Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 1;93(20):11202–11207. doi: 10.1073/pnas.93.20.11202

Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons.

L Sklair-Tavron 1, W X Shi 1, S B Lane 1, H W Harris 1, B S Bunney 1, E J Nestler 1
PMCID: PMC38308  PMID: 8855333

Abstract

The mesolimbic dopamine system, which arises in the ventral tegmental area (VTA), is an important neural substrate for opiate reinforcement and addiction. Chronic exposure to opiates is known to produce biochemical adaptations in this brain region. We now show that these adaptations are associated with structural changes in VTA dopamine neurons. Individual VTA neurons in paraformaldehyde-fixed brain sections from control or morphine-treated rats were injected with the fluorescent dye Lucifer yellow. The identity of the injected cells as dopaminergic or nondopaminergic was determined by immunohistochemical labeling of the sections for tyrosine hydroxylase. Chronic morphine treatment resulted in a mean approximately 25% reduction in the area and perimeter of VTA dopamine neurons. This reduction in cell size was prevented by concomitant treatment of rats with naltrexone, an opioid receptor antagonist, as well as by intra-VTA infusion of brain-derived neurotrophic factor. In contrast, chronic morphine treatment did not alter the size of nondopaminergic neurons in the VTA, nor did it affect the total number of dopaminergic neurons in this brain region. The results of these studies provide direct evidence for structural alterations in VTA dopamine neurons as a consequence of chronic opiate exposure, which could contribute to changes in mesolimbic dopamine function associated with addiction.

