findings, and to create agreement about the detection of abnormalities of the brain
anatomy. For anatomical MRI, the main problem stems from the scan-protocol-dependent
differences in the intensity profile that creates contrast among the gray matter, white matter,
and the cerebrospinal fluid. Therefore, intensity normalization is often used for volumetric
analysis. Standardization of the DTI-derived parameters is more challenging, since
numerous factors, such as the noise, b-value, voxel size, method used for tensor estimation,
and more, may affect the results (Bammer et al., 2003; Farrell et al., 2007; Jones and Basser,
2004; Koay et al., 2006; Landman et al., 2007; Zhu et al., 2011). These factors must be well-
controlled before the analysis. Investigation of the effect-size of these confounding factors
and developing methods to reduce these effects are important future directions.
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5. Detecting the effects of diseases and injuries
Once the growth percentile chart is established for quantitative image analysis, the next step
is the application of the chart to detect various types of developmental abnormalities related
to diseases. In the following sections, examples of the ABA applied to a spectrum of
diseases, such as cerebral palsy and genetic conditions, including Williams and Rett
syndromes, are demonstrated.

5.1. Cerebral palsy
Cerebral palsy is the most common chronic motor disorder of childhood, which includes a
number of etiologies and clinical presentations. Identifying and understanding the factors
responsible for the variability in the clinical course might contribute to an understanding of
brain function, as well as helping to design therapeutic interventions at the early stages of
brain development.

We applied the ABA to a cohort of 13 CP patients and normal controls, age- and gender-
paired. z-Score maps of the volume and FA values from two patients with very different
image features were analyzed (Faria et al., 2011) (Fig. 6). The most evident characteristic of
Patient #1 was the ventricle enlargement and the reduction of the white matter. Patient #2
images were marked by abnormal intensities in the white matter (hyper ADC and hypo FA
areas) due to PVL, even though the patient also had large ventricles and a certain degree of
white matter reduction. Focusing on the left superior longitudinal fasciculus (SLF, arrows),
for example, visual inspection of the FA images of the patients reveals a smaller SLF,
particularly in Patient #1, with possibly lower FA values, particularly in Patient #2.
However, it is not straightforward to determine whether these maps are beyond the normal
range of variability. For each segment, age-dependence and variability range was calculated
from the control data, and deviations were delineated by z-scores, as shown in the leftmost
column of Fig. 6. The actual fitting results for the left SLF are shown in the graphics. Our
results indicate that the CP patients (yellow squares) had smaller FA and volumes than the
average control values. Patients #1 and #2 had FA values lower than controls by more than
four standard deviations, and volumes lower than controls by more than three standard
deviations. Note that the SLF of Patient #2 showed even lower FA values, with a z-score
near −10, while the SLF in Patient #1 had an even lower volume, with a z-score near −4,
which is in agreement with our visual impression.

5.2. Williams syndrome
Williams syndrome (WS) is a genetic developmental disorder characterized by relatively
strong language skills and severely impaired visuospatial abilities. Using T1-weighted
images for volumetric analysis and DTI for diffusivity analysis, we observed that individuals
with WS have atrophy in the basal ganglia and white matter (Fig. 7A and B), while the
fusiform, medial temporal gyri, and the cerebellar cortex are relatively preserved (Fig. 7C)
(Faria et al., 2012b). The DTI analysis indicated that the right superior longitudinal
fasciculus, the left fronto-occipital fasciculus, the caudate, and the cingulum have increased
FA, whereas the corticospinal tract shows decreased FA.

5.3. Rett syndrome
Rett syndrome (RS) is a neurological disorder, primarily affecting females, associated with
global brain atrophy, more severe in the frontal, occipital, and dorsal parietal regions.
However, the anatomical basis for this volumetric reduction, and the potential changes in
diffusivity associated with this disease is uncertain. In a cohort of nine individuals with RS,
we confirmed the previous results regarding brain atrophy. In addition, reduced FA was
identified in the left peripheral white matter areas (the middle temporal, middle occipital,
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pre-cuneus, and the post-central white matter), left major white matter tracts (the superior
longitudinal fasciculus, sagittal stratum, corpus callosum), and the bilateral cingulum (Fig.
8).

5.4. Future directions: multimodal image analysis and personalization
Pediatric MRI studies, to date, have been primarily based on single-modality and on group
comparisons. These strategies are useful for detecting anatomical features of diseased brains.
The next logical step is to apply these findings to a single patient for an image-based
diagnosis and clinical decision-making. Indeed, even when the pathology is clearly detected
by group analysis, this type of analysis may not have enough statistical power for an
individual-based diagnosis or decision-making.

A multimodal approach has been shown to classify various diseases more accurately than a
single-modality approach (Allder et al., 2003; Brockmann et al., 2003; Kauczor, 2005;
Rostasy et al., 2003; Wiest et al., 2005). Assuming that there are multiple pathologies with
different spatial distributions in a single disease, the optimized combination of multiple MR
modalities could increase the power to separate diseased brains from normal brains. One of
the biggest challenges for multi-modal analysis is to establish a common anatomical
framework that can integrate intra-subject as well as cross-subject multi-modal imaging
data, which allows structure-by-structure, location-dependent statistical analysis. The ABA
was applied to serve as the common anatomical framework (Faria et al., 2012a; Oishi et al.,
2011c, 2009).

