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Abstract
Chronic pancreatitis affects many individuals around 
the world, and the study of the underlying mechanisms 
leading to better treatment possibilities are important 
tasks. Therefore, animal models are needed to illustrate 
the basic study of pancreatitis. Recently, animal models 
of acute and chronic pancreatitis have been thoroughly 
reviewed, but few reviews address the important as-
pect on the translation of animal studies to human 
studies. It is well known that pancreatitis is associated 
with epigastric pain, but the understanding regarding 
to mechanisms and appropriate treatment of this pain 
is still unclear. Using animal models to study pancreati-
tis associated visceral pain is difficult, however, these 
types of models are a unique way to reveal the mecha-
nisms behind pancreatitis associated visceral pain. In 
this review, the animal models of acute, chronic and 
un-common pancreatitis are briefly outlined and animal 
models related to pancreatitis associated visceral pain 

are also addressed. 
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Core tip: Choosing the right model of pancreatitis is 
difficult and the scientific rationale needs to be care-
fully considered. Furthermore, no model of pancreatitis 
parallels all classical symptoms and the question under 
investigation is of importance when choosing a model. 
One of the main symptoms of chronic pancreatitis is 
visceral pain and in order to improve the pain treat-
ment and obtain more knowledge about the physiology 
behind the pancreatitis associated visceral pain, ani-
mal models of pancreatitis associated visceral pain are 
needed. 
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INTRODUCTION
Pancreatitis represents a common disorder of  the gastro-
intestinal tract. Acute pancreatitis (AP) has an incidence 
ranged from 4.9 to 35 per 100000 populations[1], whereas 
chronic pancreatitis (CP) has an incidence from 2.4 to 4.4 
per 100000 populations[2]. The etiology of  this disease is 
complex and so far a variety of  environmental factors in-
cluding alcohol abuse, nicotine habits, hereditary factors, 
efferent duct obstructions, immunological factors and 
rare metabolic factors have all been described. However, 
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the pathophysiology of  AP and CP remains poorly de-
fined[3]. As a result appropriate therapies are still limited, 
and prognosis has not improved to date, which is mainly 
due to the lack of  a satisfactory animal model of  pancre-
atitis[4,5]. 

It is well known that pancreatitis is associated with 
visceral pain, however, the understanding of  pain signal-
ing related to pancreatitis is poor[6]. In order to facilitate 
the development of  new pharmaceutical treatments for 
AP and CP, characterization of  the mediators and recep-
tors or ion channels on the sensory nerve terminals and 
the pathways of  the pain signaling are needed. Therefore, 
in this aspect, the animal models of  pancreatitis are need-
ed in parallel in order to explore the mechanism behind 
pancreatitis associated visceral pain, as this is difficult to 
study in humans. 

In this review, we briefly outline the animal models 
of  acute, chronic and un-common pancreatitis as well as 
animal models related to pancreatitis associated visceral 
pain.

ANIMAL MODELS OF ACUTE 
PANCREATITIS
AP is an inflammatory condition of  the pancreas charac-
terized clinically by abdominal pain and elevated levels of  
pancreatic enzymes in the blood[7]. Other characteristics 
of  AP include edema, acinar cell necrosis, hemorrhage, 
and severe inflammation of  the pancreas. Severe AP 
may lead to systemic inflammatory response syndrome 
and multi-organ dysfunction syndrome, which account 
for the high mortality rates of  AP[8,9]. As it is difficult to 
study AP in the clinic, animal studies are important in 
order to understand the pathogenesis of  AP, however 
an AP model which is strictly comparable to human AP 
is still needed. The current animal models of  AP have 
contributed to our knowledge of  mechanisms involved 
in early cellular events, pathogenesis and pathophysiology 
of  AP[10,11]. We have illustrated the summary of  existing 
AP animal models in Table 1[12-59]. Details of  different AP 
animal models including advantages, disadvantages and 
clinical relevance can be found in a recently published 
review[4]. From a methodological aspect, selecting the ap-
propriate AP animal model depends on the objectives of  
each study as different animal models are targeted to dif-
ferent AP features. For developing the effective treatment 
for AP in the clinic, continued investigation of  AP animal 
models are needed.

