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The piperazine derivatives have been shown to inhibit human acetylcholinesterase. Virtual screening by molecular docking
of piperazine derivatives 1-(1,4-benzodioxane-2-carbonyl) piperazine (K), 4-(4-methyl)-benzenesulfonyl-1-(1,4-benzodioxane-2-
carbonyl) piperazine (S1), and 4-(4-chloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S3) has been shown to
bind at peripheral anionic site and catalytic sites, whereas 4-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S4) and
4-(2,5-dichloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S7) do not bind either to peripheral anionic site
or catalytic site with hydrogen bond. All the derivatives have differed in number of H-bonds and hydrophobic interactions. The
peripheral anionic site interacting molecules have proven to be potential therapeutics in inhibiting amyloid peptides aggregation
in Alzheimer’s disease. All the piperazine derivatives follow Lipinski’s rule of five. Among all the derivatives 1-(1,4-benzodioxane-
2-carbonyl) piperazine (K) was found to have the lowest TPSA value.

1. Introduction

Acetylcholinesterase (AChE) hydrolyses acetylcholine is
associatedwith nerves andmusclesmainly found in synapses.
AChE plays an important role in regulation of cholinergic
function. It has been shown to be involved in dysfunction of
the central cholinergic system in Alzheimer’s disease (AD).
It is a progressive neurodegenerative disorder, characterized
by an impairment of cognitive function leading to dementia.
The main characteristic features of the disease include 𝛽-
amyloid (A𝛽) plaques, neurofibrillary tangles, and their by
synaptic loss. AD is estimated to account for about 50–60%
dementia cases, in persons over 65 years of age [1]. Symptoms
of Alzheimer’s disease include memory loss, language deficit,
depression, agitation, and mood disturbances [2–4]. But the
exact cause for AD is still not known. Several hypotheses
tried to explain the cause of the disease [5]. Among those,
the oldest, on which most currently available drug therapies

are based, is the cholinergic hypothesis, which proposes that
AD is caused by reduced synthesis of the neurotransmitter
acetylcholine [1]. Even though the hypothesis failed to get
widespread support, but it can be stated that cholinergic
scarcity is responsible for the symptoms of AD [5]. This
led to the designing and synthesis of AChE inhibitors.
The inhibition causes an increase in the concentration of
acetylcholine in cholinergic synapse. This might ameliorate
the disease symptoms of AD [6, 7]. Tacrine, Donepezil,
Rivastigmine, and Galanthamine are so far approved drugs
by Food and Drug Administration (FDA) to treat AD in the
US. Alzheimer’s disease (AD) accounts for 50% of the cases of
dementia in elderly people and there are currently 2.5 to 4.0
million estimated Alzheimer’s disease patients in the United
States and some 17 to 25 million worldwide [8, 9].

Piperazine is currently the most important building
blocks in drug discovery with a high number of positive
hits encountered in biological screens of this heterocycle and
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Figure 1: Ligand structures: 1-(1,4-benzodioxane-2-carbonyl) piperazine (K), 4-(4-methyl)-benzenesulfonyl-1-(1,4-benzodioxane-2-
carbonyl) piperazine (S1), 4-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S4), 4-(2,5-dichloro)-benzenesulfonyl-1-(1,4-
benzodioxane-2-carbonyl) piperazine (S7), and 4-(4-chloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S3).

its congeners. A literature survey revealed that piperazine
derivatives are important pharmacophores across a number
of different therapeutic areas [10] and they act as antifungal
[11], antipsychotic [12], antimicrobial [12, 13], antioxidant [13],
antimalarial, and anti-HIV protease [14]. 1,4-Benzodioxane-
2-carboxylic acid (BCA) is a very important entity in medici-
nal chemistry since it was chiral building blocks in the design
and synthesis of chiral therapeutic agents [15].

