
Proc. Natl. Acad. Sci. USA
Vol. 76, No. 2, pp. 872-875, February 1979
Genetics

Maximum geographic range of a mutant allele considered as a
subtype of a Brownian branching random field

(population genetics/selective neutrality/migration/mutation)

STANLEY SAWYER*t AND JOSEPH FLEISCHMANt
*Department of Mathematics GN-50, University of Washington, Seattle, Washington 98195; and tDepartment of Mathematics, Wayne State University,
Detroit, Michigan 48202

Communicated by James F. Crow, November 21, 1978

ABSTRACT A rare allelic type is modeled as a field of in-
dividuals diffusing independently in d-dimensional space (d
= 1, 2,.. .), in which individuals are replaced by random num-
bers of offspring at a constant rate. In an infinite-allele model
with selectively identical alleles, the offspring distribution
would have mean 1 - u, in which u is the mutation rate; oth-
erwise mean (1 - u)w, in which w is the relative fitness of the
allele. Let p(x) be the probability that some descendent of an
individual initially at zero diffuses unilaterally as far as x (d =
1), or else the probability that some descendent of an individual
at x diffuses within a > 0 of the origin (d > 2). A nonlinear dif-
ferential equation is found for p(x) that is solvable for d = 1 and
related to Emden's equation for d > 2. For p(x) > 10-4 and u
< 10-5, genetic drift is more important than mutation in the
behaviorofp(x)(d= 1). Ifu = Oand w = 1,p(x) - C/x2asx
0o for d < 3. As a mathematical application, it is shown that if
the initial distribution is uniform Poisson, a bounded open set
K is visited by individuals in the field at arbitrarily large times
if d > 2 but not if d = 1.

1. Introduction
Assume we have a population that is subject to mutation at a
particular genetic locus. Each new mutant is considered to be
of a distinguishable type wholly new to the population. If the
total population is roughly stable and the mutants are selectively
equivalent, each new allelic type will eventually die out. This
will happen not only because of genetic drift, but also because
the mutation rate (with no return mutation) makes any subtype
effectively disadvantageous. A natural question is how far
geographically will members of a new allelic type spread before
the entire family becomes extinct, and what are the relative
effects of genetic drift and mutation on the distribution of
maximum range.
We model this situation by assuming that individuals diffuse

independently of one another in d-dimensional space Rd (d =
1, 2,.. .) according to Brownian motion with rate a, in which
a is independent of type. In any time interval of length dt, each
individual, with probability dt, dies and is replaced by a ran-
dom number of offspring (with zero offspring if the individual
dies childless). The offspring diffuse away from the location of
the parent and begin dying and reproducing themselves, and
so forth. Selective neutrality is expressed by the offspring dis-
tribution having mean 1 - u, in which u is the mutation rate.
If the mutant allele has relative fitness w instead of being se-
lectively neutral (w = 1), the offspring distribution has mean
(1-u)w.

We are interested in the probability
p(x) = probability that an allelic type initiated by

a mutation at zero has some descendent that
diffuses as far as x (unilaterally)

in one dimension (d =1), and in higher dimensions
p(x) probability that an allelic type initiated at x

has some descendent that diffuses within
distance a > 0 of the origin.

[1.1]

[1.2]

The condition a > 0 in [1.2] is necessary because higher-di-
mensional Brownian motion, with probability 1, never hits a
preassigned point.
The assumptions of the model will be satisfied if there is no

density-dependent population regulation acting on the subtype,
and if the subtype is sufficiently rare so that essentially all
mutant genes are carried in heterozygote form. See refs. 1-3
for discussions of branching process models in genetics in
general, and ref. 4 for branching process models with migration
structure.

In what follows, distances are scaled so that a = 1; i.e., x2 is
in terms of the variance of migration per unit time (in higher
dimensions, each component has unit variance per unit time).
We also assume the model is not a pure death process; i.e., more
than one offspring at a death is possible, and the offspring dis-
tribution has at least a finite third moment.