ANIMAL MODELS OF CHRONIC 
PANCREATITIS
A recently published review[5] has described the most 
frequently used and best established models for CP in 
animals. The majority of  the animal models are rodent 
models, since mice and rats are easy to handle and there 
is a steadily increasing number of  genetic models ob-

tained by gene deletion or transgenic expression of  ge-
netic variants. In the same way for animal models of  AP, 
the models of  CP can be classified into noninvasive or 
nonsurgical models and invasive or surgical models. Table 
2 summarizes different animal models of  CP[60-100].

In the non-invasive models, repetitive caerulein injec-
tions are amongst the most widely used models. Firstly, 
caerulein injections are relatively easy to perform and 
show a high reliability and reproducibility. Secondly, other 
compounds mediating injury such as lipopolysaccha-
rides or cyclosporin A can easily be added to the design. 
Thirdly, serial caerulein injections can be performed in 
transgenic or knockout animals. It is likely that there are 
dose and frequency dependency for caerulein. The most 
translational models include repetitive injections of  L-ar-
ginine, which appears to produce CP similar to that in hu-
mans[70-72]. In this model, fibrotic tissues are progressively 
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Table 1  Different animal models of acute pancreatitis

Methods Models and examples

Non-
invasive

Hormone-induced
   Acute caerulein pancreatitis of rats[12], mice[13], dogs[14], and 
   syrian hamsters[15]

   Trinidadian scorpion toxin induced acute pancreatitis in 
   dogs[16]

Alcohol-induced: rats[17-19], cats[20] and dogs[21]

Immune-mediated
   Ovalbumin in rabbit[22]

   Foreign serum in mice[23] and rat[24] 

   Spontaneous model of autoimmune acute pancreatitis mice[25]

Diet-induced: Fed a choline-deficient diet containing ethionine 
   in mice[26]

Gene knockout: Interleukin (IL)-1 and tumour necrosis 
factor-a[27], IL-6[28], IL-10[29], chemoattractant cytokine 
receptor-1[30], neurokinin-1 receptor[31], intercellular adhesion 
molecule 1 (ICAM-1)[32], metallothionein-1[33], cathepsin B[34], 
mouse a2-macroglobulin and murinoglobulin[35], complement 
factor C5a[36], granulocyte-macrophage colony-stimulating 
factor[37] and phospholipase A2[38]

L-arginine-induced: Administration of a large dose of 
   L-arginine in rats[39,40]

Invasive    Closed duodenal loop (CDL): Dog[41] and rat[42,43]

Antegrade pancreatic duct perfusion: Cat[44] and rat[45]

   Various compounds infusion into the pancreatic duct: Rat[46] 
   and dog[47]

   Combined intraductal glycodeoxycholic acid with 
   intravenous caerulein: Rat[48]

Vascular-induced
   Impairment of pancreatic circulation in dogs[49] 

   To occlude pancreatic arteries in rats[50]

   Occlusion of pancreatic veins in dogs[51] and in rats[52]

Complete but reversible ischaemia of the pancreas by 
   occluding different arteries using microvascular clips: Rats[53] 
   and canine[54]

Duct ligation
   Ligating the distal bile duct at the level of the duodenum[55] 
   Combined pancreatic duct ligation with the secretory 
   stimulation, secretin in dogs[56] 

   Combining duct ligation with both secretory stimulation 
   and minimal arterial blood[57] 

   Duct-ligated opossums models[58]

   Transient obstruction of the sphincter of Oddi (SO) in 
   Australian brush tailed possums[59]



replaced with adipose tissue. Due to the high impact of  
alcohol consumption as a risk factor on the pathogenesis 
in human pancreatic diseases, alcohol has frequently been 
used to trigger CP in animal models[73,74]. However, it is 
still being considered whether a model for CP induced by 
alcohol alone is feasible or satisfactory. The combination 
of  alcohol feeding with caerulein injections exacerbates 
the course of  pancreatitis and consequently increases 
pancreatic fibrosis and the loss of  parenchyma. 