Highly efficient resolutions of BCA with para substituted
1-phenylethylamines [16], crystallographic, theoretical, and

morphologic approach of (S)-1-phenylethylamine para sub-
stitution on the resolution of 1,4-benzodioxane-2-carboxylic
acid have been reported [17]. Recently, BCA was found to
be a potent, selective, and orally active prostaglandin D2
(PGD2) 4 receptor antagonist [15]. Enzymatic resolution of
ethyl 1,4-benzodioxane-2-carboxylate catalyzed by a micro-
bial esterase has been reported to produce optically active
BCA in good yield [18].

Presently, many drugs are available in the market like
Rivastigmine (Exelon), Donepezil (Aricept), Galantamine
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Figure 2: Effect of piperazine derivatives on AChE activity by
Ellman’s method.

(Reminyl), and Tacrine (Cognex). However, these drugs have
been reported for adverse side effects like vomiting, diarrhea,
hives, and liver toxicityni respectively. Several investiga-
tors have synthesized AChE inhibitors like alkylpyridium
polymers [19], dehydroevodiamine (DHED) [20], N-aryl-
substituted succinimides [21], lycorine derivatives [22], sal-
icylanilide N-alkylcarbamates [23], and 7-methoxytacrine-
adamantylamine heterodimers [24].

It is well known that AChE possesses two binding sites
for the neurotransmitter acetylcholine. Specifically, the active
center site that is located at the bottomof a 20 Å gorge, and the
peripheral binding site that is rich in hydrophobic residues
and is located at the rim of the gorge on the surface of the
enzyme [25, 26].

Accumulated evidence suggests that the present pre-
scribed drugs for the symptomatic treatment of AD have a
tendency of binding to both the peripheral anionic site (PAS)
and the catalytic site of AChE. Among these sites, the PAS site
is gaining more interest in designing novel drugs as the site is
involved in catalytic site allosteric modulation and also has
importance in noncholinergic functions like cell adhesion,
neurite outgrowth in developing and transformed neural cells
[28–31] and amyloidosis through an interaction with the
amyloid 𝛽-peptide in AD [32, 33], and it also has been shown
to interact with an omega loop on an adjacent AChE subunit
[34].

PAS site clustered around the entrance of the catalytic site
gorge. It is also associated with a number of surface loops
and enzymatically involved residues. Propidiumor fasciculin,
decidium, ethidium, gallamine, and drugs like donepezil,
galantamine majorly bind to this site [30, 32, 35–40]. Based
on present research interest, the hybrids of knownmarketing
drugs also have reported as potent AChE inhibitors and they
too have a binding affinity towards the PAS site [41]. But
because of bioavailability problems and possible side effects,
there is still great interest in finding better AChE inhibitors.

In the present paper we have reported AChE inhibi-
tion and virtual screening for chemically synthesized novel

piperazine derivatives to both PAS site and catalytic site of
huAChE and also studied the mechanism of interactions by
computational analysis. Furthermore, these derivatives were
also analyzed for drug likeness and permeability through
intestine and blood brain barrier.

2. Experimental

2.1. Materials and Methods. All solvents and reagents were
purchased from Sigma and Merck chemicals. All the piper-
azine compoundswere synthesized according to the literature
procedure [13].

2.1.1. AChE Inhibition Assay. The inhibitory effects of the
compounds Piperazine-K, Piperazine-S1, Piperazine-S3, Pip-
erazine-S4, and Piperazine-S7 obtained here were tested on
AChE in vitro by using Ellman’s method [42].

The Ellman’s reaction for assay of AChE involves the
use of a thiol reagent, namely, 5,5󸀠-dithiobis(2-nitrobenzoic
acid) (DTNB), also known as Ellman’s reagent, which is
reduced by the thiocholine generated by enzymic hydrolysis
of acetylthiocholine (ATCh) to yield the chromophore 2-
nitro-5-thiobenzoic acid. The assay solution consisted of
0.1M PBS buffer (pH 8.0) (3.0mL), with the addition of
0.01M 5,5󸀠-dithiobis(2-nitrobenzoic acid) (100 𝜇L) (DTNB,
Ellman’s reagent), 10 𝜇L substrate (Acetylthiocholine iodide,
0.075M), enzyme (human erythrocyte acetylcholinesterase
1 𝜇g in 0.1M PBS buffer of pH 8.0) (50𝜇L), and different
concentrations of derivatives. Incubate for 6minutes, at room
temperature with continuous gentle shake. Wait until the
yellow color develops and measure at 412 nm.