Full text

PDF
11202

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altar C. A., Boylan C. B., Fritsche M., Jones B. E., Jackson C., Wiegand S. J., Lindsay R. M., Hyman C. Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J Neurochem. 1994 Sep;63(3):1021–1032. doi: 10.1046/j.1471-4159.1994.63031021.x. [DOI] [PubMed] [Google Scholar]
  2. Beck K. D., Knüsel B., Hefti F. The nature of the trophic action of brain-derived neurotrophic factor, des(1-3)-insulin-like growth factor-1, and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience. 1993 Feb;52(4):855–866. doi: 10.1016/0306-4522(93)90534-m. [DOI] [PubMed] [Google Scholar]
  3. Beitner-Johnson D., Guitart X., Nestler E. J. Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J Neurochem. 1993 Nov;61(5):1766–1773. doi: 10.1111/j.1471-4159.1993.tb09814.x. [DOI] [PubMed] [Google Scholar]
  4. Beitner-Johnson D., Guitart X., Nestler E. J. Neurofilament proteins and the mesolimbic dopamine system: common regulation by chronic morphine and chronic cocaine in the rat ventral tegmental area. J Neurosci. 1992 Jun;12(6):2165–2176. doi: 10.1523/JNEUROSCI.12-06-02165.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beitner-Johnson D., Nestler E. J. Chronic morphine impairs axoplasmic transport in the rat mesolimbic dopamine system. Neuroreport. 1993 Oct 25;5(1):57–60. doi: 10.1097/00001756-199310000-00014. [DOI] [PubMed] [Google Scholar]
  6. Beitner-Johnson D., Nestler E. J. Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J Neurochem. 1991 Jul;57(1):344–347. doi: 10.1111/j.1471-4159.1991.tb02133.x. [DOI] [PubMed] [Google Scholar]
  7. Berhow M. T., Hiroi N., Nestler E. J. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci. 1996 Aug 1;16(15):4707–4715. doi: 10.1523/JNEUROSCI.16-15-04707.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berhow M. T., Russell D. S., Terwilliger R. Z., Beitner-Johnson D., Self D. W., Lindsay R. M., Nestler E. J. Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience. 1995 Oct;68(4):969–979. doi: 10.1016/0306-4522(95)00207-y. [DOI] [PubMed] [Google Scholar]
  9. Fadda E., Negro A., Facci L., Skaper S. D. Ganglioside GM1 cooperates with brain-derived neurotrophic factor to protect dopaminergic neurons from 6-hydroxydopamine-induced degeneration. Neurosci Lett. 1993 Sep 3;159(1-2):147–150. doi: 10.1016/0304-3940(93)90820-b. [DOI] [PubMed] [Google Scholar]
  10. German D. C., Manaye K. F. Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol. 1993 May 15;331(3):297–309. doi: 10.1002/cne.903310302. [DOI] [PubMed] [Google Scholar]
  11. Grace A. A., Bunney B. S. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates. Neuroscience. 1983 Oct;10(2):317–331. doi: 10.1016/0306-4522(83)90136-7. [DOI] [PubMed] [Google Scholar]
  12. Grace A. A., Onn S. P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci. 1989 Oct;9(10):3463–3481. doi: 10.1523/JNEUROSCI.09-10-03463.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris G. C., Aston-Jones G. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature. 1994 Sep 8;371(6493):155–157. doi: 10.1038/371155a0. [DOI] [PubMed] [Google Scholar]
  14. Harris H. W., Nestler E. J. Immunohistochemical studies of mesolimbic dopaminergic neurons in Fischer 344 and Lewis rats. Brain Res. 1996 Jan 8;706(1):1–12. doi: 10.1016/0006-8993(95)01088-2. [DOI] [PubMed] [Google Scholar]
  15. Hosokawa T., Rusakov D. A., Bliss T. V., Fine A. Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J Neurosci. 1995 Aug;15(8):5560–5573. doi: 10.1523/JNEUROSCI.15-08-05560.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hurd Y. L., Lindefors N., Brodin E., Brené S., Persson H., Ungerstedt U., Hökfelt T. Amphetamine regulation of mesolimbic dopamine/cholecystokinin neurotransmission. Brain Res. 1992 Apr 24;578(1-2):317–326. doi: 10.1016/0006-8993(92)90264-a. [DOI] [PubMed] [Google Scholar]
  17. Hyman C., Juhasz M., Jackson C., Wright P., Ip N. Y., Lindsay R. M. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci. 1994 Jan;14(1):335–347. doi: 10.1523/JNEUROSCI.14-01-00335.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson S. W., North R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992 Feb;12(2):483–488. doi: 10.1523/JNEUROSCI.12-02-00483.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koob G. F. Drug addiction: the yin and yang of hedonic homeostasis. Neuron. 1996 May;16(5):893–896. doi: 10.1016/s0896-6273(00)80109-9. [DOI] [PubMed] [Google Scholar]
  20. Koob G. F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992 May;13(5):177–184. doi: 10.1016/0165-6147(92)90060-j. [DOI] [PubMed] [Google Scholar]
  21. Kuhar M. J., Ritz M. C., Boja J. W. The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci. 1991 Jul;14(7):299–302. doi: 10.1016/0166-2236(91)90141-g. [DOI] [PubMed] [Google Scholar]
  22. Mansour A., Watson S. J., Akil H. Opioid receptors: past, present and future. Trends Neurosci. 1995 Feb;18(2):69–70. [PubMed] [Google Scholar]
  23. Marty S., Peschanski M. Effects of target deprivation on the morphology and survival of adult dorsal column nuclei neurons. J Comp Neurol. 1995 Jun 12;356(4):523–536. doi: 10.1002/cne.903560404. [DOI] [PubMed] [Google Scholar]
  24. Nestler E. J., Hope B. T., Widnell K. L. Drug addiction: a model for the molecular basis of neural plasticity. Neuron. 1993 Dec;11(6):995–1006. doi: 10.1016/0896-6273(93)90213-b. [DOI] [PubMed] [Google Scholar]