Genetic animal models of  CP are suitable for dif-
ferent studies. It is well known that activation of  tryp-
sinogen is one of  the key events in the early phase of  
pancreatitis, and therefore genetic abnormalities found 
in the trypsinogen gene and in its inhibitors might be 
of  particular importance of  which R122H transgenic 
mice[80] are a good example. Transgenic expression of  the 
R122H mutation of  murine trypsin 4 in the pancreas of  
mice led to progressive fibrosis and chronic inflammation 
of  the pancreas. Repetitive inductions of  experimental 
pancreatitis with supramaximal doses of  cerulein resulted 
in extensive deposition of  collagen in periacinar and peri-
lobular spaces of  this transgenic animal. However other 
genetic models might also help us to understand how CP 
develops[77-79,81,83-86,101].

Invasive animal models can also be used to induce 
CP. As an example, retrograde infusion of  sodium tauro-
cholate (NaTc) into the pancreatic duct[46] or intraductal 

infusion of  NaTc[72] can generate pancreatitis, however 
the structure of  the pancreatic tissue will return to an 
almost normal state after 14 d. Retrograde infusion of  
oleic acid[72,88-91], viscous solution of  zein[92], a mixture of  
zein-oleic acid or a viscous solution consisting of  zein-
oleic acid-linoleic acid[93,94] into rat pancreatic duct will 
cause severe pancreatic atrophy with irregular fibrosis and 
fat replacement over a period of  6 mo. However, these 
models of  pancreatitis appear quite distinct from CP in 
humans. As one factor alone is inadequate to cause per-
sistent pancreatic injury, a combination of  transient stasis 
of  pancreatic juice flow and mild pancreatic duct injury 
is a well established and reliable method to generate CP 
in animal models[95]. It is well known that pancreatic duc-
tal hypertension contributes to the pathogenesis of  CP; 
therefore animal models can also be generated by com-
plete obstruction of  the pancreatic duct[96-98], incomplete 
pancreatic duct ligation[99] and occlusion with different 
tissue glues[100]. Yamamoto et al[102] developed an animal 
model with pancreatic ductal hypertension and demon-
strated that this plays an important role in the onset and 
development of  CP in rats. However, models for CP 
based on duct obstruction are not common and there is 
only a minority of  studies examining the morphological 
and biochemical changes of  the pancreas after duct liga-
tion[41,103,104]. 

ANIMAL MODELS OF UN-COMMON 
PANCREATITIS
Un-common types of  pancreatitis can include autoim-
mune pancreatitis (AIP), hereditary pancreatitis[105], 
groove pancreatitis[106], tropical pancreatitis, pancreatitis in 
ectopic or heterotopic pancreatic tissue, ascaris-induced 
pancreatitis, pancreatitis in cystic fibrosis, pancreas divi-
sum, annular pancreas, pancreatic cancer manifesting as 
AP, and duodenal villous adenoma with pancreatitis. With 
exception of  AIP and hereditary pancreatitis, no relevant 
animal models were found for other un-common pancre-
atitis. Furthermore, hereditary pancreatitis animal models 
were mentioned in the genetic animal models of  CP 
above. Therefore only animal models of  AIP are briefly 
introduced in this section. 

To date, several animal models of  AIP have been 
described. The first model involves the adoptive transfer 
of  amylase-specific (an antigen mainly located in acinar 
cells) CD4+ T cells and results in pancreatitis in naive 
syngenic recipient animals[107]. Notably, the histological 
lesions of  this model mimic the lobulocentric inflamma-
tory reaction in type 1 AIP. A model developed by immu-
nization of  neonatally thymectomized mice with CA (an 
antigen mainly located on the pancreatic epithelium) and 
later transfer of  CD4+ lymphocytes resulted in a duct-
centric pattern of  pancreatitis resembling type 2 AIP[108]. 
In another model, NTx-NFS/sld mice spontaneously 
developed sialoadenitis in which a-fodrin was involved as 
an autoantigen, as reported in some patients with Sjogren 
syndrome and AIP[109]. Transforming growth factor-β 
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Table 2  Different animal models of chronic pancreatitis

Methods Models and examples

Non-
invasive

Caerulein-induced
   Serial caerulein injections in mice[60] and rats[61]

   Combination of repetitive caerulein injections with 
   toxins and other agents such as lipopolysaccharides[62], 
   cyclosporin A[63], dibutyltin dichloride[64] and Alcohol[65-67]

