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Human X-chromosome inactivation pattern
distributions fit a model of genetically influenced
choice better than models of completely random
choice

Nisa KE Renault*,1, Sonja M Pritchett2, Robin E Howell3, Wenda L Greer4, Carmen Sapienza5,
Karen Helene Ørstavik6,7 and David C Hamilton2

In eutherian mammals, one X-chromosome in every XX somatic cell is transcriptionally silenced through the process of

X-chromosome inactivation (XCI). Females are thus functional mosaics, where some cells express genes from the paternal X,

and the others from the maternal X. The relative abundance of the two cell populations (X-inactivation pattern, XIP) can have

significant medical implications for some females. In mice, the ‘choice’ of which X to inactivate, maternal or paternal, in each

cell of the early embryo is genetically influenced. In humans, the timing of XCI choice and whether choice occurs completely

randomly or under a genetic influence is debated. Here, we explore these questions by analysing the distribution of XIPs in

large populations of normal females. Models were generated to predict XIP distributions resulting from completely random or

genetically influenced choice. Each model describes the discrete primary distribution at the onset of XCI, and the continuous

secondary distribution accounting for changes to the XIP as a result of development and ageing. Statistical methods are used to

compare models with empirical data from Danish and Utah populations. A rigorous data treatment strategy maximises

information content and allows for unbiased use of unphased XIP data. The Anderson–Darling goodness-of-fit statistics and

likelihood ratio tests indicate that a model of genetically influenced XCI choice better fits the empirical data than models of

completely random choice.
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INTRODUCTION

Eutherian females have two X-chromosomes, while males have only
one. To compensate for the gene dosage inequality between the sexes,
one X in every XX somatic cell in females is transcriptionally silenced
early in embryologic development.1 An early step in this process,
X-chromosome inactivation (XCI), is the choice of which X, maternal
(Xm) or paternal (Xp), to inactivate (reviewed in Morey and Avner2).
An X-linked, cis-acting, non-coding RNA, XIST (or Xist in mouse),
located within the X-inactivation centre (XIC),3 is thought to respond
to this choice. It directs the epigenetic reprogramming of the future
inactive X, silencing nearly all X-linked genes, in cis.4 The choice of
which X to inactivate is faithfully maintained during mitosis (reviewed
in Heard et al5). Females are thus functional mosaics of cells
expressing paternal X genes and cells expressing maternal X genes.
This can affect disease expression in females,6–8 sparking interest in the
mechanism of XCI choice and the factors that influence X-inactivation
patterns (XIP). The XIP is defined as the relative abundance of
cells with the Xp active phase. When the parental origin of each
X-chromosome (the phase) is unknown, this is arbitrarily assigned.

When first described, the XCI hypothesis supposed that XCI choice
is completely random, based on the observation that most females
appear to have XIPs near 0.5 (ie, 50% of cells have the Xp active).1

However, further analysis indicated that XIPs in mice are influenced
by genetic background.9–12 Cattanach and Isaacson9,10 proposed
that a cis-acting X-controlling element (Xce) biases XCI choice by
influencing the propensity for each X-chromosome to be inactivated.
They determined that there are at least three co-dominant Xce alleles,
Xcea, Xceb, and Xcec, where the Xcea allele has the weakest association
with the active X and the Xcec allele the strongest. Xce-homozygous
mice have XIPs close to 0.5 (balanced XIP), whereas heterozygous
mice have XIPs differing significantly from 0.5 (skewed XIP),
where the X with the strongest Xce is active in a greater number
of cells.

It is not clear whether human XCI choice is genetically influenced
or the mouse Xce paradigm is applicable. If it is genetically influenced,
this would have important implications for the risk of disease
expression in some females. Experimental data do support a human
XCE hypothesis,13–17 though definitively answering the question has
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been difficult due to the challenges in defining and assigning XIP
phenotypes. Defining XIP phenotypes is challenging because of its
continuous nature. Often, an arbitrary threshold is defined, typically
0.7518 or 0.80,14 above which XIPs are considered to be skewed and
below which XIPs are considered to be random. However, these
thresholds have no theoretical basis, and the terminology is confusing
in that it implies that randomness results exclusively in XIPs near
0.50, and that skewedness arises purely from aberrant XCI. Further,
the threshold method defines only two XIP phenotypes, which may
not be sufficient to study the XCI process. An approach examining
XIP distributions may be more appropriate.