2.1.2. Ligand Preparation for Docking. The structures were
drawn by Chemsketch (http://www.acdlabs.com/resources/
freeware/chemsketch/) and converted to protein data bank
(PDB) file format by using Openbabel software (http://www
.openbabel.org/). Ligand preparation includes the addition
of hydrogen atoms, neutralization of the charge groups, and
removal of any miscellaneous structures from the ligand.
Prepared and optimized structures of ligands were used for
molecular docking.

2.1.3. Selection and Preparation of Receptor Protein. For
molecular modeling, Blastp was done for (GenBank:
AAA68151.1) acetylcholinesterase (Homo sapiens) with 614
amino acids. 100% similarity was found with 4EY4 PDB
file. This PDB structure of acetylcholinesterase at 2.16 Å
resolutions was retrieved from the Research Collaboratory
for Structural Bioinformatics (RCSB) Protein Data Bank
(PDB) (http://www.rcsb.org/). Then, water molecules, metal
ions, cofactors, and ligands were removed and used for
docking.

2.1.4. Binding Site Prediction. Binding sites were character-
ized by CASTp, ligsite, and Q-Site finder and compared by
an extensive literature search. By comparing prediction of
CASTp algorithm, ligsite, and Q-Site Finder, best binding
sites were selected. CASTp method was used to identify

http://www.acdlabs.com/resources/freeware/chemsketch/
http://www.acdlabs.com/resources/freeware/chemsketch/
http://www.openbabel.org/
http://www.openbabel.org/
http://www.rcsb.org/
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Figure 3: (a) Catalytic site docking of 1-(1,4-benzodioxane-2-carbonyl) piperazine (K)[Pymol view]. (b) Catalytic site docking of 1-(1,4-
benzodioxane-2-carbonyl) piperazine (K). (c) Peripheral anionic site docking of 1-(1,4-benzodioxane-2-carbonyl) piperazine (K).

and measure the binding sites, active sites, surface structural
pockets (accessible), interior cavities (inaccessible), shape
(alpha complex and triangulation), area and volume (solvent
and molecular accessible surface) of each pockets, and cavi-
ties of proteins. CASTp could be used tomeasure the number,
area, circumference of mouth openings of each pocket in
solvent, and molecular accessible surface. Ligsite is a new
program for the automatic and time-efficient detection of

pockets on the surface of proteins that may act as binding
sites for small molecule ligands and also is able to identify the
binding sites of small molecule ligands with high precision.
Q-site finder was used to predict the ligand binding site
on a protein. It involves the binding of hydrophobic probes
to proteins, searching probe clusters on the protein with
favorable binding energy, and arranging them in an order
according to the binding energy of each cluster.
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Figure 4: (a) Catalytic site docking of 4-(4-methyl)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S1). (b) Peripheral anionic
site docking of 4-(4-methyl)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S1).

2.1.5.MolecularDocking. Thedocking of acetylcholinesterase
was performed against piperazine derivatives by
using Autodock 4.2 (http://autodock.scripps.edu/wiki/
AutoDock4/), a novel and robust automated dockingmethod.
Possible favorable interactions (of minimum binding energy
and hydrogen bonding) with amino acids at possible target
sites (PAS and catalytic site) were determined by Lamarckian
genetic algorithm (LGA, method which is the most efficient,
reliable, and successful) and Genetic Algorithm. Autodock 4,
combines energy evaluation through grids of affinity
potential employing various search algorithms to find the
suitable binding position for a ligand on a given protein [43].