To appropriately combine information from multiple anatomical structures and multiple
image modalities, various learning algorithms have been employed (Avants et al., 2010;
Dukart et al., 2011; Franco et al., 2008; Hasan et al., 2012; Kloppel et al., 2008; Oishi et al.,
2011a; Teipel et al., 2007; Zhang et al., 2011a). These methods are designed to provide
appropriate weighting to each of the measured values of each structure. Fig. 9 is an attempt
to integrate quantified volumes and DTI-derived intensities from several separate groups
with different clinical categories and severities of CP. An unsupervised learning algorithm,
principal component analysis (PCA), was applied to integrate multiple variables and to
investigate the most influential axes that could effectively characterize the anatomical
differences among groups (Yoshida et al., 2013a).

Once the multimodal data is combined, based on learning algorithms, the result can be
personalized. For example, from training datasets that included groups of patients and
control individuals, the vector that can most effectively separate the group with disease from
the control group (diagnostic feature vector) could be generated. This diagnostic feature
vector can be applied to an image from a new patient to calculate a projection, which can
determine whether the patient should be categorized as having the disease.

6. Conclusion
An automated structure parcellation method, customized for neonatal and pediatric brain
MRI, has been introduced, with the neonatal and pediatric brain atlases freely downloadable
from our website (http://cmrm.med.jhmi.edu/ and www.MRIstudio.org). This method
enables the quantification of multiple MR modalities using a common analytic framework.
We attempted to create an MRI- and DTI-based growth percentile chart, followed by the
application of that chart to investigate developmental abnormalities related to cerebral palsy,
Williams syndrome, and Rett syndrome. Future directions include multimodal image
analysis and personalization in the clinical settings.
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Fig. 1.
An example of an adult T2-weighted image and a neonatal (0 weeks old) T2-weighted
image and color map. The anterior limb of the internal capsule is identified in the adult T2-
weighted image, but is difficult to identify in the neonatal T2-weighted image. Using a color
map, various white matter structures can be readily identified, even in the poorly myelinated
neonatal brain. Coordinates of the anterior limb of the internal capsule were transferred from
the color map to the T2-weighted image. alic/plic, anterior and posterior limb of internal
capsule; cc, corpus callosum; cg, cingulum; ec, external capsule; fmajor/fminor, forceps
major and minor; fx, fornix; ss, sagittal striatum; tap, tapatum.
From Oishi et al. (2012) with permission.
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Fig. 2.
Multi-contrast, single-subject atlases for a neonate (with 112 parcellations) at two years old,
18 months old, and in an adult (with 159 parcellations) (available at http://
lbam.med.jhmi.edu/).
From Oishi et al. (2011c) and Yoshida et al. (2013b) with permission.
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Fig. 3.
Representative scattergrams from the atlas-based image quantification showing the
developmental pattern of each anatomical structure. The horizontal axis indicates post-
menstrual weeks. The first row shows the age-dependent decreases in mean diffusivity
(Trace) of each structure. The second row shows the age-dependent increases in FA. The
third row shows the age-dependent decreases in T1, and the lowest row shows the age-
dependent decreases in T2. The MR measures of each structure changed at different rates.
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Fig. 4.
Examples of actual data points and the fitting results of the ABA at representative areas with
high (upper row) and low (bottom row) volumetric age (year)-dependency. Note that the
slopes were color-coded and mapped on the T1-atlas for visualization purposes, but the
actual volume measurement was performed in original DTI space.
From Faria et al. (2010) with permission.
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Fig. 5.
Three brain regions with different characteristics for age-dependent changes. These areas
have high, low, and no significant age-dependency for FA, while all areas have a clear and
significant ADC decline. CST, corticospinal tract; ACR, anterior corona radiata; SOG, white
matter of the superior occipital gyrus.
From Faria et al. (2010) with permission.
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Fig. 6.
Demonstration of automated abnormality detection using the atlas enriched by a normal
database of developing brains. Color-coding of the second and third row of the right three
columns indicates the z-score of the ADC and the FA values in each participant, calculated
based on our normal database.
From Faria et al. (2011) with permission.
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Fig. 7.
Volumetric differences between WS and controls. Regions with significant atrophy in WS
individuals are highlighted in yellow and those with volumes relatively preserved are blue.
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Fig. 8.
Regions with a reduction in FA in Rett syndrome (p<0.01, uncorrected). Color scale
represents ratio of Rett/control.

Oishi et al. Page 25

Int J Dev Neurosci. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Multimodal evaluation of two different clinical types of cerebral palsy (CP)(spastic CP and
athetotic CP) and a group of normal subjects. The three axes of this scattergram represent
the first three principal components extracted by PCA, and a projection of each participant
was plotted on this three-dimensional space. The distribution of the control group was the
most concentrated among the three groups. The athetotic CP group tended to be more
scattered and distant from the normal control group than the spastic CP group. This finding
is consistent with the general notion that children with athetotic CP tend to have more severe
motor impairment, with more variable accompanying disabilities, than children with spastic
CP.
From Yoshida et al. (2013a) with permission.
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