Defining XIP phenotypes may be facilitated by elucidating the
precise number of cells (c) undergoing XCI choice. For technical
and ethical reasons, it has not been possible to observe the onset of
human XCI to precisely determine the timing of XCI choice. Several
groups have attempted to calculate c based on the standard deviation
(SD) of XIPs sampled from large populations of females, with
estimates ranging from 7 to 16 cells.19–22 One study also estimated
c to be between 10 and 12 cells by graphically comparing the
distribution of XIPs in a population of newborns, represented by a
histogram, with various normal distributions defined by discrete
values of c.21 However, the generation of the histogram required
sorting XIPs into phenotype bins of arbitrary, and in that case
inconsistent, size. This reduces the information content of the
distribution and may inappropriately group some XIPs together.
Further, both of these approaches rely on a simple normal model of
XCI choice in which a discrete binomial distribution is approximated
by a normal distribution.19 This is only appropriate if XCI choice
is independent in each cell and if Xm and Xp have an equal
probability of being chosen for inactivation, assumptions that do
not explain all of the available data. Also, for both the calculated
and graphical approaches, the directionality of the ratio of cell
populations is arbitrarily assigned in cases where phase is unknown.
This is not the most rigorous approach, and could artificially skew
XIP distributions.

Assigning individuals to XIP phenotypes is challenging as the XIP
at the time of measurement (typically adulthood) can differ from the
primary XIP established at the onset of XCI. Proliferation or survival
differences between the maternal- and paternal-X-active populations
can result in changes to the XIP during development (secondary
skewing). This is particularly striking in carriers of X-linked diseases
such as Wiskott-Aldrich Syndrome, who have completely skewed XIPs
in peripheral blood.23 Also, XIPs become more skewed with age (age-
associated skewing, AAS24), particularly in individuals over 55 years
of age and in hematopoietic cell lineages.13

To address these technical issues and explore the nature of
human XCI choice, we (1) describe a new XIP data treatment strategy
that does not require binning XIP phenotypes or arbitrarily assigning
phase when this is unknown, (2) propose modifications and
extensions of the model of completely random XCI choice that
accommodates secondary skewing, (3) compare these models
with XIP distributions in populations of phenotypically normal
females using an Anderson–Darling (AD) goodness-of-fit test, and
(4) develop models of genetically influenced XCI choice based on the
principles of the mouse Xce paradigm and use statistical methods to
test whether these models fit the empirical data and or they offer
significant improvements over the models of completely random
choice.

MATERIALS AND METHODS
For detailed Materials and methods, see the Supplementary material.

Permissions
This project was approved by the research ethics boards concerned.

Data
Two data sets of individual age and peripheral blood XIP data were generated

from previously published data: Utah (n¼ 183),25 and Denmark (n¼ 258).13

XIP data are folded about 0.5 to allow for correct use of unphased cases and

represented as cumulative distribution functions (Supplementary Figure 1).

Statistical models
Two classes of statistical models are generated: models of completely random

XCI choice, and models of genetically influenced XCI choice. Briefly, each

model describes (1) a discrete primary XIP distribution, and (2) a continuous

secondary XIP distribution that allows for changes to the XIP arising during

development and aging (Supplementary Figure 2). (1) For models of

completely random choice, the possible primary XIPs are dependent on the

number of progenitor cells c, where their probabilities are given by the

binomial theorem. For models of genetically influenced choice, the primary

XIPs are determined by genotype, where homozygotes have balanced XIPs, and

heterozygotes with alleles i and j have primary XIPs shifted away from 0.5 by

dij40 toward the dominating allele. The probabilities of each phenotype are

given by the allele frequencies, pi, assuming HWE. (2) For simple normal and

simple beta models, a continuous secondary distribution is generated by

approximating the discrete model with a normal or beta curve, respectively.

A mixed beta model is also generated where each peak in the discrete distribution

defines the mode of an individual beta curve, and the overall distribution is a

probability-weighted mean of the individual component densities. The variance

of each individual component is assumed to decrease with increasing primary

skewing in relation to a multiplicative factor, t2. Similarly, secondary skewing is

accommodated in models of genetically influenced choice using beta distribu-

tions centred at the primary skewing values. Again, the variances are related to t2.

Parameters c, dij, pi and t2 are estimated from the data.

Statistical tests
The models above are symmetric around XIP¼ 0.5. The probability above 0.5

is folded onto the [0, 0.5] interval to be compared with the folded XIP data.

A two-sample t test is used to compare the mean age for Utah and Denmark

samples. Lowess curves and linear regression are used to determine whether

there is a significant correlation between age and XIP. The AD statistic26 is used

to test for goodness-of-fit of the models (one sample), and to compare the

distributions of folded XIPs for the Utah and Denmark samples (two samples).

Comparisons between models are based on likelihood ratio statistics.

A likelihood ratio test is used to determine whether the primary XIP shifts

dij are the same for the Utah and Denmark data sets by comparing the fit of

a model that assumes these shifts are the same in both data sets with a

model using two sets of shifts.

RESULTS

Analysis of XIPs
XIP data from two large populations of normal adult females were
available for analysis: the Utah data set25 and the Denmark data set.13

Using the thresholds defined elsewhere, both data sets have similar
proportions of ‘skewed’ and ‘extremely skewed’ XIPs as other adult
populations with comparable age ranges (see Supplementary Table 1
and references therein). Consistent with the hypothesis of AAS in
peripheral blood,27,28 these proportions are larger in the Utah and
Denmark data sets than in populations of neonates and young
children, and less than that in populations of exclusively elderly
females.

Analysis of folded XIPs
Folded XIPs for the Utah and Denmark data sets range from 0.03 to
0.50 (mean¼ 0.33, SD¼ 0.12) and from 0.05 to 0.50 (mean¼ 0.30,
SD¼ 0.13), respectively (Figure 1). A two-sample AD goodness-of-fit
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statistic shows that there is some evidence that the Utah and Denmark
data sets were not drawn from the same distribution (P¼ 0.086). This
difference suggests that elements other than randomness are affecting
XIP distributions and that simple random models of human XCI
choice inadequately describe empirical adult XIP distributions. This
putative departure from the simple model could be due to a primary
non-random mechanism, or due to secondary effects. Differences
between these distributions could also be due to inter-laboratory
experimental differences; however, should such differences exist, they
are expected to be small, as both laboratories utilise equivalent
positive and negative controls, methods and reagents.13,25

Fits of completely random models of XCI
In order to directly test whether empirical data are consistent with
completely random XCI choice, we compare the Utah and Denmark
data sets with models of completely random XCI choice. We first
consider the simple normal model using various integer values for c
(Supplementary Figure 2a and b). While the Denmark data set is
consistent with c¼ 4 cells (P¼ 0.132), the Utah data set is not
(P¼ 0.021) (Table 1, Figures 2a and b). Further, the AD goodness-of-
fit test indicates that the Utah data set does not fit any simple random

model using c values of 2, 4, 8 or 16, and increasing cell numbers does
not improve the fit to either data set (data not shown). To assess
whether a modified model of completely random XCI can be found
that fits both data sets, we investigate various extensions and
modification of the simple random models. First, we extend the
simple random model to allow c to be any real number and estimate
its value from the empirical data. From both the Utah and Denmark
data sets, the most likely progenitor pool size is estimated to be a
non-integer between 4 and 6 cells (Table 2). The fitted c values are not
significantly different from one another (z test, P¼ 0.06) and cannot
be rejected by the AD test (Utah: P¼ 0.373, Denmark: P¼ 0.063). An
unsatisfactory aspect of any normal model, however, is that a small
amount of probability is assigned to XIP values outside the
permissible [0, 1] interval. A remedy for this is to use the beta
distribution, which assigns probability only to values between 0 and 1,
and looks much like the normal distribution when its two parameters
a and b are equal and sufficiently greater than 1 (Supplementary
Figure 2b). To test this alternative model of completely random XCI
choice, simple beta models, with c¼ 2, 4, 8 and 16, are compared with
the Utah and Denmark data sets (Table 1, Figures 2b and c), and the
likelihood function is maximized to estimate c, allowing for non-
integer values. There is some indication that the beta model with c¼ 8
could fit the Denmark data (P¼ 0.0525). However, the Utah data set
fails to fit any simple beta model using the discrete values for c tested,
and increasing c does not improve the fit (data not shown). Again,
non-integer progenitor pool sizes between 4 and 6 cells best fit both
data sets (Table 2). The fitted values for the simple beta model are not
significantly different from one another (P¼ 0.072) and cannot be
rejected by the AD test (Utah: P¼ 0.139, Denmark: P¼ 0.179).
A non-integer value for c could be consistent with models where
XCI choice is asynchronous within the embryo or between embryos.
Alternatively, cell loss or developmental bottlenecks could create the
appearance of a non-integer c at the time of choice. However, such
low c values are inconsistent with recent biological data that indicate
that XCI has not occurred even in very late human blastocyst
embryos.29 A small c could be consistent with this latest finding if
the progenitor pool in question is not the total number of cells in the
embryo at the time of choice, but the number of cells in a
subpopulation giving rise to the blood cells from which the XIP is
determined. However, several studies show a good correlation
between XCI ratios in tissues derived from each of the three germ
layers,17,30 suggesting that if choice occurs completely randomly, it
must occur in a progenitor pool giving rise to all three germ layers.
Therefore, c would have to represent at least the number of cells
giving rise to the embryo proper. Taken together, these data suggest
that there is no biologically relevant c for which a simple normal or
simple beta model of completely random XCI will fit the data
examined here, supporting the hypothesis that simple random
models inadequately describe XIPs in adult populations.

It is possible that the lack of fit of the simple normal and beta
continuous models is due to a poor representation of the process of
secondary skewing. A potentially more realistic mixture model was
therefore developed. In the mixed beta model, the primary XIP
distribution is again defined by a binomial distribution and is
dependent on the number of progenitor cells (Supplementary
Figure 2a). Throughout development and aging, individual XIP
values shift away from their primary value to some secondary value
with a probability defined by a beta distribution (Supplementary
Figure 2a, dashed line). The overall distribution of XIPs in a
population then becomes a probability-weighted sum of the compo-
nent distributions (Supplementary Figure 2c, solid line). Parameter

0.0

0.0

Folded−XIP

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Utah

Denmark

0.1 0.2

0.2

0.3 0.4

0.4

0.6

0.8

0.5

1.0

Figure 1 Empirical cumulative distribution functions for the Utah and

Denmark folded-XIP data. A two-sample Anderson-Darling (AD) goodness-of-

fit statistic shows some evidence that the two samples are not drawn from
the same distribution (P¼0.086).

Table 1 Goodness-of-fit tests for simple models of completely

random XCI choice applied to the Utah and Denmark data sets

Simple normal Simple beta

Utah Denmark Utah Denmark

c AD P-value AD P-value AD P-value AD P-value

2 28.26 0 81.29 0 79.52 0 152.51 0

4 3.2672 0.021 1.7434 0.132 9.4774 0 3.0051 0.017

8 6.9225 0 28.9596 0 6.3747 0.0004 30.2274 0.0525

16 51.97 0 128.92 0 58.15 0 152.51 0

P-values for models with no significant lack of fit are set in bold.
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estimates, AD goodness-of-fit statistics, and associated P values are
shown for mixed beta models for various values of c (Table 3). An
interesting feature of the mixture model is that increasing the cell
numbers beyond a certain threshold, in this case around 8 or 16 cells,
does not significantly alter the fit (Table 3, data not shown).
This mixture model could therefore accommodate very high cell
numbers.29 Visually, the mixed beta model fits the Utah and Denmark
data better than the simple models for integer values of c (Figure 3).

Non-integer c values cannot be accommodated by this statistical
model. There is some indication that c values 412 could fit the
Denmark data. However, all mixture models of the Utah data set with

Table 2 Estimated progenitor pool size obtained from simple models

of completely random XCI choice for Utah and Denmark data sets

Simple normal Simple beta

Utah Denmark Utah Denmark

ĉ 5.6560 4.4658 5.4064 4.4325

se(ĉ) 0.54458 0.3247 0.4713 0.2678

AD 0.9466 2.3550 1.6737 1.4828

P 0.373 0.063 0.1390 0.1790

Table 3 Goodness-of-fit tests for mixed beta models applied to the

Utah and Denmark data sets for c¼4–100

Utah Denmark

Model AD P-value AD P-value

4 13.366 0 13.421 0

6 2.742 0.003 2.600 0.012

7 1.766 0.028 1.828 0.021

8 1.542 0.033 1.606 0.035

9 1.520 0.034 1.540 0.034

10 1.540 0.036 1.516 0.044

12 1.584 0.039 1.496 0.053

16 1.619 0.038 1.478 0.050

24 1.629 0.044 1.467 0.045

50 1.641 0.036 1.471 0.048

100 1.654 0.024 1.476 0.059

P-values for models with no significant lack of fit are set in bold.
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Figure 2 Fits of the simple models of completely random choice. Simple normal models: (a) For the Utah data set, only the fitted c shows no significant