Prepared ligands were docked within the grid region
(grid size was set to 60∗60∗60 points with grid spacing
of 0.375 Å) which was set to the centre of active gorge of
AChE and also to the PAS site separately. Ten independent
docking runs were carried out for each ligand and results
were clustered according to the 1.0 RMSD criteria.The lowest
energy cluster returned by Autodock for each derivative
was used for further analysis. All other parameters were
maintained at their default settings.

2.1.6. Calculation of Molecular Properties. The molecular
properties were calculated on the basis of simple molecular

descriptors used by “Lipinski’s rule of five” [44, 45]. The five
properties consist ofmolecularweight, hydrogen bonddonor,
hydrogen bond acceptor, log 𝑃, and number of rotatable
bonds. The other significant property called total polar sur-
face area (TPSA) [46] metric for the optimization of a drug’s
ability to penetrate through intestinal and blood brain barrier
was also calculated using the online chemoinformatics soft-
ware molinspiration (http://www.molinspiration.com/).

3. Results and Discussion

Acetylcholine is the most abundant primary neurotrans-
mitter in brain, responsible for cholinergic function. AChE
plays important role in hydrolysis of acetylcholine. To date,
the available drug treatment for AD has been based on the
reduction of cognitive impairment by enhancing cholinergic
neurotransmission by acetylcholine and in turn inhibiting
AChE activity.

1-(1,4-Benzodioxane-2-carbonyl) piperazine (K) was syn-
thesized from 1,4-benzo dioxan-2-carbonyl chloride with
piperazine in dry DMF at 80∘C for 8 h. The progress of the
reactionwasmonitored by TLC. Furthermore, the intermedi-
ate 3 was reacted with various sulfonyl chlorides (R-SO

2
-Cl)

in DCM to obtain piperazine derivatives such as S1, S3, S4,
and S7 (Figure 1).

http://autodock.scripps.edu/wiki/AutoDock4/
http://autodock.scripps.edu/wiki/AutoDock4/
http://www.molinspiration.com/
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Figure 5: (a) Catalytic site docking of 4-(4-chloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S3). (b) Peripheral anionic
site docking of 4-(4-chloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S3).

The data obtained from biological evaluation done by
Ellman’s method, the piperazine derivatives exhibited AChE
inhibitory activity in a concentration dependent manner.
Among all the derivatives S3 showed significant inhibition
(Figure 2).

Based on the results from Ellman’s method, docking
studies were carried out to see the detailed interactions of
ligand with the enzyme. The best way to fit ligand molecules
(derivatives of piperazine), into AChE structure, by using
Autodock4.2 resulted in docking files that contained detailed
records of docking. The run with the lowest binding energy
conformation in all clusters was considered as the most
favorable docking pose. Binding energies that are reported are
representing the sum of the total intermolecular energy, total
internal energy, and torsional free energyminus the energy of
the unbound system.The obtained docked files were read and
converted to PDB format. Then, the docked PDB files were
employed by using software LigPlot+ v.1.4, (graphical front-
end to the LIGPLOT and DIMPLOT programs) for further
analysis. The software automatically generates schematic
diagrams of protein-ligand interactions for a given ligand in
a PDB file and the number of hydrogen and hydrophobic
interaction was predicted.

Docking analysis was carried out for both PAS and cat-
alytic site, and it was observed that most of the derivatives are
binding with hydrogen bonds and hydrophobic interactions

to the biologically involved residues of both sites. AChE active
center, which consists of the catalytic triad (Ser203, Glu334,
and His447) in mammals [47], proved to be effected with the
competitive inhibitors while others can influence steady state
parameters by associating with an allosteric PAS site remote
from the active center [48–50].

