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Abstract

Background: The advent of genome-wide association studies has led to many novel disease-SNP associations,
opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these
associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to
associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a
biological perspective and those methods currently implemented are often permutation-based.

Results: One property of some permutation-based tests is that their power varies as a function of whether significant
markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We
therefore develop two methods for quantifying the degree of association between a genomic region and outcome,
both of whose power does not vary as a function of LD structure. One method uses dimension reduction to “filter”
redundant information when significant LD exists in the region, while the other, called the summary-statistic test,
controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of
this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an
estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate
when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and
compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the
versatility of the modification of the summary-statistic test since the specification of correlation structure between
markers can be inaccurate.

Conclusion: We find a significant association in the sequence data between the 8q24 region and oral cleft using our
dimension reduction approach and a borderline significant association using the summary-statistic based approach.
We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic
Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the
modification of this test because the correlation structure is assumed imperfectly known.
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Background
The focus in genetic association studies has been on
uncovering loci that are risk factors for an outcome, be
it binary or continuous, or markers in linkage disequilib-
rium (LD) with those causal loci. Increasingly, however,
gene-based tests are coming to the forefront, especially
as sequencing technologies mature and grow cheaper
[1-3]. Gene-based tests are useful to provide insight into
whether a region of the genome has a significant asso-
ciation with some outcome and for inter-gene signif-
icance comparisons, despite differences in the size of
genes [4,5]. Development of such tests is difficult, how-
ever, as markers are usually correlated with one another
and have highly variable minor allele frequencies [6]. As
a result, tests have often been born more out of prac-
ticality or computational ease. Some gene-based tests
take the smallest p-value over all the markers in the
region. Others, such as that implemented in PLINK, take
a more sophisticated approach, converting p-values of
markers to χ2

1 test statistics, averaging those tests statis-
tics, then comparing it to a null distribution generated
from permutations of the outcome under the null [1,7].
Liu et al. (2010) use a similar, though more efficient
method, in which they again convert marker p-values
to χ2

1 test statistics, take the sum of those test statis-
tics, then generate a null distribution by sampling from
sums of correlated χ2

1 random variables. Both approaches
are intuitive and valuable ways to assess gene signifi-
cance, though in both cases the power for detection of
a gene becomes not only a function of the effect size of
the individual markers, but the degree to which mark-
ers are in LD with one another. For example, assuming
only one marker in the region has a truly non-zero effect
size, power for detecting that effect will be higher if the
marker is in high LD with other markers than if it is
independent of them. Moskvina et al. (2012) indepen-
dently made this observation, having noticed that the
significance of regions they tested changed according to
how much they pruned markers in high LD with one
another [8].

One way to think about why this phenomenon occurs
is that, rather than transforming the test statistic so that
markers highly correlated with one another “mean less”
because they do not contribute independent information,
they transform the null distribution for certain markers
under the null to “mean more.” As a result, the type 1
error is maintained, but power varies as a function of the
correlation between the marker and surrounding mark-
ers. Intuitively, this is not a desirable property because
it will lead to a systematic under-detection of those loci
that happen to be independent of proximal markers even
though they are inherently no less important in predicting
the outcome. This issue becomes particularly problem-
atic for sequence data since there would generally be

even more correlation. However, the issue is a zero-sum
trade-off; what results in less power for detection of sin-
gle nucleotide polymorphisms (SNPs) in low LD trans-
lates to more power for detection of SNPs in high LD.
Though, if there is an underlying common function or
characteristic of those genomic regions whose signifi-
cant SNPs are not in high LD, perhaps due to when
they first occurred in evolutionary history, such regions
will likely be missed in association analyses so that
potentially key regions will not be studied in greater
depth. As a result of this shortcoming, which may be
more or less important depending on the specific LD
structure of the genomic region under study, we pro-
pose two methods, one of which transforms summary
Z-statistics from univariate regressions of markers so
that it follows a standard parametric distribution under
the null hypothesis and power does not vary with the
LD structure, and the second of which uses an Eigen
decomposition of the information matrix to find the
“effective” amount of information in the region and
increases power by performing a more parsimonious test.
If the information matrix is evaluated under the null,
this latter test is essentially a dimension-reduced score
test analogue to a method described in [2,3], which finds
the principal components of the data matrix. Specif-
ically, for the first approach we propose, we find Z-
statistics associated with each marker in our region and
the correlation matrix of the markers and perform a
χ2 test, an approach similar to that proposed by Yang
et al. (2012) [9]. In case the correlation matrix is imper-
fectly known, we propose a modification of this test that
adjusts the correlation structure to protect the type 1
error. In the latter approach, we calculate the eigenvec-
tors associated with the information matrix to obtain
a most powerful linear combination of the scores, on
which we again perform a χ2 test after having nor-
malized by the variance of the loadings. These two
approaches are proposed for different situations: the
dimension reduction approach for when there is cor-
relation between markers and the analyst has access
to the original data, and the summary-statistic test for
when the analyst only has access to Z-statistics from
univariate regressions of the outcome on the marker
along with an estimate of the correlation matrix of
the markers in the population from which they come.
Moskvina et al. (2012) also propose solutions, one of
which is based on Hotelling’s T2 test, while another is
based on multivariate logistic regression, though con-
cludes that both perform similarly. We compare these
various approaches under different structures of LD and
effect size. We apply our methods to a case-control
sequence data set of oral cleft and an already-published
GWAS study of Chronic Obstructive Pulmonary Disorder
(COPD) [10].