lack of fit to the data (ĉ¼5.656, P¼0.373). (b) For the Denmark data set, both the 4-cell and fitted-c models show no significant lack of fit (4-cell:

P¼0.132; fitted-c: ĉ¼4.4685, P¼0.063). Simple beta models: (c) For the Utah data set, only the fitted-c model shows no significant lack of fit to the

data (ĉ¼5.4064, P¼0.139). (d) For the Denmark data set, both the 8-cell and fitted-c models show no significant lack of fit (8-cell: P¼0.0525; fitted c:

ĉ¼4.4325, P¼0.179).
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integer values of c can be rejected by the AD test, even for large
c (c¼ 100).

Overall, none of the models of completely random XCI choice is
wholly satisfactory, as the only model fitting both data sets, the simple
beta model, estimates a c between 4 and 6 cells, and this low value is
inconsistent with the biological data.

Fits of genetically influenced models
Various studies suggest that XCI choice is genetically influenced in
humans, possibly through a co-dominant mechanism similar to the
mouse Xce.13–17 In order to test whether distributions of XIPs in large
populations of unrelated females would also be consistent with the
human XCE hypothesis, models of genetically influenced XCI choice
were generated. That is, models representing a single, co-dominant
locus with large effect. Two- and three-allele models were generated
(Supplementary Figure 2 d–g) and fitted to the Utah and Denmark
data sets (Table 4). From the Utah data set, the two-allele genetic
model estimates a dominant allele frequency of 0.89 and a primary
folded-XIP of 0.10 in heterozygotes (this is equivalent to a ratio of
10:90 or 90:10). From the Denmark data set, the dominant allele
frequency is 0.79 with a primary shift of 0.39, giving a primary folded
XIP of 0.11 in heterozygotes (ratio of 11:89). The visual fits of the
models to the data are good (Figure 4, dotted lines), and the model
cannot be rejected by the AD test for the Utah data (P¼ 0.066).
However, the Denmark data show significant lack of fit (P¼ 0.039).
For the three-allele models, primary shifts and allele frequency
estimates for the Utah and Denmark data sets are shown (Table 4).

It is estimated that 35% of the Utah population are homozygous (1|1,
2|2, and 3|3) with balanced primary XIPs (folded XIP¼ 0.5, ie, a ratio
of 50:50). An estimated 50% have genotypes 1|2 or 1|3, with a primary
folded XIP of 0.32 (ratio of 32:68). The 2|3 genotype has the largest
shift, giving a primary folded XIP of 0.095 (ratio of 9.5:91.5), present
in 17% of the population. The visual fit of the three-allele model is
excellent and there is no lack of fit (P¼ 0.174) (Figure 4a, solid line).
Similarly, for the Denmark data set, it is estimated that 34% of the
population are homozygous with balanced primary XIPs, and that
genotypes 1|2, 1|3, and 2|3 are present in 25, 23, and 19% of the
population, with primary folded XIPs of 0.32, 0.24, and 0.08,
respectively. Again, the visual fit of the 3-allele model is excellent
(Figure 4b, solid line) and there is no lack of fit (P¼ 0.656).

If the 3-allele genetic model is valid, the same allelic variants and
primary shifts dij are expected in the Utah and Danish populations.
The allele frequencies pi, i¼ 1, 2, 3, and variance scaling factor t2

could differ. A model with these features was fitted to the combined
data sets from Utah and Denmark. The likelihood ratio test, which
compares this fit with the more complicated model that allows
different shifts in the two populations, is not significant (P¼ 0.57).
This suggests that the genotype–phenotype relationships estimated
from the data are the same in both populations, supporting the
validity of the 3-allele genetic model.

Three-allele model of genetically influenced choice provides the
best overall fit
To determine which of the models tested provides the best overall fit
to both data sets, we compare the best fits of the models of completely
random choice and genetically influenced choice with each other.
Among the simple random models tested, the beta models are the
most reasonable as the predicted XIP values are restricted to the
permissible [0, 1] interval. The only simple beta models not rejected
by the AD test for both data sets are for non-integer fitted values for c;
thus, the fitted c simple beta models are selected to represent the best
simple random models. Among the mixed beta models tested, all
values of c are rejected by the Utah data set. For completeness sake,
however, we wanted to include at least one mixture model in our
comparative analysis. As there was some indication that some c Z12
could not be rejected by the Denmark data set (Table 3), we selected
c¼ 16 to represent the best-fitting mixture models. This value was
selected because it represents a true stage of development, and as the
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Figure 3 Fits of the mixed beta models of completely random XCI choice. (a) The mixed beta models approach, but never reach, a significant fit to the

Utah data, even for large c. (b) Mixed beta models with cZ12 may fit the Denmark data (c¼12, P¼0.053).

Table 4 Parameter estimates for the two- and three-allele models of

genetically influenced XCI choice for the Utah and Denmark data sets

Model Parameters t P1 P2 P3 d12 d13 d23

P-value

(AD)

Two-allele Utah 0.31 0.11 0.89 0.398 0.066

Two-allele

Denmark

0.31 0.21 0.79 0.388 0.039

Three-allele Utah 0.17 0.43 0.29 0.286 0.179 0.000 0.405 0.174

Three-allele

Denmark

0.18 0.39 0.32 0.29 0.176 0.257 0.420 0.656

P-values for models with no significant lack of fit are set in bold.
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analysis suggests that no other value of c would provide a significantly
better fit. Among the genetic models tested, the 3-allele genetic model
is preferred, as the 2-allele genetic model is rejected for the Denmark
data set (P¼ 0.039). The likelihood ratio test was used to determine
whether the 3-allele genetic model (alternative hypothesis) is a
significant improvement over the best models of completely random
choice (null hypotheses). This test takes into consideration the
number of parameters estimated by each model to account for the
fact that a model with more parameters will typically fit better. The
genetic model was found to be superior to each of the models of
completely random choice tested for both data sets (P values: simple
beta (fitted ĉ), Utah¼ 0.020, Denmark¼ 0.01; Mixed beta (c¼ 16),
Utah¼ 0.010, Denmark¼ 0.014), suggesting that, among the models
tested, the 3-allele co-dominant model of genetically influenced XCI
choice provides the best overall fit to the empirical data examined,
further supporting the hypothesis that human XCI choice is
genetically influenced.

DISCUSSION

The present study explores the nature of secondary XIP distributions
in large populations of females in order to illuminate the nature of
XCI choice. Using a statistical modelling approach, we have explored
secondary folded-XIP distributions in populations from Utah and
Denmark and compared these with models of completely random and
genetically influenced XCI choice. By folding XIP data and utilizing
continuous, cumulative distribution functions, we avoid some of the
pitfalls of previous studies, and our statistical analyses, which utilize
entire distributions, are preferred over threshold-based approaches.

We test various models of completely random XCI choice and find
none to be satisfactory. We therefore do not favour the hypothesis
that XCI choice is completely random. Consequently, we conclude
that the number of cells undergoing choice, c, cannot be calculated
based on XIP distributions alone. We do find a model of genetically
influenced XCI choice that fits all of the available data. A three-allele
model of genetically influenced XCI choice, based on the mouse Xce
paradigm, fits both data sets, provides the best overall fit of all the
models tested, estimates similar genotype–phenotype relationships
from two independent populations, allows for secondary skewing,
and can accommodate a large c. We therefore favour the hypothesis
that human XCI choice is genetically influenced, possibly through an

XCE-like mechanism. Whether this represents a true human ortholog
of the mouse Xce or a phenocopy remains to be seen.

While we have used the term ‘allele’, other variants, such as epi-
alleles or environmental exposures, could potentially fit the model as
well. Other genetic models would be interesting to explore in future
work, as would a four-allele model.

In the mixture models studied here, it is assumed that the variance
of the individual component densities decreases as the primary XIP
becomes more extreme. A longitudinal study examining the change in
XIPs over time as a function of the initial XIP could be used to
determine whether this assumption is accurate.

One potential confounder of XIP studies in humans is age. AAS
may be due to a true shift in XIP due to changes in the survival or
proliferation of the maternal and paternal X populations25 or could
be due to a progressive demethylation of the human androgen
receptor locus in peripheral blood.28 Using continuous functions,
our models do allow for shifts away from the primary XIP due to any
number of phenomena, including age. However, we did not
specifically include an age-dependent parameter in our models. To
determine whether the addition of such a parameter could
significantly affect our general conclusions, we examined the impact
of AAS on XIP distributions. We find that there is a significant
correlation between age and folded XIP among individuals in the
Utah and Denmark data sets for whom age is known (Utah:
r¼ �0.204, P¼ 0.009; Denmark: r¼ �0.269, P¼ 0.00002).
However, a Lowess curve illustrates that the change in folded XIP is
B0.1 over 70 years, or 0.0014 per year. Therefore, while there is a
definite effect, it is small. AAS is not likely to have a serious impact on
our models where, for example, the primary shifts estimated by the
3-allele genetic model for the Utah data are Z 0.18, and deviations
away from the primary shifts due to secondary skewing are already
taken into consideration in the continuous models. It would,
however, be interesting to analyse neonatal populations in future
work as these individuals would be the least affected by AAS.

Our conclusion that XIPs could be genetically influenced is
consistent with several other studies. Kristiansen et al13 compare
XIPs in monozygotic and dizygotic twins. They find a heritability of
0.63 and evidence for a dominant genetic effect. These findings are
consistent with our genetically influenced models in which genotype
determines the XIP at the time of choice (primary XIP), and other
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Figure 4 Fits of the two- and three-allele models of genetically influenced XCI choice. (a) Both the two- and three-allele models show no significant lack of
fit to the Utah data set (2-allele: P¼0.066; 3-allele: P¼0.174). (b) The three-allele model also shows no significant lack of fit to the Denmark data set

(3-allele: P¼0.6564).
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factors (environment, stochastic events, AAS etc) shift the pattern
away from its primary value to the observable secondary XIP. Further
studies14–17 find that the inheritance pattern of XIPs in families can be
explained by a co-dominant model following the rules of the mouse
Xce model. Our findings contrast with a recent report by Bolduc
et al,31 however, which stated that XIPs result from completely
random XCI and selective pressures, and are not heritable through
a single cis-acting locus such as the XCE. However, their analysis
appears to consider only purely dominant and recessive modes of
inheritance and includes only mother–daughter pairs, rather than
whole families. Our three-allele model shows that empirical data can
be consistent with a genetic model with a co-dominant mode of
inheritance in which a difference in allele strength defines the
phenotype. As such, the phenotype of the daughter cannot be
predicted without knowledge of the paternal contribution. The
findings of Bolduc et al31 could be consistent with our co-
dominant model if three allelic variants are present in the examined
population at approximately equal allele frequency, and they define
primary skewing shifts similar to those found in our study.

How genetics could influence XCI choice remains a fascinating
question. Several molecular models of XCI choice are discussed in the
literature (for a review, see Starmer and Magnuson32). It may be that
a single autosomal ‘blocking factor’ or a single complex of blocking
factors33 binds the future active X, inhibiting XCI in cis. Alternatively,
an X-linked competence factor, such as Rnf12,34 may be required at
some threshold concentration to trigger inactivation on a single X in
trans. Cohesin may also have a role in the molecular mechanism
of human XCI choice.17 One model suggests that cohesin could
bind together the two X-inactivation centres (XIC) during their
obligatory co-localisation35 prior to XCI initiation, and, given the
asymmetrical structure of the cohesion complex, could potentially
affect transcriptional activity within a single XIC.17 Genetics could
influence choice by altering the expression, stability, localisation,
orientation, or binding of any of these elements. Additional biological
data and mathematical modelling will be required to determine if any
of these possibilities is accurate.

Our study illustrates potential improvements to the data treatment
strategies employed in human XCI research, and describes new
models of XCI choice and a novel statistical modelling approach for
XCI model testing. We find that models of completely random XCI
choice inadequately describe folded-XIP distributions in large popu-
lations of adult human females and that a 3-allele co-dominant model
of genetically influenced XCI choice based on the mouse Xce
paradigm can be consistent with these distributions. Our results
support the concept that XCI choice is genetically influenced.
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