Skip to main content
. 2013 Oct 29;2013:720834. doi: 10.1155/2013/720834

Table 5.

Optimal FS methods for each dataset.

FS accuracy % FM ES SI LR
Feature selection method CFS ChiS MRMR WSA CFS ChiS MRMR WSA CFS ChiS MRMR WSA CFS ChiS MRMR WSA
Original no. of attributes 74 74 74 74 68 68 68 68 88 88 88 88 75 75 75 75
No. of attributes after FS 8 55 30 20 17 53 30 21 20 71 30 29 32 32 30 31
Classification algorithm
 J48 63.1783 64.7287 63.5659 67.4419 61.25 59.375 57.5 64.375 73.1618 66.1765 74.6324 64.7059 94 92.3333 70 94
 BFTree 71.7054 68.9922 62.0155 76.3566 58.125 56.25 65 65.625 83.0882 79.7794 85.6618 81.25 93.3333 91.6666 68 93.3333
 FT 74.031 79.0698 72.8682 82.5581 64.375 78.125 65.625 88.75 97.4265 88.9706 93.75 88.2353 72.6667 71 69.3333 76
 LMT 63.5659 92.4419 73.6434 97.6744 60.625 83.125 70 88.125 96.3235 92.4465 91.9118 87.8676 86.6667 85 66.6667 86.6667
 NBTree 71.7054 63.1783 63.1783 70.155 51.25 59.375 67.5 66.25 n/a n/a n/a n/a 67.3333 65.6666 66.6667 68
 RandomForest 73.6434 70.5426 67.8295 72.8682 61.875 74.375 71.25 73.125 90.4412 74.2647 81.9853 81.9853 90.6667 89 70.6667 90.6667
 RandomTree 64.7287 59.6899 55.814 70.155 45 66.25 57.5 67.5 69.1176 61.7647 69.4853 63.9706 85.3333 83.6666 84.6667 85.3333
 REPTree 72.093 72.093 67.4419 73.6434 56.875 61.25 60 64.375 84.9265 84.1912 79.4118 83.4559 94.6667 93 66.6667 94.6667
 ConjunctiveRule 55.814 55.814 48.8372 65.8915 54.375 55 55 56.25 n/a n/a n/a n/a 66.6667 65 65.3333 66.6667
 DecisionTable 70.155 70.155 53.876 68.6047 57.5 56.25 61.875 52.5 67.2794 58.8235 63.2353 59.5588 93.3333 91.6666 77.3333 93.3333
 FURIA 71.7054 77.1318 63.9535 74.8062 62.5 68.75 64.375 53.125 80.5147 62.5 78.6765 86.3971 84 82.3333 70 84
 JRip 72.8682 71.7054 67.8295 73.6434 66.25 54.375 58.125 55 74.2647 34.9265 72.0588 65.4412 98 96.3333 66.6667 98
 NNge 68.9922 66.6667 55.814 63.5659 53.125 46.25 52.5 50.625 92.6471 91.1765 92.2794 81.25 87.3333 85.6666 69.3333 87.3333
 OneR 50.3876 50.3876 54.2636 54.2636 54.375 54.375 54.375 61.25 55.1471 55.1471 49.2647 49.2647 93.3333 91.6666 54 93.3333
 PART 64.3411 68.6047 62.4031 68.6047 58.75 56.875 58.125 70.625 73.5294 67.2794 80.5147 71.3235 94 92.3333 69.3333 94
 NaiveBayes 70.9302 64.7287 67.4419 67.0543 64.375 68.75 58.75 58.75 95.2206 76.8382 86.0294 72.0588 78.6667 77 64 78.6667
 Bagging 73.2558 75.1938 70.155 75.969 63.75 64.375 68.75 53.125 89.3382 85.6618 84.9265 86.3971 93.3333 91.6666 66.6667 94.6667
 LibSVM 66.6667 87.5969 63.5659 89.9225 n/a n/a n/a n/a n/a n/a n/a n/a 57.3333 55.6666 46.6667 57.3333
 MultilayerPerceptron 68.6047 79.0698 72.4806 89.5349 63.75 70.625 61.875 66.875 91.9118 93.75 93.75 86.3971 100 98.3333 70 100
 SMO 72.4806 77.907 73.6434 79.4574 76.875 75.625 61.875 67.5 93.0147 93.75 93.3824 80.5147 98 96.3333 76 99.3333
Mean accuracy % 68.04263 70.78489 64.03102 74.108535 59.73684 63.65132 61.57895 64.40789 82.78547 74.55568 80.64448 75.88668 86.43333 84.76663 67.90001 86.76667
Time (s) 0.78 2.867 3.56 31.275 1.03 3.328 1.439 441.476 1.91 3.815 3.26 3585 1.39 2.17 4.8 906