  25. Nestler E. J. Molecular mechanisms of drug addiction. J Neurosci. 1992 Jul;12(7):2439–2450. doi: 10.1523/JNEUROSCI.12-07-02439.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nestler E. J. Under siege: The brain on opiates. Neuron. 1996 May;16(5):897–900. doi: 10.1016/s0896-6273(00)80110-5. [DOI] [PubMed] [Google Scholar]
  27. Novick D. M., Richman B. L., Friedman J. M., Friedman J. E., Fried C., Wilson J. P., Townley A., Kreek M. J. The medical status of methadone maintenance patients in treatment for 11-18 years. Drug Alcohol Depend. 1993 Oct;33(3):235–245. doi: 10.1016/0376-8716(93)90110-c. [DOI] [PubMed] [Google Scholar]
  28. O'Callaghan J. P., Miller D. B. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther. 1994 Aug;270(2):741–751. [PubMed] [Google Scholar]
  29. Oades R. D., Halliday G. M. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res. 1987 May;434(2):117–165. doi: 10.1016/0165-0173(87)90011-7. [DOI] [PubMed] [Google Scholar]
  30. Onn S. P., Grace A. A. Dye coupling between rat striatal neurons recorded in vivo: compartmental organization and modulation by dopamine. J Neurophysiol. 1994 May;71(5):1917–1934. doi: 10.1152/jn.1994.71.5.1917. [DOI] [PubMed] [Google Scholar]
  31. Rocha M., Sur M. Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8026–8030. doi: 10.1073/pnas.92.17.8026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Segal M. Morphological alterations in dendritic spines of rat hippocampal neurons exposed to N-methyl-D-aspartate. Neurosci Lett. 1995 Jun 30;193(2):73–76. doi: 10.1016/0304-3940(95)11665-j. [DOI] [PubMed] [Google Scholar]
  33. Self D. W., McClenahan A. W., Beitner-Johnson D., Terwilliger R. Z., Nestler E. J. Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration. Synapse. 1995 Dec;21(4):312–318. doi: 10.1002/syn.890210405. [DOI] [PubMed] [Google Scholar]
  34. Self D. W., Nestler E. J. Molecular mechanisms of drug reinforcement and addiction. Annu Rev Neurosci. 1995;18:463–495. doi: 10.1146/annurev.ne.18.030195.002335. [DOI] [PubMed] [Google Scholar]
  35. Seroogy K. B., Gall C. M. Expression of neurotrophins by midbrain dopaminergic neurons. Exp Neurol. 1993 Nov;124(1):119–128. doi: 10.1006/exnr.1993.1182. [DOI] [PubMed] [Google Scholar]
  36. Sesack S. R., Pickel V. M. Ultrastructural relationships between terminals immunoreactive for enkephalin, GABA, or both transmitters in the rat ventral tegmental area. Brain Res. 1995 Feb 20;672(1-2):261–275. doi: 10.1016/0006-8993(94)01391-t. [DOI] [PubMed] [Google Scholar]
  37. Shi W. X., Bunney B. S. Effects of neurotensin on midbrain dopamine neurons: are they mediated by formation of a neurotensin-dopamine complex? Synapse. 1991 Nov;9(3):157–164. doi: 10.1002/syn.890090302. [DOI] [PubMed] [Google Scholar]
  38. Shi W. X., Rayport S. GABA synapses formed in vitro by local axon collaterals of nucleus accumbens neurons. J Neurosci. 1994 Jul;14(7):4548–4560. doi: 10.1523/JNEUROSCI.14-07-04548.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Skaper S. D., Negro A., Facci L., Dal Toso R. Brain-derived neurotrophic factor selectively rescues mesencephalic dopaminergic neurons from 2,4,5-trihydroxyphenylalanine-induced injury. J Neurosci Res. 1993 Mar 1;34(4):478–487. doi: 10.1002/jnr.490340413. [DOI] [PubMed] [Google Scholar]
  40. Sorg B. A., Chen S. Y., Kalivas P. W. Time course of tyrosine hydroxylase expression after behavioral sensitization to cocaine. J Pharmacol Exp Ther. 1993 Jul;266(1):424–430. [PubMed] [Google Scholar]
  41. Spenger C., Hyman C., Studer L., Egli M., Evtouchenko L., Jackson C., Dahl-Jørgensen A., Lindsay R. M., Seiler R. W. Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp Neurol. 1995 May;133(1):50–63. doi: 10.1006/exnr.1995.1007. [DOI] [PubMed] [Google Scholar]
  42. Spina M. B., Squinto S. P., Miller J., Lindsay R. M., Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem. 1992 Jul;59(1):99–106. doi: 10.1111/j.1471-4159.1992.tb08880.x. [DOI] [PubMed] [Google Scholar]
  43. Stein-Behrens B., Mattson M. P., Chang I., Yeh M., Sapolsky R. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci. 1994 Sep;14(9):5373–5380. doi: 10.1523/JNEUROSCI.14-09-05373.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Studer L., Spenger C., Seiler R. W., Altar C. A., Lindsay R. M., Hyman C. Comparison of the effects of the neurotrophins on the morphological structure of dopaminergic neurons in cultures of rat substantia nigra. Eur J Neurosci. 1995 Feb 1;7(2):223–233. doi: 10.1111/j.1460-9568.1995.tb01058.x. [DOI] [PubMed] [Google Scholar]
  45. Switzer R. C., 3rd Silver staining methods: their role in detecting neurotoxicity. Ann N Y Acad Sci. 1993 May 28;679:341–348. doi: 10.1111/j.1749-6632.1993.tb18319.x. [DOI] [PubMed] [Google Scholar]
  46. Vrana S. L., Vrana K. E., Koves T. R., Smith J. E., Dworkin S. I. Chronic cocaine administration increases CNS tyrosine hydroxylase enzyme activity and mRNA levels and tryptophan hydroxylase enzyme activity levels. J Neurochem. 1993 Dec;61(6):2262–2268. doi: 10.1111/j.1471-4159.1993.tb07468.x. [DOI] [PubMed] [Google Scholar]
  47. Woolley C. S., McEwen B. S. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci. 1994 Dec;14(12):7680–7687. doi: 10.1523/JNEUROSCI.14-12-07680.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhou J., Bradford H. F., Stern G. M. The response of human and rat fetal ventral mesencephalon in culture to the brain-derived neurotrophic factor treatment. Brain Res. 1994 Sep 5;656(1):147–156. doi: 10.1016/0006-8993(94)91376-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES