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Mighty small: Observing and modeling
individual microbes becomes big science
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Progress in microbiology has always been
driven by technological advances, ever since
Antonie van Leeuwenhoek discovered bac-
teria by making an improved compound
microscope. However, until very recently we
have not been able to identify microbes and
record their mostly invisible activities, such as
nutrient consumption or toxin production on
the level of the single cell, not even in the
laboratory. This is now changing with the
rapid rise of exciting new technologies for
single-cell microbiology (1, 2), which enable
microbiologists to do what plant and animal
ecologists have been doing for a long time:
observe who does what, when, where, and
next to whom. Single cells taken from the
environment can be identified and even their
genomes sequenced. Ex situ, their size, ele-
mental, and biochemical composition, as well
as other characteristics can be measured with
high-throughput and cells sorted accordingly.
Even better, individual microbes can be ob-
served in situ with a range of novel micro-
scopic and spectroscopic methods, enabling
localization, identification, or functional char-
acterization of cells in a natural sample, com-
bined with detecting uptake of labeled
compounds. Alternatively, they can be placed
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into fabricated microfluidic environments,
where they can be positioned, exposed to
stimuli, monitored, and their interactions
controlled “in microfluido.” By introducing
genetically engineered reporter cells into a
fabricated landscape or a microcosm taken
from nature, their reproductive success or
activity can be followed, or their sensing of
their local environment recorded.

These novel methods have generated a
multitude of fascinating observations and
hold great potential for testing ecological and
evolutionary theories with rapidly growing
microbes under well-controlled conditions.
Possibly the most important finding for the
future of the discipline of microbiology has
been the realization that genetically identical
bacterial cells in a well-mixed environment
may have individually differing phenotypes.
This calls into question the validity of
population-level experiments and population
models that assume that all individuals are
the same.

However, does such individuality of mi-
crobes really matter? We argue that the
best way to find out is to use individual-based
modeling in combination with single-cell and
population-level observation in the field or

experimentation in the laboratory. By de-
scribing relevant characteristics and activities
of each individual cell in the population using
the data from single-cell observations, the
individual-based model will predict what
happens at the population level as an emer-
gent property (Fig. 1). Making individual-
based models simultaneously reproduce pat-
terns observed at both the individual and
population level will make these models
structurally realistic so that they deliver in-
dependent, testable predictions (3). Individ-
ual-based modeling of microbes, adopted
from the more established individual-based
modeling of larger organisms, has come of
age with the development of tools that en-
able scientists with minimal programming
expertise to develop computer simulations
for use in their research (e.g., ref. 4).

The advocated combination of individual-
based modeling and experimentation, which
we refer to as microbial individual-based
ecology (MIBE), may at first only be a mar-
riage of convenience because the models need
individual-based data and individual-based
models are needed to make the best use of
these data. However, a deeper relationship
may develop with many mutual benefits.
The pIBE agenda is set to mimic a previous
success story, namely the development of
new systems biology modeling approaches
driven by the rise of omics data. Individual-
based models can integrate prior knowledge
with new data on the individual and popu-
lation levels. Because these models facili-
tate the inclusion of mechanistic details,
they have the potential to predict obser-
vations under changing conditions or in
novel environments. These models can also
predict concentration gradients of hard-to-
detect metabolites, toxins, or chemical sig-
nals, given the spatial positions of producers
and consumers and the rates of production
or consumption.
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Individual-based observation
of size and P content

Observed versus predicted cellular P content
distribution on the population level
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Fig. 1. Observing and modeling individual heterogeneity in intracellular P content in the freshwater diatom Cyclotella

meneghiniana. Some individual-level observations (e.g., size and P content) are used to calibrate the individual-based

model, which also implements a range of conceivable mechanisms generating heterogeneity, including microscale patch

encounter and surface area-based uptake of P. The model the
compared with population data or other individual-level data

n makes predictions on the population level, which can be
(e.g., P content) to identify which of the mechanisms best

explains the data. The individual-based model was then used to explore the effect of individual heterogeneity on
population growth rate. Variation of P content affects population growth rate because growth rate is a nonlinear

function of the internal P content. In this case, population-level growth rate is only 68% of the growth rate a population

of cells with average P content would have. (See ref. 6) Diatom image courtesy of Benjamin S. Twining.

One key advantage of pIBE, which we be-

lieve has tremendous potential, is the ability
to incorporate both lower and higher levels of

organization into the individual-based frame-

work. First, regarding the lower (i.e., molec-

ular) level, individual-based models lend
themselves well to integration with systems
biology and synthetic biology (a good exam-
ple is ref. 5). As individual-based models de-
scribe the action of each individual cell, it
is straightforward to incorporate models
of intracellular dynamics of natural—or
synthetic—cells. Such embedded intracellular
models will then define the behavior of the
individual cell more mechanistically, rather
than being based on phenomenological de-
scriptions of the cell’s behavior.

Second, regarding the higher levels of
communities and ecosystems, the modeling
of diverse communities comprising poten-
tially many different species is also straight-
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forward, as those communities are still made
up of individual organisms. Where necessary,
species can be aggregated into functional
groups to reduce computational complexity.
Spatial heterogeneity is taken care of as
individuals are localized and interact locally.
Furthermore, indirect interactions between
individuals of different species (e.g., mediated
by diffusible molecules, such as nutrients,
toxins, or chemical signals) are an emergent
property of the simulation, rather than being
interactions that have to be specifically in-
vestigated and parameterized. For example,
in a community with N species there are
2N —1 possible species combinations, in-
cluding intraspecific interactions, such as
cannibalism, which makes it infeasible to
investigate all possible indirect interactions
for even modest values of N.

The future of pIBE will be bright as ex-
perimentalists discover that individual-based

models, built using state-of-the-art model de-
velopment tools, can be used to gain a much
deeper understanding of the systems they
study than otherwise possible. Modelers will
embrace the opportunity to teach the use of
the tools, help guide their application, and
use the experience to enhance the tools fur-
ther. Technical obstacles will arise as we
move to systems with higher complexity or
larger scale, but these obstacles are likely to be
overcome and it will be possible to simulate,
for example, the human gut, a volume of soil,
or part of an ocean as ecosystems teeming
with tiny systems biology individuals.

The chance to observe, manipulate, and
model from first principles, from molecules
via individuals to populations, communities,
and ecosystems, goes far beyond the current
basis of ecological and evolutionary theory.
MIBE will thus lead to insights into ecology
and evolution that are simply impossible to
obtain with larger organisms. Moreover,
MIBE will provide a test-bed for developing
the emerging science of agent-based complex
systems. The integration of individual-based
modeling and experimentation is our best
hope toward a future of full understanding
of microbial systems, or as Donald Knuth
aptly put it (7): “Science is what we under-
stand well enough to explain to a computer.
Art is everything else we do.”
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