Swanson et al. BMC Genetics 2013, 14:108 Page 3 of 12
http://www.biomedcentral.com/1471-2156/14/108

Methods
Description of permutation-based gene tests
First we show how power differs for permutation-based
gene tests as a function of linkage disequilibrium from a
theoretical perspective. When we refer to permutation-
based gene tests, we mean gene-based tests in which the
sum of the χ2 statistics for markers is taken and then an
empirical p-value is calculated by permuting case-control
status to generate a null distribution. By Imhof (1961), in
connection with Liu et al. (2010), we know that the null
distribution of the permutation-based test is

∑q
i=1 λiχ

2
1 ,

where χ2
1 is a chi-squared random variable on 1 d.f., λi is

the ith eigenvalue of �, the q × q correlation matrix of the
SNPs comprising the gene to be tested. Under the alter-
native, the distribution is approximately

∑q
i=1 λiχ

2
1 (δ2

i ),
where the non-centrality parameter δi is calculated
δi = vt

i · μ/
√

λi, where vi is the eigenvector of � corre-
sponding to λi, and μ is the q-dimensional mean of the
multivariate normal distribution of Z-statistics calculated
for univariate regressions of each SNP. μ is a function
of the power for detection of each SNP in the gene.
The distribution under the alternative is approximately∑q

i=1 λiχ
2
1 (δ2

i ), rather than exactly, because the correla-
tion matrix of marker Z-statistics coming from univariate
regressions diverges from the correlation structure of the
covariates when under the alternative. However, so long
as there is not significant variation between observations
in the true probability of being a case, this divergence
will not be relevant. Since the relative risk of disease con-
ferred by most minor alleles is small, it is likely that the
approximation is valid in most studies.

Suppose there is a single causal SNP X1 and, without loss
of generality, it is the first entry in the (q+2)-marker gene
and q other SNPs, Zi, 1 ≤ i ≤ q, are correlated with it but
do not cause the outcome. Also assume that the correla-
tion coefficient between X1 and Zi is ρi, and the last SNP,
X2, is uncorrelated with X1 and does not cause the out-
come. The first entry of μ, which represents the mean of
the Z-statistic for X1, can be written k1 ·√n for some num-
ber k1 where n is the sample size. Since the asymptotic
relative efficiency for using Zi rather than X1 is ρ2

i , the ith

entry of μ, that associated with Zi, can be written k1·ρi·√n
[11,12]. The entries of μ1, the (q+2)-dimensional mean of
the Z-statistics corresponding to the permutation-based
gene test when the causal SNP is X1, are

μ1
T = (k1

√
n, k1 ·ρ1

√
n, k1 ·ρ2

√
n, . . . , k1 ·ρq

√
n, 0).

In contrast, suppose that the correlation structure
among SNPs is the same, that is, Cor(X1, Zi) = ρi for
1 ≤ i ≤ q, but X1 does not cause the outcome, and instead
X2, the SNP uncorrelated with all other (q + 1) markers,
causes the outcome and to the same degree as X1 did so in

the previous scenario. Then μ2, the (q + 2)-dimensional
mean in this case is

μ2
T = (0, 0, 0, . . . , 0, k1

√
n).

If Q ≡ ∑q
i=1 λiχ

2
1 (δ2

i ), the power of an size α (i.e., type
1 error rate) permutation-based gene test is P(Q > c∗),
where c∗ is the (1 − α) quantile of the random vari-
able

∑q
i=1 λiχ

2
1 . The intuition behind the power gains for

causal SNPs in regions of LD is that the non-centrality
parameters δi will generally be larger when the causal SNP
is in a region of LD than when it is not. Providing greater
rigor than this intuition is difficult because the calculation
of δi for all 1 ≤ i ≤ (q + 2), even in the simple case of
ρi = ρj for all 1 ≤ i ≤ q, can be complicated. However,
sampling from the appropriate distributions demonstrates
that there is greater power to detect a gene-outcome asso-
ciation when the causal SNP is in a region of LD. Figure 1
shows that under the alternative of gene-outcome asso-
ciation and for a fixed effect size and ρi = ρj = ρ for
1 ≤ i ≤ q, i.e., the (q + 2)× (q + 2) correlation matrix � is

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ . . . ρ 0
ρ 1 ρ . . . ρ 0
ρ ρ 1 . . . ρ 0
...

...
...

. . .
...

...
ρ ρ ρ . . . 1 0
0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

the distribution of the test statistic Q when the causal SNP
in the gene is in a region of LD is stochastically greater
than the distribution when the causal SNP in the gene

Figure 1 Q-Q plot of permutation-based gene test statistic
under alternative for correlated region versus uncorrelated
region. The higher the correlation in the LD block containing the
causal SNP, the more power relative to the causal SNP not in the LD
block using the permutation-based test. Lines are labelled with the
correlation coefficient for SNPs in the block.
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is not in a region of LD. As a result, power is greater
to detect a gene whose causal SNP is in a region of LD
for a test of any size α in a permutation-based gene test.
Figure 1 was generated assuming a gene consisting of 7
markers, where 6 markers were correlated with coefficient
ρ, shown for values 0.2, 0.5, and 0.8 in the figure, with the
causal SNP in the LD block (y-axis) versus not in the LD
block (x-axis). While the example may seem contrived, if
we consider q = 10 so that our gene consists of 12 SNPs
in total, the correlation structure in this example is simi-
lar to choosing the first 12 SNPs of BRCA1 [13], in which
case ρ ≈ 0.96, and where the last row and column above
would be approximately 0.24 rather than 0. As a result,
the variation in power observed when using permutation-
based tests may have real-world import on the groupings
of SNPs able to be detected.