In one dimension, we show
1 211p9x)~2[C~u~x~v¶ + 1 -ve-Vi]P
P
2 [CQu,x)v<' + 1 -exp(-xN/u)]2 [1.3]

uniformly in x (x > 0) for small u under some mild assumptions
about the dependence of the offspring distribution on u. Here
v2 is the variance of the offspring distribution, and C(u,x) is a
bounded function of u and x. In [1.3], - means that the limit
of the ratio is 1, here as u - 0 uniformly in x. In particular

p(x) - Ci ue-xv' [1.4]

for small u if x\/-2u . e > 0, in which C1 = Cl(u,x) is bounded,
and

p(x) - 6
v2x2 [1.5]

as x -c for u = 0 or xx/¶ -g0. If the mutant allele is delete-
rious rather than neutral, [1.3]-[1.5] hold with u replaced by

u = 1 -(1-u)w=u + s-us,w = 1-s. [1.6]

The estimate 1.5 is more relevant for neutral alleles, because
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if x is large and u is small, the assumptions of the model will
tend to break down.

For Moranian offspring distributions-i.e., no offspring with
some probability and two offspring with the complementary
probability-we have the exact solution (x > 0, u = 0)

6
p(x) = (x + 4)2 [1.7]

in one dimension, and an exact solution similar to [1.3] for u >
0 (see §3 below). The values in Table 1 were calculated from
these exact solutions. As the table indicates, the descendents of
an individual at x (including itself) have about a 4% chance of
diffusing 10r in a particular direction from x before the entire
family becomes extinct, due to genetic drift alone. Indeed, the
mutation rate u = 10-5 changes p(x) by less than 1% for x <
75 and less than 10% for x < 250 (p k 10-4). The last column
in the table refers to deleterious alleles (see [1.6]).
A higher-dimensional model in which only one coordinate

is considered reduces to the one-dimensional case. Thus the
distribution of the maximum increase or decrease in latitude
or longitude by the descendents of an individual is also given
by [1.3]-[1.7]. In general in higher dimensions, let x = lixjI be
the distance from the origin scaled as before, and fix u = 0.
Then as x o

p(x) 2(d) (dimensions d < 3), [1.8]

and p(x) - 1/[(vx)2 log(vx)] if d = 4 (see §4 below). Note the
lack of dependence on a > 0 (see [1.2]) and the weak depen-
dence on dimension for d ' 3. For Moranian offspring distri-
butions, p(x) - Co(d)/(vx)d-2 for d > 4.
Our methods do not work for the other possible generaliza-

tion of [1.1] to higher dimensions; i.e., with "as far as x" in [1.1]
replaced by "as far as distance x from the origin" in [1.2]. In that
case [1.8] is most likely correct in all dimensions, with perhaps
d replaced by 1 or 2 - d.
Crump and Gillespie (5) (see also ref. 6) consider branching

random walks and discuss, among other things, p(x) for near-
est-neighbor migrations in an infinite one-dimensional lattice.
They estimate (essentially)

p(x) <ir(Ox) e-xV [1.9]
for an expression ir(0,x) and quote Drosophila recapture data
of Dobzhansky and Wright (7) to estimate a < 0.447 km
0.278 miles (1 mile = 1.6 km). Due to an apparent numerical
error, they estimate x = 200 miles - 720a for p(x) = 0.01 (u =
10-6) rather than x = 905 miles - 32466, which is the value that
follows from their argument. From Table 1, p(3246) z 1.2 X
10-7. Indeed [1.3] indicates that p(x) should be smaller than

Table 1. p(x) for Moranian offspring distributions (d = 1)

u

x 0 10-6 lo-5 10-2

5 0.10812 0.10812 0.10811 0.09964
10 0.03871 0.03871 0.03870 0.03039
20 0.01191 0.01190 0.01190 0.00552
30 0.00570 0.00570 0.00569 0.00126
40 0.00333 0.00333 0.00332 0.00030
50 0.00218 0.00218 0.00217 0.00007
75 0.00100 0.00100 0.00099 -10-6

100 0.00057 0.00057 0.00056 ~ 10-7
200 0.00015 0.00015 0.00014 ;10-14
500 0.00002 0.00002 0.00002 ;10-32
1000 0.00001 0.00001 z 10-6 lo-6:3
3246 6 X 0-7 1.2 X 1-7il00-lo t10-201

[1.9] by a factor of 12u in this range of x, assuming v = 1. The
probability that a new selectively neutral Drosophila allele will
diffuse from coast to coast of the United States (2500 miles t
90006) is p(9000) - 4 X 10-11 according to the exact solution
of Table 1; their estimate was 2.8 X 10-6. Crow and Morton (8)
give evidence for v2 1.2-3.0 for offspring of females, and
t3.0-6.0 for males in a variety of populations, so v should
perhaps be slightly larger than 1. These models do not include
the possibility that a small number of individuals may travel
long distances by special events, as Crump and Gillespie point
out. See Richardson (9) for a review article on animal migration
behavior.
A closely allied question is the probability that two genes

chosen at random a distance x apart are of the same allelic type.
This is in fact of order [1.9], although there are difficulties de-
fining an equilibrium model in this case (§3.3 and §4 of ref.
4).
The same questions can be asked for discrete "stepping stone"

models (10, 11) and their continuous analogs (12). The as-
ymptotic behavior of p(x) is not known for these models, al-
though the upper bound 1.9 does hold (13). It can be shown,
however, that Sp(x)dx = co if u = 0 for these models (see ref.
13, or argue as in §5), so p(x) C/x2 could not hold for d =
1.

See §5 for an application of [1.8] to the behavior of critical
Brownian branching random fields.
2. An equation for p(x)
The complementary probability q(x) = 1 - p(x) for p(x) is

q(x) = probability that no descendent of an individual [2.1]
initially at x ever diffuses within distance a >
0 of the origin.

By independence, the probability that no descendent of a group
of n individuals located initially at xi, x2,. xn diffuses within
distance a of the origin is q(xl)q(x2)... q(xn). Thus [2.1] for an
individual who is known to die at time zero at x is

00

F pnq(x)n = f[q(x)],
n=O

[2.2]

in which Pn is the probability that the individual is replaced by
n offspring and f(z) = 2pnZn. This, we claim, leads to the
equation

[2.3]('/2) V2q(x) = - ff[q(x)] - q(x)l
for q(x). First, set

Ttq(x) = (2irt)-d/2 fq(x) exp[-(x - y)2/2t]dy.
This is the expected value of q(xt), in which xt is the position
of the individual at time t given that it has not yet died. If q(y)
is three times continuously differentiable for IIYII > a, then by
Taylor's formula

Ttq(x) = q(x) + ('/2) V2q(x)t + O(t3/2) [2.4]
locally uniformly in x, in which 0(t3/2) represents a locally
bounded function of x and t multiplied by t3/2. The probability
that the individual diffuses within distance a of the origin by
a small time t is 0(exp[-c2/2t]), in which c = lxiI - a, with the
same convention for 0. If lix II > a + e for e > 0, this probability
can be ignored within 0(t2). By summing over the events that
the individual either does not or does die by time t and using
[2.41, we conclude

q(x) = (1 - t)Ttq(x) + ty~pq(x)n + 0(t2)
from [2.2]. Hence [ Ttq(x) - q(x)]/t = Ttq(x) - f[q(x)] + O(t),
and [2.31 follows from another application of [2.4].
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If q(x) is not necessarily three-times continuously differen-
tiable for lxii > a, the above argument implies that q(x) is a
weak solution of [2.3] in the sense of Weyl's Lemma [see, e.g.,
McKean (ref. 14, chapter 4)]. However, any weak solution of
[2.3] is necessarily infinitely continuously differentiable and
satisfies [2.3] in the usual sense (14).

See the paper by Sawyer (15) and the references therein for
a general discussion of nonlinear equations of the form [2.3]
associated with branching random fields.

Finally, because q(x) = 1 - p(x) depends only on x = lix I in
d dimensions, [2.3] reduces to

p"(x) +r d
- I

p'(x) - h[p(x)] = 0
x

in which

p(a) = 1, h(z) = 2[f(1 - z) - (1 - z)].
3. One dimension
Fix d = 1. Then by [2.5]

p ,(X)2 J 2h(z)dz = constant.