On catalytic site docking of the ligand K (Figure 3(a)), 2
hydrogen bonds were formed (Table 4), one between the O2
atomof the ligand and hydroxyl group of the TYR 337 residue
(biologically active residue of the PAS site) at a bond length
of 3.29 Å. Another hydrogen bond is formed between the
N2 atom of the ligand and carboxylic group of the ARG 296
residue of the enzyme at a bond length of 3.07 Å (Figure 3(b),
Table 1). Similarly, the same ligand was docked at PAS site,
formed 2 hydrogen bonds (Table 5), one between the alpha
amide nitrogen atom of the acyl binding pocket residue PHE
295 and O3 atom of the ligand at a bond length of 3.03 Å.
Another is formed between the hydroxyl group of active PAS
site residue TYR 124 and N2 atom of the ligand at a bond
length of 3.21 Å (Figure 3(c), Table 1). On sum up, ligand K
bonds only to the PAS site like the known allosteric inhibitors
decidium (DI), propidium (PI), ethidium, and gallamine
(GAL) [36–38, 48] salicylanilide N-Alkylcarbamates [23].

Likewise, the ligand S1 formed 2 hydrogen bonds on
catalytic site docking (Table 4), one between the O1 atom of
the ligand and N𝜀2 of the HIS 447 residue; main residue of
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Figure 6: (a) Catalytic site docking of 4-(2,5-dichloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S7). (b) Peripheral
anionic site docking of 4-(2,5-dichloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S7).

Table 1: Details of molecular interactions in the binding site and PAS sites of docked complexes.

Ligands
PAS site Catalytic site

Residue No. of
H bonds

No. of
hydrophobic
interactions

Site of
H bond Residues No. of

H bonds

No. of
hydrophobic
interactions

Site of
H bond

K PHE 295
TYR 124 2 7 𝛼N∗-O3+

OH∗-N2+
TYR 337
ARG 296 2 6 OH∗-O2+

C=O∗-N2+

S1 TYR 337 1 10 OH∗-O2+ HIS 447
TYR 337 2 12 N𝜀2∗-O1+

OH∗-O3+

S3 SER 293
TYR 337 2 9 OG∗-O5+

OH∗-O2+
HIS 447
TYR 337
SER 125

3 9
N𝜀2∗-O1+
OH∗-O3+
OG∗-O5+

S4 — 0 10 — — 0 13 —
S7 — 0 10 — ARG 296 1 10 𝛼N∗-CL2+
∗Atom from amino acid residues, +atom from ligand.
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catalytic triad is at a bond length of 3.34 Å. Another hydrogen
bond is formed between the O3 atom of the ligand and
hydroxyl group of the TYR 337 residue, active residue of PAS
site at a bond length of 3.9 Å (Figure 4(a), Table 1). Similarly
the ligand S1 was docked at PAS site which formed only one
hydrogen bond (Table 5) between hydroxyl group of the TYR
337 residue and O2 atom of the ligand at a bond length of
3.63 Å (Figure 4(b), Table 1).

Correspondingly the ligand S3 formed 3 hydrogen bonds
on catalytic site docking (Table 4), one between the O1 atom
of the ligand and N𝜀2 of the HIS 447 residue, main residue of
catalytic triad at a bond length of 3.33 Å. Another hydrogen
bond is formed between the O3 atom of the ligand and
hydroxyl group of the TYR 337 residue at a bond length of
3.87 Å. One more hydrogen bond is formed between the
O5 atom of the ligand and hydroxyl group of the SER 125
residue; active residue of PAS site is at a bond length of 2.56 Å
(Figure 5(a), Table 1).

Equally, the ligand S3 was docked at PAS site which
formed 2 hydrogen bonds (Table 5), one between theO2 atom
of the ligand and hydroxyl group of the TYR 337 residue at

a bond length of 3.66 Å. Whereas the other hydrogen bond
is formed between the O5 atom of the ligand and hydroxyl
group of the SER 293 residue at a bond length of 3.56 Å
(Figure 5(b), Table 1). Totting up, the ligand S1 and S3 bind
to both the residues of PAS and catalytic site (Tyr337 and
His447) (Table 1) which showed a similar kind of binding
pattern to Donepezil [39, 51] and act as dual-site binding
inhibitors. The other reported dual site inhibitors are 7-
methoxytacrine-adamantylamine heterodimers [24] and 2,3-
dihydro-1H-cyclopenta[b] quinoline derivatives [52].