   Intraperitoneal caerulein injections are administered in 
   genetically transformed mice such as TRX-1 transgenic 
   mice[68,69]

Arginine-induced
   A single L-arginine injection in rat[70]

   Serial L-arginine injections[70-72] 

Alcohol feeding-induced: Lieber-DeCarli formula[73-76]

Genetic models: Wistar Bonn/Kobori (WBN/Kob) rats[77-79]; 
R122H transgenic mice[80]; SPINK3-deficient (SPINK3-/-) 
mice[81]; CFTR-deficient (cftrm1UNC) mice[82] and CFTR(-/-) 
pigs[83]; Kif3a-deficient mice[84]; PERK-deficient (PERK-/-) 
mice[85]; Interleukin 1-β transgenic mice[86]

Invasive Sodium taurocholate-induced: Retrograde infusion of 
sodium taurocholate (NaTc) into the pancreatic duct 
system of the rat[87]

Oleic acid-induced: Retrograde infusion of oleic acid[72,88-91], 
viscous solution of zein[92], mixture of zein-oleic acid, 
or viscous solution consisting of zein-oleic acid-linoleic 
acid[93,94] into rat pancreatic duct
Congestion of pancreatic fluid flow: Combination of 
transient stasis of pancreatic juice flow and mild pancreatic 
duct injury[95] 

Duct ligation model
   Ligation of the common bile duct close to the duodenum 
   pancreatic tissue in dogs[96], mouse[97] and pigs[98] 

   Incomplete pancreatic duct ligation in canine[99] 

   Occlusion with two different tissue glues in the rat[100]
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expression of  nerve growth factor (NGF) in the pancreas 
and calcitonin gene-related peptide (CGRP), substance 
P (SP), proteinase-activated receptor 2 (PAR2), and 
brain-derived neurotrophic factor (BDNF) in thoracic 
dorsal root ganglion and spinal cord segments[118,122-124]. 
Increased expression of  NGF, CGRP, SP and BDNF has 
also been shown in human patients with CP[125-127].

Several animal models have investigated the mecha-
nisms involved in pain accompanying CP. Takamido et 
al[119] reported morphological changes of  the nervous 
system being involved in development of  CP pain. This 
study suggested that elongation of  dorsal root ganglia 
axons and enlargement of  intrapancreatic nerve bundles 
as being a possible mechanism of  pain generation in 
CP. On a supraspinal level, findings have suggested that 
descending facilitation from the rostral ventromedial me-
dulla plays an important role in persistent pain associated 
with CP[128]. Furthermore, recent rat experiments have 
suggested that spinal microglia becomes activated during 
CP and has an important role in initiating and maintain-
ing chronic pain[129]. 

TRANSLATION OF PANCREATITIS-
ASSOCIATED VISCERAL PAIN STUDY 
FROM ANIMAL TO HUMAN
It may be difficult to use animal models to study pancre-
atitis associated visceral pain as pain is a subjective expe-
rience. However animal models are needed to explore the 
molecular mechanisms behind pancreatitis associated vis-
ceral pain as this is difficult to study in humans. The mo-
lecular mechanisms behind the chronic pain associated 
with CP are poorly understood, but within recent years, 
animal experiments have suggested some mechanisms 
that might be involved. The transient receptor potential 
vanilloid 1 (TRPV1) and transient receptor potential an-
kyrin 1 (TRPA1) have been shown to be contributing fac-
tors to pain in CP[122,130,131]. It has been shown that CP is 
accompanied by an increased level of  NGF which caused 
an up-regulation of  TRPV1 expression and sensitivity, 
resulting in hyperalgesia and allodynia[122,130]. TRPA1 is 
important in both inflammation and pain in CP and can 
be sensitized through activation of  PAR2[131]. 

The mechanisms mentioned above could be used as 
targets for the development of  novel therapeutics, aiming 
at treating the chronic pain accompanying CP. Neutral-
izing antibodies against neurotransmitters such as BDNF 
and NGF[124,130] or receptor specific antagonists[122] has 
proven to reverse the characteristic nociceptive behavior-
al changes induced by CP in several of  the experimental 
models. Furthermore, inhibition of  trypsin or inhibition 
of  microglia activation has also abrogated the pain related 
behavior seen in response to CP[123,129]. All these different 
mechanisms of  pain treatment in CP models could have 
a potential as targets for novel pharmacological treat-
ment of  the chronic pain associated with CP in human 
patients. Also established analgesic drugs such as gaba-

(TGFβ) appears to be an important regulatory factor in 
maintaining immune homeostasis. Loss of  TGFβ signal-
ling contributes to AIP in TGFβ dominant negative mu-
tant mice[110]. 

Recently two animal models for AIP were proposed. 
The WBN/Kob rat model, associated with congenital 
decreased peripheral Tregs spontaneously develops si-
aloadenitis, thyroiditis, sclerosing cholangitis and tubu-
lointerstitial nephritis[111]. Although the target antigens 
remain unclear, CD8+ cells may be the effector cell in this 
rat model[112]. Another recently described animal model 
of  AIP is the Treg-deficient NOD mouse[113]. CD28KO 
mice spontaneously develop AIP that closely resembles 
the human disease[113]. More recently, Haruta et al[114] in-
vestigated the possible involvement of  chronic, persistent 
exposure to avirulent bacteria in the pathogenesis of  AIP 
using C57BL/6 mice. 

Existing animal models for AIP have several limita-
tions. In most models the disease is induced by adoptive 
transfer of  autoreactive cells and/or antibodies rather 
than spontaneous development of  the disease with iden-
tical antigen specificity. The distribution of  lesions pro-
duced in animal models for AIP is also variable. This may 
be attributed to the diversity of  target antigens, different 
methods of  immune staining and different mouse strains. 
In addition, typical histopathological findings of  AIP (e.g., 
lymphoplasmacytic infiltration with fibrosis, obliterative 
phlebitis and GELs) are rarely observed in animal mod-
els. Thus, there is a need to develop spontaneous animal 
models with identical autoantigens and typical histopath-
ological findings for AIP.

VISCERAL PAIN IN ANIMAL MODELS OF 
CHRONIC PANCREATITIS
One of  the main clinical symptoms of  CP in humans is 
pain, occurring either in episodes or as a constant dis-
abling pain[115,116]. Hence, an important goal of  treatment 
for CP is to relieve the pain. The analgesic treatment is 
often inadequate as the pathophysiology behind CP as 
well as the mechanisms behind the accompanying pain is 
not yet fully understood[117]. As described in the previous 
sections, no single animal model displays all aspects of  
CP and each of  the different models display histological 
similarities to the human condition to various degrees. 
In order to improve the pain treatment and obtain more 
knowledge about the physiology behind CP associated 
pain, animal models of  CP associated pain are needed. 

Rat models of  CP where pancreatic nociception was 
investigated, have been established through invasive, non-
invasive and spontaneous models[118,119]. In these models 
pancreatic pain has been shown through both mechani-
cal and thermal stimulation of  the abdomen (referred 
pain[120]) as well as direct electrical stimulation of  the 
pancreas[118,121]. These models had histopathological simi-
larities to the human disease and had progressive fibrosis 
and inflammation. Furthermore, the models showed 
correlation between nociceptive behaviour and increased 

Zhao JB et al . Animal models of pancreatitis and visceral pain



7226 November 14, 2013|Volume 19|Issue 42|WJG|www.wjgnet.com

pentin, buprenorphine, and morphine have been tested 
in animal models of  CP[118,121,132], and shown to have 
analgesic effect. However, many of  these therapeutic ap-
proaches need to be tested in humans, before their true 
potential analgesic treatment of  CP pain in humans can 
be established. It is known that some of  these analgesic 
mechanisms are species specific and specific to the differ-
ent models of  induced CP.

CONCLUSION
Choosing the right model of  pancreatitis is difficult and 
the scientific rationale needs to be carefully considered. 
Furthermore, no model of  pancreatitis parallels all clas-
sical symptoms and the question under investigation is 
of  importance when choosing a model. One of  the main 
symptoms of  CP is visceral pain and in order to improve 
the pain treatment and obtain more knowledge about 
the physiology behind the pancreatitis associated visceral 
pain, animal models of  pancreatitis associated visceral 
pain are needed. 
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