By definition, p(x) ;p(co) = c > 0 as x - co. Because lin
p'(x) exists by [3.1] it is zero, and

Srx [fy 2hdy
Wpx Y~SU2h(z)dz 1/2

[2.5]

[2.6]

[3.1]

nxc3

[3.2]

identically in x (using p(0) = 1). Note that the integral must
diverge asx o. Also 2npz = f' (1) = 1-u < 1 andf(z) M
z under our assumptions, so h(z) > 0 for 0 < z < 1 and c = 0.
We consider four cases.

Case 1: If {pnI is Moranian with u =0, then po = P2= 1/2 and
h(z)=2f(1-z)-(1-z)]=1 +(1- Z)2-2(1- )=Z2.
Solving [3.2] for p(x) yields [1.7].

Case 2: If {pn is Moranian with u > 0, then po = (1 + u)/2
and P2 = (1 - u)/2. Thus h(z) = (1 + u) + (1 -u)(1 - Z)2
2(1-z) = z(2u + (1 -u)z) and

x=
W u y

b =(2/%)(1 -u).

After some manipulation
.8uE exp(-xvx/u)p(x) = 1-E)2, E = ( p(+V T [3.31

12u[1 + 0(\/u)]exp(-xV2)
jvY{iK + 1 - exp(-xVu) + O(u))12'

in which 0 is used in the same sense as in §2.
For an arbitrary offspring distribution, f(1 -z) = 1 -cIz +

(1/2)C2z2 + O(z3) if 0npn <a, and
h(z) = 2[f(1- z) - (1 - z)] = 2(1 -c)z + c2z2 + O(z3).

[3.4]
Case 3: An arbitrary offspring distribution with u 0, 2n3p,

<o. Then cI = f'(1) = fnlpn = 1 and c2 = f"(1) = n(n -
1)pn = v2, and h(z) = (VZ)2 + O(Z3) by[3.4]. The identity A'!2
- B-/2 = (B - A)/[V ( + )] applied in [3.2] then
yields p(x) = 6/[vx + 0(1)]2 = 6/(Vx)2 + 0(1/x3), in which 0(1)
represents a bounded function of x.

Case 4: Here we consider a family of offspring distributions
ipn(u)j depending on a parameter u > 0 such that f(z,u) =
2p, (u)zn satisfies

f'(1,u) = Znpn(u) = 1 -u, f"(l,u) = v2 + O(u), [3.5]
f(3)(1,u) < constant < c.

Moranian offspring distributions with mean 1 - u and Poisson
offspring distributions with mean 1 - u both satisfy [3.5] with
v2= 1. By [3.4], h(z) = 2uz + v2z2 + 0(uz2) + O(z3), and as
in Cases 2-3

X
I X y + So0u+ +0) dyWYN/_27u-jy px y2(u + y)3/2,

= , flog ..... I + D(x,u)

as in [3.3], in which e = (%)v2 and D(x,u) is bounded uniformly
in x and u. The asymptotic formula 1.3 follows.

Supercritical offspring distributions (i.e., with fnPn > 1) can
be handled in the same way. Then c = 1 - q for q = minjz:f(z)
- zj in [3.2], and

p(x) = c + 0(e-bx), b = Ih'(c)I"/2, x > 0
for large x. Here c is the probability of nonextinction for the
corresponding branching process without geographical struc-
ture.

4. Higher dimensions
Suppose u = 0 and d > 1. Then by [3.4]

p"(x) + d 1p'(x) - v2p(x)2g[p(x)] = 0, p(a) = 1 [4.1]x

in which g(z) = 1 + 0(z) for small z. If g(z) = 1 (i.e., if the
offspring distribution is Moranian), [4.1] is an equation of
Emden-Fowler type. Hence

p(x)>-2(4 - d)/(vx)2, 2 <d <4,

2/[(vx)210g(vx)],
[4.2]

d = 4,
1%. C(d)l(pX)d-2 d > 4

for large x (16). It remains to extend [4.2] to d = 2, and in gen-
eral to prove [4.2] for 2 < d < 4 and p(x) satisfying the more
general equation 4.1. Fowler's arguments are not sufficient for
this.

First, assume d = 2. Variation of multipliers applied to [4.1],
together with the boundary condition p(x) < 1 for large x,
yields

p(x)= 1- log(y/a)h[p(y)]ydy
- log(x/a) h[p(y)]ydy. [4.3]

Thus, f OD h[p(y)]ydy < o, which implies p(x) - 0, and by
[4.3]

p(x) = 5 [log(y/a) - log(x/a)]h[p(y)]ydy

=5 z-1 5 v2p(y)2g[p(y)]ydy dz.

Set v(x) = 4/(vx)2 and w(x) = p(x)/v(x). Then
coX co

w(x) = 4x2 z' WJ (y)2g[p(y)]y-3dy dz. [4.4]
Noez

Note

4x2 Z-' y-3dydz= 1.
x z

[4.5]

We claim there exists a sequence x,, -o such that w(x, )
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1. If not, either w(x) > c > 1 for all x > xo and some xo, or else
w(x) < c < 1 for this range. Both, however, lead to contradic-
tions of [4.4]-[4.5], becauselibm g[p(y)] = 1 and w(y) enters the
right-hand side of [4.4] quadratically. It remains to extend w(xn )

1 to limw(x) = 1.

Fix c > 1, and let u(x) = p(x) - cv(x). Assume g[p(x)] > 1/c
for x > xO. Because v(x) satisfies [4.1] with g(z) = 1, by sub-
traction

u"(X) + - U'(x) - (v2/c)u(x)[p(x) + cv(x)] > 0 [4.6]
x

for x > xO. Because w(xn ) -- 1, u(x, ) <0 for sufficiently large
n. However, standard arguments applied to [4.6] imply that
u(x) cannot have any positive local maxima for x > xO. Hence
u(x) < 0 for large x, or p(x)/v(x) < c. Because c > 1 was arbi-
trary, and the same argument also works for u(x) = v(x) -
cp(x), we conclude lim p(x)/v(x) = 1.

If d 2, [4.3] is replaced by

p(x) = (a/x)d/2 11 [a2-d

y2-d]h[p(y)]yd-ldy/(d 2)J

- $1 - (a/x)d-21 h[p(y)]ydy/(d - 2). [4.7]

If d < 4 and p(x) - c/xd-2 for c > 0, then p(y)2yd-ldy

= a, which, by [4.7] and [3.4], implies p(x) < 0 for large x.

Hence xd-2p(x) - 0 and

p(x) = [x2d y2d]h[p(y)]ydl/(d 2)

= Jjzl-d h[p(y)]yd-ldy dz

and the same arguments go through, with minor modifications
if d = 4.

5. An application to critical Brownian branching
random fields
Assume that individuals are initially distributed as a Poisson
random field in d-dimensional space Rd with mean density cdx,
and thereafter diffuse and "branch" as in §1, in which the
offspring distribution is assumed to have mean 1. Let Nt (A) be
the number of individuals in the set A at time t. In dimensions
d < 2, "clumps" form and take over large areas at high densi-
ties; in particular E[Nt(A)] = cm(A) but Var[Nt(A)] -O o if

m(A) > 0 (4, 17). Regions between clumps tend to become
empty; e.g., P[Nt(K)> O- as t -a for bounded sets K and

d < 2 (argue as in §8 of ref. 18). A natural question is, does K
actually become and remain empty, or does it continue to have

visitors indefinitely, but perhaps more and more infrequently?
If the latter happens with probability 1, K is called persistent;
if the former with probability 1, impersistent (13). It turns out
that bounded open sets are persistent for d = 2 (in spite of
P[Nt(K) > 0] - 0) but are impersistent if d = 1.
To see this, delete all initial individuals whose descendents

never reach K = {x: ljxii < al. By independence, the resultant
random field {M(A)} is also Poisson, with mean

E[M(A)] = C p(x) dx [5.1]
for p(x) in [1.2]. Thus K will be persistent if E[M(Rd)] = X
[which implies M(Rd) = o with probability 1] and impersistent
if E[M(Rd)] < c, because the descendents of a finite number
of individuals eventually become extinct due to genetic drift.
However, E[M(R2)] = co but E[M(R')] < ao, by [5.1] and
[1.8].

See refs. 17-20 for other results about branching random
fields. We are indebted to R. T. Durrett for the observation that
our argument for impersistence yields persistence as well.
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