In the same way, the S7 forms only one hydrogen bond on
catalytic site docking (Table 4) that is between alpha amide
nitrogen atom of ARG 296 and second chlorine atom of
ligand at a bond length of 3.77 Å (Figure 6(a), Table 1) but
there is no hydrogen bond formation on PAS site docking
(Figure 6(b), Tables 1 and 5). Furthermore, ligand S4 did not
form hydrogen bond with any of the residues on docking
at both PAS and catalytic site, even though it forms major
hydrophobic interactions with the biologically active residues
(Figures 7(a) and 7(b), Table 1). All these 5 ligands also
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Table 2: Comparisons of free energy of binding and inhibition constants of the derivatives on both PAS and catalytic site.

Drug (ligand)
molecule

PAS site Catalytic site
Estimated free

energy
of binding (Δ𝐺),

kcal/mol

Estimated
inhibition
constant
(𝐾
𝑖
) 𝜇M

Total
intermolecular
energy, kcal/mol

Estimated free
energy of

binding (Δ𝐺),
kcal/mol

Estimated
inhibition

constant, (𝐾
𝑖
) 𝜇M

Total
intermolecular
energy, kcal/mol

1-(1,4-Benzodioxane-2-
carbonyl)piperazine-K −8.15 1.06 −8.45 −7.33 4.27 −7.62

4-(4-Methyl)-
benzenesulfonyl-1-(1,4-
benzodioxane-2-carbonyl)
piperazine-S1

−9.90 0.05578 −10.79 −4.33 672.74 −5.22

4-Benzenesulfonyl-1-(1,4-
benzodioxane-2-carbonyl)
piperazine-S4

−9.79 0.06643 −10.69 −6.65 13.45 −7.54

4-(2,5-Dichloro)-
benzenesulfonyl-1-(1,4-
benzodioxane-2-carbonyl)
piperazine-S7

−11.42 0.00426 −12.02 −11.42 0.00424 −12.02

4-(4-Chloro)-
benzenesulfonyl-1-(1,4-
benzodioxane-2-
carbonyl)piperazine-S3

−9.97 0.04881 −10.87 −4.05 1080 −4.94

Table 3: Lipinski’s rule of five and ∗topological polar surface area (TPSA), permeability factor values of derivatives.

Ligand Num H
acceptors

Num H
donors MiLog 𝑃 Number of

rotatable bonds
Molecular Wt
In daltons

TPSA∗
in Å2

K 5 1 0.104 1 248.28 50.804
S1 7 0 2.056 3 402.46 76.157
S4 7 0 1.608 3 388.44 76.157
S7 7 0 2.892 3 457.33 76.157
S3 7 0 2.286 3 422.88 76.157

formed number of hydrophobic interaction with majority of
the biologically active residues (Tables 4 and 5).

Docking results also generated the inhibition constants
(𝐾
𝑖
) and free energy of binding (Δ𝐺) values (Table 2). Among

all the derivatives, S7 showed the lowest free energy of bind-
ing and the highest number of hydrophobic interactions.The
Δ𝐺 and 𝐾

𝑖
values of the derivatives were comparable to the

values of the FDA approved drugs tacrine (−6.95 kcal/mol,
8.03 𝜇M), rivastigmine (−5.61 kcal/mol, 77.72 𝜇M), and galan-
tamine (−7.86 kcal/mol, 1.73 𝜇M) [53].

Furthermore, the derivatives also have drug likeness by
obeying the Lipinski’s rule of five (Table 3); rule with five
properties to predict the chemical compound with a certain
pharmacological or biological activity that would make it a
likely orally active drug in humans. The derivatives were also
checked for ability to permeate through intestine and blood
brain barrier (BBB) by calculating the permeability factor and
topological polar surface area (TPSA) [46, 54].

Among all the derivatives, ligand K (50.8 Å2) was pre-
dicted to be highly permeable as the calculated TPSA value

(in Å squared) was below 70 Å2 (Table 3) as its suggested that
molecules greater than 140 Å2 will have poor permeability
through intestine and BBB. Till recent discoveries, the vast
majority of CNS drugs have a TPSA value below 70 Å2
[54]. Consequently, the ligand K value with acceptable TPSA
value is comparable to the FDA approved drugs (TPSA
value in brackets) tacrine (38.9 Å2), rivastigmine (32.8 Å2),
galantamine (41.9 Å2) and donepezil (38.8 Å2).

4. Conclusion

This paper reports the biological and computational analysis
of the synthesized novel piperazine derivatives as potent
AChE inhibitors. The ligands S1 and S3 showed the qualities
of being a dual site inhibitor. Furthermore, all the derivatives
illustrated drug likeness representing the oral activeness in
humans. The ligand K is predicted to be permeable through
intestine and blood brain barrier on the basis of TPSA value.
And, thus, the derivatives have the therapeutic potential for
the treatment of Alzheimer’s disease.
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Table 4:The residues from eachHuAChE active site subsites (Wiesner et al., [27]) and its interaction with derivatives at catalytic site docking.

Biologically active
sites of HuAChE Residues Catalytic site docking

K S1 S3 S4 S7

Catalytic triad
Ser 203 — — — — —
Glu 334 — — — — —
His 447 — H-bond H-bond — —

Oxyanion hole
Gly 121 Hydrophobic Hydrophobic Hydrophobic Hydrophobic —
Gly 122 — — — — —
Ala 204 — — — — —

Anionic subsite

Trp 86 — Hydrophobic Hydrophobic — Hydrophobic
Tyr 133 — — — — —
Gly 202 — — — — Hydrophobic
Gly 448 — — — — Hydrophobic
Ile 451 — — — — —

Acyl binding pocket

Trp 236 — — — — —
Phe 295 — — Hydrophobic Hydrophobic —
Phe 297 Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic
Phe 338 Hydrophobic Hydrophobic — Hydrophobic Hydrophobic

Peripheral anionic site

Asp 74 — — — — —
Tyr 124 — — — Hydrophobic —
Ser 125 — Hydrophobic H-bond Hydrophobic —
Trp 286 Hydrophobic — — — —
Tyr 337 H-bond H-bond H-bond Hydrophobic Hydrophobic
Tyr 341 Hydrophobic Hydrophobic — Hydrophobic Hydrophobic

Table 5: The residues from each HuAChE active site subsites (Wiesner et al., [27]) and its interaction with derivatives at pas site docking.

Biologically active
sites of HuAChE Residues PAS site docking

K S1 S3 S4 S7

Catalytic triad
Ser 203 — — — — —
Glu 334 — — — — —
His 447 — — — Hydrophobic —

Oxyanion hole
Gly 121 — Hydrophobic Hydrophobic Hydrophobic —
Gly 122 — — — — —
Ala 204 — — — — —

Anionic subsite

Trp 86 — — — Hydrophobic Hydrophobic
Tyr 133 — — — — —
Gly 202 — — — Hydrophobic —
Gly 448 — — — Hydrophobic —
Ile 451 — — — — —

Acyl binding pocket

Trp 236 — — — — —
Phe 295 H-bond — — Hydrophobic Hydrophobic
Phe 297 — Hydrophobic Hydrophobic Hydrophobic Hydrophobic
Phe 338 — Hydrophobic Hydrophobic — Hydrophobic

Peripheral anionic site

Asp 74 — — — — —
Tyr 124 H-bond — Hydrophobic — —
Ser 125 — — — — —
Trp 286 Hydrophobic Hydrophobic hydrophobic — Hydrophobic
Tyr 337 Hydrophobic H-bond H-bond Hydrophobic Hydrophobic
Tyr 341 Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic
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