Figures 2 and 3 demonstrate from a graphical perspec-
tive how permutation-based gene tests can have variable
power as the LD structure changes. The figures illustrate
that there is more power for the permutation-based gene
test when causal SNPs are in high LD blocks as com-
pared to causal SNPs in low LD blocks. Additionally, if a
causal SNP is not in LD with other SNPs, but large LD
blocks exist in the gene, power for the permutation-based
gene test decreases as the size of the block increases. Data
were generated with a minor allele frequency of all SNPs
of approximately 0.3 with Hardy-Weinberg equilibrium
assumed, and, within the LD block, correlation between
SNPs was approximately 0.65, whereas SNPs not in the
LD block were independent of one another. The gene con-
sisted of 20 SNPs, and there were 600 subjects with an

Figure 2 Power for permutation-based gene test as a function of
causal SNP’s location relative to correlated region and effect
size. There is more power to detect a SNP in high LD with other,
non-causal SNPs (solid, black line), than a SNP in low LD (dashed, blue
line) for an identical effect size.

Figure 3 Power for permutation-based gene test as a function of
causal SNP’s location relative to correlated region and size of LD
block. For a constant effect size, size of the LD block in which the
causal SNP is (or is not) located is related to the power for detection.
The black, solid power curve refers to the permutation-based gene
test when the causal SNP is in the LD block, and the blue, dashed
power curve refers to the test when the causal SNP is not in the LD
block.

equal number of cases and controls. Power calculations
were based on 1000 iterations at each effect size (Figure 2)
or LD block size (Figure 3). We calculated power at 18 dif-
ferent effect sizes (Figure 2), with the effect size ranging
from a log odds ratio (OR) of 0 to 1.2, and 20 different
LD block sizes (Figure 3), with the LD block size rang-
ing from 1 SNP to 20 SNPs. So when the size was 20
SNPs, the LD block was the entirety of our hypothetical
gene (Figure 3). Binary outcomes were generated assum-
ing a logistic regression model, where the presence of the
causal SNP determined probability of being a case or con-
trol. Simulations assumed a single causal marker to clearly
illustrate how power changes as a function of location of
the SNP within the LD structure, though as the theoreti-
cal work above shows, the result holds for any number of
causal markers.

As described in the Additional file 1 section of the
manuscript, the authors have posted an R script online
that allows one to see power variation for permutation-
based gene tests as a function of the correlation struc-
ture, power to detect the causal marker (in a univariate
regression), and its location relative to the other SNPs
comprising the gene.

Description of summary statistic based test
We first describe a simple solution to the problem of
how LD structure can affect the power to detect genomic
regions in which there are significant SNPs. Our solution
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is based on the Z-statistics associated with each marker
and the correlation matrix of the SNPs. Since we propose
this test as one that can be used without a full data set,
we propose a modification of it in case the true corre-
lation structure is not perfectly known or it is believed
that study participants are not reflective of the population
from which the correlation of SNPs are calculated (such as
with HapMap reference panels).

One solution to the problem of under-detection of SNPs
in low LD posed by permutation tests is transformation
of the gene-based test statistic so that under the null it
follows a standard parametric distribution, rather than
creating a non-standard null distribution through per-
mutations. One way to accomplish this task, and one in
which it is unnecessary to reanalyze data, is to perform
a joint test on the Z-statistics coming from a univariate
regression model for each marker. It is a an approach sim-
ilar to that described by Yang et al. (2012), though uses
summary statistics directly rather than estimated model
coefficients. Since the estimated covariance structure of
these statistics under the null is the correlation of the
markers themselves [14], one can use the data to estimate
the covariation of the Z-statistics or an online database of
LD or correlation structure of SNPs. The intuition behind
this result is that if two markers are highly correlated,
then when by chance under the null, one marker is sig-
nificant (or insignificant), the other marker will similarly
be significant (or insignificant). However, if two mark-
ers are not correlated, then the chance significance or
insignificance of one marker will not inform the signif-
icance of the other marker. And since Z-statistics have
variance 1 by definition, their covariance matrix is iden-
tical to their correlation matrix. Thus, supposing we have
q markers, which, from previous studies, are known to
have Z-statistics of Z = (Z1, . . . , Zq)T , and which have
correlation structure V , then under the null hypothesis
of no marker being associated with the outcome, T ≡
ZT V −1Z ∼ X2

q . One then rejects the null of no associa-
tion between the region composing the q markers and the
outcome for an extreme value of the test statistic T using
a pre-determined α level.

If one is not confident that V accurately reflects the cor-
relation of the SNPs in the data matrix and therefore Z
under the null hypothesis (because V is an estimate possi-
bly coming from a reference panel if the original data is not
available and the analysis is performed only with access to
summary Z-statistics), it is possible to construct a more
conservative test by shrinking the off-diagonal elements of
V towards 0. Thus, if V is an estimate of the covariance of
the SNPs, one can compute V ∗

γ ≡ γ V + (1 − γ )Iq, where
Iq is a q × q identity matrix and 0 ≤ γ ≤ 1.

Again using [15], if Z ∼ MVN(0, V ) but we use V ∗
γ as an

estimate of the correlation structure in the gene based test,
then ZT V ∗−1

γ Z ∼ ∑q
i=1 λi ·χ2

1 where q is the dimension of

vector Z, and where λi is the ith eigenvalue of V V∗−1
γ . By

construction of V ∗−1
γ ,

∑q
i=1 λi < dim(Z) for 0 < γ < 1,

where dim(·) the dimension of the vector argument. This
fact in itself does not not necessarily imply a more con-
servative test for all size α tests because when eigenvalues
are not equal to one another as is the case for the decom-
position of V V ∗−1

γ with V �= V ∗−1
γ ,

∑k
i=1 λi < dim(Z)

can be true, but ZT V∗−1
γ Z is not stochastically less than

χ2
dim(Z)

, the null distribution of the test statistic when
the correlation structure is correctly known. However, for
modest values of γ (i.e., 0.8-1.0, where 1.0 corresponds to
no transformation), the test using the adjusted correlation
matrix will generally be more conservative. It is difficult to
obtain simple solutions for how much conservative a test
will be using this modification since it will depend on the
quantile corresponding to the intended type 1 error and
the specific V V∗−1

γ .
Thus, to give a practical sense of useful values of γ , we

borrowed a correlation structure of eight SNPs in the INS-
IGF2 gene of Chromosome 11 from the CEU reference
panel in one case and the CHB+JPT reference panel in the
other case [13]. If the true, underlying population giving
rise to the SNPs was more reflective of the CEU reference
panel, but the analyst incorrectly guessed the correlation
structure to be that of the CHB+JPT reference panel when
performing the summary statistic gene-based test,the type
1 error rate for a nominal 0.05 size test would in fact
be a highly inflated 0.61. Similarly, if the true, underlying
population giving rise to the SNPs was more reflective of
the CHB+JPT reference panel, but the analyst incorrectly
guessed the correlation structure to be that of the CEU
reference panel for the summary statistic gene-based test,
the type 1 error rate for a nominal 0.05 size test would be
0.69. If the type 1 error is inflated in one scenario, there
is no implication that it will be deflated in the ’inverse’
scenario.

In the scenario where the underlying population was
more reflective of the CEU panel, the type 1 error using
our modified summary statistic test with adjusted correla-
tion matrix and γ ’s of 0.9, 0.5, and 0.3 led to reduced error
rates of 0.36, 0.11, and 0.09, respectively, instead of 0.61.
When the underlying population was CHB+JPT, the type
1 error using our adjustment correlation matrix and γ ’s of
0.9, 0.5, and 0.3 led to reduced error rates of 0.45, 0.10, and
0.07, respectively, instead of 0.69.

Type 1 error rates were calculated by sampling from an
eight-dimensional multivariate normal distribution with
mean vector 0 (i.e., under the null) and unit variance for all
elements, but whose correlation structure corresponded
to the “true” correlation structure of the population in any
one of these two situations described, be it that of the
CEU or CHB+JPT panel. We then multiplied each sample,
Z1, . . . Zn, with n = 2000, by the estimated correlation
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matrix, Vγ , by taking ZT
i V −1

γ Zi, where V was taken from
the panel unreflective of the truth (e.g., the CEU correla-
tion structure was used for an underlying, true correlation
structure corresponding to the CHB+JPT panel and vice
versa) and possibly modified with the γ parameter. To find
the error rate, we calculated the probability mass beyond
the 0.95 quantile of χ2

8 , the distribution ZT
i V −1

γ Zi would
follow if Var(Zi) = Vγ (i.e., assuming the true correlation
of Zi was known).

While in all cases, the nominal size of the test is not
quite achieved, type 1 error is greatly reduced, and in some
cases will be achieved when divergence between correla-
tion structures of the true and hypothesized populations
are not as great as that in these scenarios. The greatest
reduction in type 1 error occurs with initial deviation of
γ from 1; i.e., a movement of γ from 1 (indicating an
unadjusted correlation matrix) to 0.9 will reduce type 1
error more than a movement of 0.6 to 0.5. And, as men-
tioned, with very small values of γ , there is not necessarily
a guarantee of continued reduction in type 1 error for
some nominal α level tests, nor should such γ values
be used if indicative of no confidence in one’s estimated
correlation matrix.

To simulate a less drastic divergence between true and
estimated correlation matrices and assess error rates and
the proposed adjustment method in that context, we
generated correlation matrices whose entries were beta-
distributed random variables with means corresponding
to the entries in the CHB+JPT reference panel and stan-
dard deviation approximately 0.03-0.04 (approximately
because standard deviation is partly a function of the
mean). With a population whose underlying correlation
structure was in truth reflective of the CHB+JPT panel,
but using the generated correlation matrices in our cal-
culations of the test statistic, the average type 1 error
rate was 0.19. Adjusting the generated correlation matri-
ces according to our method and with a γ value of 0.95,
the error rate was reduced to 0.05. Adjustment of the gen-
erated correlation matrices with a γ value of 0.90 led to a
type 1 error rate of 0.03.

The summary statistic based test we have proposed is
a viable way of performing gene-based testing when one
does not want power to vary as a function of the cor-
relation structure of the SNPs composing the gene. A
weakness of such an approach is an inability to know
the underlying correlation structure of the SNPs used
in the univariate regression analyses giving rise to the
Z-statistics used in the summary statistic test. We have
shown that incorrect guesses of the underlying correla-
tion structure can lead to a significant increase in the
type 1 error rate and therefore have proposed an adjust-
ment method which can lead to achievement of error rates
in line with the nominal size of the test. However, since
by supposition of this setting the correlation structure

of SNPs is never known, it is impossible to know the
needed value of γ . As a result, it may be best to perform
one’s summary statistic based test with γ values rang-
ing from 0.8-1.0 as a sensitivity analysis to see how one’s
conclusions change based on different values. Values of γ

smaller than 0.8 probably reflect little confidence in the
estimated correlation structure, in which case feasibility of
the analysis in the first place should be reassessed.

Description of Eigen decomposition-based test
The above approach controls for the LD structure of the
region under study by transforming the test statistic so
that LD no longer affects the power to detect significant
regions. However, there are other ways one can make use
of the LD structure to construct more powerful tests, such
as by dimension reduction. Consider an extreme example
where an investigator is interested in a region with d
SNPs, and these SNPs are in nearly perfect LD so that a
correlation matrix of them has off-diagonal entries close
to 1. Because they are highly correlated, the association
between any SNP and the outcome adds little information
on top of that between any other SNP and the outcome. As
a result, intuition may tell us that using a d-d.f. test on the
region after having properly accounted for the underly-
ing LD structure is not the most powerful approach since
there is essentially the information of 1 SNP contained in
the entire region. On the other hand, it is difficult to jus-
tify focusing on any one SNP over another as one might do
when “tagging” the region. Also, while no additional SNP
contributes much information over another, there is still
some amount of additional information contained in each
one that, ideally, would not be ignored.

Finding the eigenvectors and values of the information
matrix is one way to approach this scenario. Unlike the
previously proposed summary statistic test, this analy-
sis approach requires the original SNP data. It gleans the
essential information from the LD block, thus stripping
away extraneous information that dilutes the power of
proposed tests while avoiding the arbitrariness of prun-
ing the number of SNPs being examined. It is an approach
similar to finding the principal components of the data
matrix and then regressing the outcome on those com-
ponents if the information matrix is evaluated under the
null [2,3] and may even be thought of as a score test
analogue to it. If certain covariates have been shown to
control for population stratification, it also may be fitting
for the matrix to be evaluated under the alternative using
the estimated effect sizes of those covariates. Also, as sim-
ulations demonstrate, there may be power gains under
certain correlation structures or when effect or sample
sizes are small. Since the information matrix is the covari-
ation of the scores associated with each marker and since
score functions of highly correlated markers are correlated
as well, identifying the chief axes of the covarying scores is
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synonymous with finding the eigenvectors of the informa-
tion matrix. One can then detect small deviations from the
mean under the null hypothesis, the 0 vector, by perform-
ing a parsimonious test. Additionally, if we are considering
the underlying model to be that of logistic regression, both
the information matrix and the score have simple forms
and are computationally tractable.

We now describe how to construct the test, which will
place no constraint on estimation of the intercept, but
reduce the dimension of the covariates underlying the
scores. The score function associated with the jth marker
under a logistic regression model is

S(βj) = ∂L(β)

∂βj
=

∑
i

yixij −
∑

i
nixij

exp(
∑

k βkxik)

1 + exp(
∑

k βkxik)
.

While the (j, l)th entry in the information matrix is

Iq+1 (j,l) = Cov(S(βj), S(βl)) = Cov(
∑

i
yixij,

∑
i

yixil)

=
∑

i
xijxilP(yi = 1){1 − P(yi = 1)}

=
∑

i
xijxil

exp(
∑k

m=0 βmxim)

{1 + exp(
∑k

m=0 βmxim)}2
,

where we could estimate P(yi = 1) under an intercept-
only model, i.e., the proportion of cases, or another model
that included potential confounders. For the sake of expla-
nation, we will proceed as if using the intercept-only
model. The information matrix for the logistic regression
model is then

Iq+1 =

⎡
⎢⎢⎢⎣

Iq+1 (1,1) Iq+1 (1,2) . . . Iq+1 (1,q+1)

Iq+1 (2,1) Iq+1 (2,2) . . . Iq+1 (1,q+1)

...
...

. . .
...

Iq+1 (q+1,1) Iq+1 (q+1,2) . . . Iq+1 (q+1,q+1)

⎤
⎥⎥⎥⎦ ,

where, as is consistent from our definition of Ij,l, Il,j = Ij,l.
Also, I is (q+1)× (q+1) because there are q markers and
1 intercept available for use in the model.

Now define Iq to be the q ×q information matrix for the
covariates, not including the intercept. That is, Iq is Iq+1
without the first column and first row of Iq+1. Iq can be
decomposed into E W E−1, where E ≡ (e1, e2, · · · , eq)

is a matrix of the q eigenvectors ei, 1 ≤ i ≤ q, and
W ≡ diag(λ1, λ2 · · · , λq) is a diagonal matrix of the
corresponding eigenvalues λi, 1 ≤ i ≤ q. While one
can use a variable number of eigenvectors in the analy-
sis, if we suppose that we are in the situation described
above where all d markers are highly correlated, then mak-
ing use of just the first component may be sufficient to
adequately encompass the information contained in the
genomic region. More generally, a systematic criterion for
deciding which eigenvectors to use is employing all those

whose associated eigenvalues are larger than the average
eigenvalue.

For the sake of explanation, we suppose first that we will
construct the test using only the eigenvector associated
withe largest eigenvalue and then generalize later. Denote
e1 the first column of E and vector associated with the
largest eigenvalue (assume the columns of E are ordered
according to decreasing eigenvalue). The interpretation
of e1 is the axis of maximum variation of the distribu-
tion whose covariance matrix is Iq, and λ1, the associated
eigenvalue, can be interpreted as the variation along that
axis. Since Iq is q × q, e1 is a (q × 1) unit eigenvector.
Define a new 2 × 2 information matrix I∗ as I∗

(1,1) ≡
Iq+1 (1,1), I∗

(2,2) ≡ λ1, and I∗2,1 = I∗1,2 = e1T · Iq (,1),
where Iq (,1) is the first column of Iq, vT denotes the trans-
pose of vector v, and e1T · Iq (,1) denotes the dot product
of vectors e1 and Iq (,1). The test statistic for the 1 d.f.
score test analogue of the method described in [2,3] is
then (St · e1)2·[ (I∗ −1)(2,2)], where S is the q-dimensional
vector of scores associated with the q markers, which fol-
lows a χ2

1 distribution under the null hypothesis of no
gene-outcome association.

To generalize the method to using p eigenvectors, sim-
ilar to regressing the outcome on the first p principal
components of the data matrix, again perform an Eigen
decomposition of Iq, and define e1, . . . , ep as the p unit
eigenvectors of length q associated with the p largest
eigenvalues. Call those associated eigenvalues λ1, . . . , λp.
Define a new information matrix I∗∗ as I∗∗

(1,1) =
Iq+1 (1,1), I∗∗

(m,m) = λm (where 2 ≤ m ≤ p), I∗∗
(m,n) =

I∗∗
(n,m) = 0 (where m �= n and 2 ≤ m, n ≤ p), and

I∗∗
(m,1) = I∗∗

(1,m) = emT · Iq (,1) (where 1 < m ≤ p
and Iq (,1) denotes the first column of IqY ). Note that the
off-diagonals of I∗∗ which are neither the first row nor
first column are zero by the orthogonality of eigenvectors;
i.e., for 1 < m, n ≤ p, m �= n, I∗∗

(m,n) = I∗∗
(n,m) =

eT
n · Iq · em = eT

m · Iq · en = 0. I∗∗ is (p + 1) × (p + 1) and
looks as follows

I∗∗ =

⎡
⎢⎢⎢⎢⎢⎣

Iq+1 (1,1) e1T · Iq (,1) e2T · Iq (,1) . . . epT · Iq (,1)

e1T · Iq (,1) λ1 0 . . . 0
e2T · Iq (,1) 0 λ2 . . . 0

...
...

...
. . .

...
epT · Iq (,1) 0 0 . . . λp

⎤
⎥⎥⎥⎥⎥⎦

Define I∗∗−1
p×p as the lower-right p × p sub-matrix

of I∗∗−1. The test statistic is ST · (e1 . . . ep) · I∗∗−1
p×p ·

(e1 . . . ep)T · S, which follows a χ2
p distribution under the

null hypothesis of no gene-outcome association, where
again S is a vector of scores of length q.

Oftentimes in GWAS, population stratification can
obscure the relationship between markers (or groups of
markers) and outcomes. In these settings, it is necessary
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to account for stratification by fitting models with covari-
ates or ancestry informative markers (AIM) that adjust for
the different populations composing the sample. Reducing
the dimension of such covariates along with the mark-
ers making up the gene renders them less effective if not
useless for their intended purpose of controlling for pop-
ulation stratification. Thus, it is necessary to construct a
score test where only a chosen subset of the covariates
have their dimension reduced and the information matrix
is evaluated under the alternative for those covariates
whose dimension is not reduced. Doing so is not diffi-
cult and only requires treatment of the adjusting covariate
in the quasi-information matrix as we treated the inter-
cept in I∗∗, where the off-diagonal entries were a linear
combination of the appropriate eigenvector and q-length
sub-column of the original information matrix. So sup-
pose there are q markers and we only want to reduce the
dimension of the last (q − 1) of this group. Let I(q+1) be
the (q + 1) × (q + 1) information matrix and define I(q−1)

as the lower right (q − 1) × (q − 1) sub-matrix of I(q+1).
Decompose I(q−1) into E′ W ′ E′−1, where E′ is the matrix
of (q − 1) eigenvectors, e′

j for 1 ≤ j ≤ (q − 1), of I(q−1)

and W ′ is the diagonal matrix of corresponding eigenval-
ues, λ′

j for 1 ≤ j ≤ (q − 1), and we use E′ and W ′ to
differentiate these matrices from those defined above and
not to indicate the transpose of these matrices. Suppose
we want to use the first p′ eigenvectors for our test of the
(q − 1) markers in the group whose dimension we reduce
and where p′ ≤ (q − 1). The quasi-information matrix is
defined

I∗∗∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Iq+1 (1,1) Iq+1 (1,2) e′
1

T · Iq−1 (,1) . . . e′
p′

T · Iq−1 (,1)

Iq+1 (2,1) Iq+1 (2,2) e′
1

T · Iq−1 (,2) . . . e′
p′

T · Iq−1 (,2)

e′
1

T · Iq−1 (,1) e′
1

T · Iq−1 (,2) λ′
1 . . . 0

...
...

...
. . .

...
e′

p′
T · Iq−1 (,1) e′

p′
T · Iq−1 (,2) 0 . . . λ′

p′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Analogous to the test statistic defined in the previous
test, define I∗∗∗−1

p′×p′ as the lower-right (p′×p′) sub-matrix
of I∗∗∗−1 and S′ as the vector of scores associated with
the (q − 1) markers whose dimension we reduce. The test
statistic is S′T · (e′

1 . . . e′
p′) · I∗∗∗−1

p′×p′ · (e′
1 . . . e′

p′)T · S′,
which follows a χ2

p′ distribution under the null hypothesis
of no gene-outcome association.

While there was extended discussion of the type 1 error
rate for the previous, summary statistic, test, and how it
varies as a function of the shrinkage parameter, γ , since
V was considered possibly misspecified, there is no such
necessary discussion of type 1 error for the Eigen decom-
position test; since we assume perfectly known data for
the Eigen decomposition test, it is a relatively standard,
parametric, hypothesis test so that asymptotic results hold
and type 1 error rates correspond to the nominal size of
the test.

Results and discussion
Simulation results for summary statistic based test and
comparison with Hotelling’s T2

Moskvina et al. propose a test based on Hotelling’s T2.
If one knows the true information matrix, it is a mul-
tivariate score test and follows a X2 distribution under
the null. Supposing that there are q markers and S =
(S(β1), . . . , S(βq))T , the associated scores, and the true
information matrix is I, then under the null of no marker
being associated with the outcome, ST I−1S ∼ X2

q . Simi-
larly, and as described above, the summary statistic based
test uses the Z-statistics associated with univariate logistic
regression models, Z, and the marker correlation matrix,
V , so that under the null hypothesis and assuming V is
perfectly known, T ≡ ZT V −1Z ∼ X2

q . While both of these
approaches use similar information (i.e., some measure of
SNP significance not controlling for other SNPs and an
estimate relating to the correlation of those measures), in
simulation the summary statistic based approach seems
to have slightly less power than the Hotelling’s T2 test,
but the difference is almost non-existent in many cases
(Figure 4), and the summary statistic based test also
seems to be more conservative, again assuming a perfectly
known correlation structure V. Importantly, however, the
summary statistic approach does not require the original,

Figure 4 Power comparison for a Hotelling’s T2 approach versus
summary statistic test as a function of effect size. Power
comparison of Moskvina et al.’s method (solid, black line) with our
summary statistic based method (dashed, blue line) when the causal
SNP is in a block of high LD. This graph looks identical to that when
the causal SNP is not in a block of high LD because the power for
both methods is not a function of the correlation of the SNPs and
where causal SNPs are located relative to regions of correlation. Q-Q
plot of permutation-based gene test statistic under alternative for
correlated region versus uncorrelated region.
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individual-level data, which is not the case with Hotelling’s
T2. Power for the summary statistic based approach does
not vary as a function of whether the causal SNP in the
gene is in a region of LD or not (Figure 5), and, for a con-
stant effect size, power does not vary as a function of the
size of the LD block in the gene (Figure 6).

Simulations were generated under the same frame-
work as we used with the permutation test simulation
above. Covariates were generated with a minor allele fre-
quency of approximately 0.3, and, within any LD block,
correlation between SNPs was again approximately 0.65,
whereas SNPs not in the LD block were independent
of one another. We assumed Hardy-Weinberg equilib-
rium. The gene consisted of 20 SNPs, and there were
600 subjects with an equal number of cases and con-
trols. Power calculations were based on 1000 iterations
at each effect size (e.g., Figure 5) or LD block size (e.g.,
Figure 6). Lastly, binary outcomes were generated assum-
ing a logistic regression model, where presence of the
causal SNP determined the probability of being a case or
control.

Simulation results for Eigen decomposition-based test
We examine in simulation performance of the dimension-
reduced score test when a single causal SNP was in an LD
block and compare this proposed test with the method
described in [2,3], in addition to 1 d.f. score and Wald tests
of the causal SNP and a 1 d.f. Wald test of a tagging SNP.
Figure 7 shows relative performance of these methods
when there was no LD between SNPs in the gene, while

Figure 5 Power comparison for summary statistic test when
causal SNP is in an LD block versus not in an LD block. A SNP in
high LD with other, non-causal SNPs (solid, black line), has no more
power to be detected with the summary statistic test than a SNP in
low LD (dashed, blue line).

Figure 6 Power comparison for summary statistic test when
causal SNP is in an LD block versus not in an LD block as a
function of size of the LD block. Test working as desired since
power is constant across LD block sizes for fixed effect size regardless
of whether the causal SNP is in the LD block (solid, black line) or no in
the LD block (dashed, blue line).

Figure 8 compares methods when correlation was approx-
imately 0.15 between any pair of SNPs in the gene. We see
that the performance of the Eigen decomposition-based
test performed better relative to the method proposed
in [2,3] when the LD block was more weakly correlated.
As the correlation increases, power of these two methods
converges. Direct testing of the causal SNP, be it through a

Figure 7 Power comparison for different dimension-reduction
tests when there is no correlation in gene. Power comparison
between the Eigen-based test (red, dashed line) and Gauderman’s
method (solid, black line), along with a direct test of the causal SNPs
(Wald and Score test lines are purple and blue, dashed, on top of one
another) and tagging SNP under no LD (light blue, dashed line).
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Figure 8 Power comparison for different dimension-reduction
tests when there is moderate correlation (ρ ≈ 0.25) in gene.
Power comparison between the Eigen-based test (red, dashed line)
and Gauderman’s method (solid, black line underneath line referring
to the Eigen test), along with a direct test of the causal SNPs (Wald
and Score test lines are purple and blue, dashed, on top of one
another) and tagging SNP under high LD (light blue, dashed line).

Wald or score test, performed best as expected, though of
course knowledge of the true causal SNP is generally never
known. Thus, we note that the Eigen decomposition-
based test performs better than testing of a tagging SNP
and makes unnecessary the need to decide which tag-
ging SNP to use. In Figure 8, even under weak LD, the
Eigen decomposition-based test pays little price in terms
of power for no knowledge of the true causal SNP.

The simulation framework for the Eigen decomposition
test differed slightly from that of the permutation-based
test and the summary statistic test. The gene consisted of
15 SNPs, and there were 800 subjects with an equal num-
ber of cases and controls. Power calculations were based
on 2000 iterations at each of effect size (Figures 7 and 8).
We calculated power at 11 different effect sizes, with the
effect size ranging from a log OR of 0 to 1.0. As described
in the previous paragraph, correlation scenarios varied
between independence of SNPs (Figure 7) to mutual cor-
relation of SNPs (Figure 8). Minor allele frequency again
fell in the range of “common” variants at 0.3 with Hardy-
Weinberg equilibrium assumed. Binary outcomes were
generated assuming a logistic regression model, and pres-
ence of the causal SNP and the effect size determined
probability of being a case or control.

Data analysis of oral cleft sequence data and COPD
summary statistics
We analyze a sequence data set composed of 192 cases
of cleft lip and 192 controls, on whom we have data for

14 SNPs. The data come from a GWAS in which a can-
didate gene was identified and then sequenced [16]. We
prune the data set so that any observations with miss-
ing values or deletions are excluded, giving 172 cases and
176 controls. We also prune SNPs so that any SNP with
a MAF less than 0.02 among either cases or controls is
excluded, leaving 8 SNPs. We calculate the correlation
matrix of SNPs by pooling cases and controls. Using the
summary statistic based test, we find that the region com-
posed of the 8 SNPs is associated with cleft lip (p=0.06).
Using the Eigen decomposition based test with the two
eigenvectors whose associated eigenvalue is bigger than
the average eigenvalue, we calculate a p-value of 0.017;
using 3 eigenvectors such that more than 80% of the varia-
tion in scores is explained, we calculate a p-value of 0.016.
Thus, as is consistent with the potential power gains posed
by dimension reduction, this latter test shows a stronger
association between the region of 8 SNPs and cleft lip.
For comparison, we also calculated a permutation test p-
value, giving 0.008 (5000 permutations), and a Hotelling’s
T2 p-value, giving 0.056 (non-parametric, permutation-
based p-value for this test gives 0.057). Assuming little
correlation among SNPs, one would expect the permuta-
tion test p-value to give a p-value similar to that of the
summary statistic based test. The greater significance of
the permutation test p-value suggests that a significant
SNP is in LD with other SNPs and examination of the
data matrix confirms this idea; a SNP whose p-value is
0.018 using a univariate logistic regression model is highly
correlated with one SNP (r=0.71) and moderately corre-
lated with another SNP (r=0.43). Since only 8 SNPs are
being analyzed, these two SNPs in LD with the significant
SNP may be driving the significance of the permutation
test.

We also apply the summary-statistic based test to results
borrowed from an already-published GWAS along with
information on the correlation of markers taken from
HapMap [10,13]. Pillai et al. (2009) identified 5 SNPs in
the CDKAL1 gene on Chromosome 6 to be associated
with Chronic Obstructive Pulmonary Disorder (COPD).
We run our summary statistic based test on their results.
Since the results come from a study of Norwegians, we
use the (CEU) reference panel from HapMap as an esti-
mate of the correlation structure of SNPs. The underlying
population is unlikely to be identical, however, and so we
adjust the correlation matrix, shrinking the off-diagonal
elements toward 0 as described in the modification of the
summary statistic based test to preserve the type 1 error
rate. We do so with γ values of 1 (i.e., assuming the corre-
lation structure is correct), 0.9, and 0.8, and corresponding
p-values for the 5 d.f. test are 0.0066, 0.003, and 0.001.
While the summary statistics we use are borrowed from
the 100 most significant SNPs of their analysis [10], the
high level of significance for tests corresponding to all γ
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values and non-arbitrary choice all SNPs in the chosen
gene suggest that there is likely some association between
the CDKAL1 gene and COPD. Since the test statistics are
themselves random variables, specific realizations of them
are not necessarily associated with increasing p-values as
one would anticipate with decreases in γ . However, work
above has shown that, in general, modest decreases in γ

should help preserve type 1 error.

Conclusion
With the availability of sequence data and GWAS, the
importance of statistical analysis is shifting from single-
locus tests to multi-loci tests that can cover genomic
regions, e.g., genes or even pathways. The motivation for
this development is to test a hypothesis more grounded
in biology and, at the same time, to reduce the multiple
testing problem and allow for many SNPs with a small
effect size to increase the power of the test by their
combined inclusion in the model. One of the theoreti-
cal issues that has so far not been addressed adequately
is the impact of LD on the power of the test statistic
in permutation-based gene tests. Controlling for the LD
between loci is important to assess the relative importance
of the different regions that are tested, especially when
LD heterogeneity between regions is significant. In this
paper, we have proposed 2 approaches that address this
issue.

While our summary statistic based test may give one
similar results to a Hotelling’s T2 based test, the sum-
mary statistic test does not require the original marker
data from which Z-statistics are calculated. This unique
advantage opens up the possibility for more in-depth anal-
ysis of previously published studies, and, with sufficient
methodological development, could even suggest sum-
mary statistic based pathway analyses when combined
with summary statistics from expression analyses. It also
opens up the possibility of cross-study gene-based tests,
where Z-statistics from the same markers are combined
across previously published GWAS to reap power gains.
A shortcoming of our summary statistic based test is that
if the estimated correlation structure used in the test is
not reflective of the underlying population, the test may
suffer from inflated type 1 error. We therefore proposed
an modification of the test by adjusting the estimated
correlation matrix, which, in general, should help con-
trol the error rate. If there is insufficient justification
for why the estimated correlation matrix is representa-
tive of the underlying population, the test should not be
used even with correlation matrix adjustment. If one has
the original SNP data, one can perform the dimension-
reduced score test proposed in this paper, reducing
the dimension to the number of eigenvectors that
explains some pre-determined proportion of variation in
the data.

Both of the proposed gene-based tests in this paper
fail to describe the direction of association between the
gene and outcome, instead describing only significance of
association. Direction of association is a difficult concept
to interpret when a gene is composed of multiple SNPs,
with some alleles protective and others a risk factor for
the outcome. One goal in gene-based testing might be to
gain an understanding of such a concept. Additionally and
with regard to dimension reduction approaches, if alleles
in a dimension-reduced block of SNPs are both protec-
tive and harmful, there could be a loss of power using a
dimension-reduction gene-based test. A test that used a
priori analyses to decide whether alleles are protective or
harmful and, in turn, used that information to inform the
dimension reduction process might be another valuable
area of research in gene-based testing.

Additional file

Additional file 1: R script for test implementation and checking
power variation for a permutation-based test. An R script
implementing the summary statistic test with correlation matrix
modification can be found at http://db.tt/bZz59KNO. Additionally, the
script includes a function with which researchers can see the variation in
power of a permutation-based gene-test as a function of placement of the
causal marker for a correlation matrix of their choosing. It allows the
researcher to see if there would be significant variation so that previously
implemented permutation-based tests can either be re-performed using
alternative methods or more confidence can be placed in already
implemented tests. The code is commented with a description of function
arguments and intended use.
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