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Thebrainmapproject aims tomapout the neuron connections of the
human brain. Even with all of the wirings mapped out, the global
and physical understandings of the function and behavior are still
challenging. Hopfield quantified the learning andmemory process of
symmetrically connected neural networks globally through equilib-
rium energy. The energy basins of attractions represent memories,
and the memory retrieval dynamics is determined by the energy
gradient. However, the realistic neural networks are asymmetrically
connected, and oscillations cannot emerge from symmetric neural
networks. Here, we developed a nonequilibrium landscape–flux the-
ory for realistic asymmetrically connected neural networks. We un-
covered the underlying potential landscape and the associated
Lyapunov function for quantifying the global stability and function.
We found the dynamics and oscillations in human brains responsible
for cognitive processes and physiological rhythm regulations are de-
termined not only by the landscape gradient but also by theflux.We
found that the flux is closely related to the degrees of the asymmet-
ric connections in neural networks and is the origin of the neural
oscillations. The neural oscillation landscape shows a closed-ring
attractor topology. The landscape gradient attracts the network
down to the ring. The flux is responsible for coherent oscillations
on the ring. We suggest the flux may provide the driving force for
associations among memories. We applied our theory to rapid-eye
movement sleep cycle. We identified the key regulation factors for
function through global sensitivity analysis of landscape topography
against wirings, which are in good agreements with experiments.

neural circuits | free energy | entropy production |
nonequilibrium thermodynamics

Agrand goal of biology is to understand the function of the
human brain. The brain is a complex dynamical system (1–6).

The individual neurons can develop action potentials and connect
with each other through synapses to form the neural circuits. The
neural circuits of the brain perpetually generate complex patterns
of activity that have been shown to be related with special bi-
ological functions, such as learning, long-term associative mem-
ory, working memory, olfaction, decision making and thinking (7–
9), etc. Many models have been proposed for understanding how
neural circuits generate different patterns of activity. Hodgkin–
Huxley model gives a quantitative description of a single neuronal
behavior based on the voltage-clamp measurements of the volt-
age (4). However, various vital functions are carried out by the
circuit rather than individual neurons. It is at present still chal-
lenging to explore the underlying global natures of the large
neural networks built from individual neurons.
Hopfield developed a model (5, 6) that makes it possible to

explore the global natures of the large neural networks without
losing the information of essential biological functions. For sym-
metric neural circuits, an energy landscape can be constructed that
decreases with time. As shown in Fig. 1, started in any initial state,
the system will follow a gradient path downhill to the nearest basin
of attractor of the underlying energy landscape (local minimum of
energy E) that contains the storage of the complete information
formed from learning with specific enhanced wiring patterns. This
can be the memory retrieval process from a cue (incomplete initial
information) to the corresponding memory (complete infor-
mation). The Hopfield model shows us a clear dynamical picture

of how neural circuits implement their memory storage and
retrieval functions. This theory also helps in designing associate
memory Hamiltonians for protein folding and structure pre-
dictions (10, 11). However, in real neural networks, the connec-
tions among neurons are mostly asymmetric rather than sym-
metric. Under this more realistic biological situation, the original
Hopfield model fails to apply. This is because there is no easy way
of finding out the underlying energy function. Therefore, the
global stability and function of the neural networks are hard to
explore. In this work, we will study the global behavior of neural
circuits with synaptic connections from symmetric to general
asymmetric ones.
Here, we will first develop a potential and flux landscape theory

for neural networks. We illustrate that the driving force of the
neural network dynamics can be decomposed into two con-
tributions: the gradient of the potential and a curl probability flux.
The curl probability flux is associated to the degree of non-
equilibriumness characterized by detailed balance breaking. This
implies the general neural network dynamics is analogous to an
electron moving in an electric field (potential gradient) and
magnetic field (curl flux). The curl flux can lead to spiral motion,
the underlying network dynamics deviating from the gradient
path, and even generate coherent oscillations, which are not
possible under pure gradient force. We show a potential land-
scape as Lyapunov function of monotonically decreasing along
the dynamics in time still exists even with asymmetric connections
(12–14) for the neural networks. Our approach is based on the
statistical probabilistic description of nonequilibrium dynamical
systems. The global natures are hard to explore by just following
the individual trajectories. Due to the presence of intrinsic and
extrinsic fluctuations, exploring probability and its evolution is
more appropriate rather than the trajectory evolution.
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The probabilistic landscape description can provide an answer
to the global stability and function because the importance of
each state can be discriminated by its associated weight. In the
state space, the states with locally highest probability (lowest
potential) represent the basins of attraction of the dynamical
system. Each point attractor state surrounded by its basin rep-
resents a particular memory. The stability of the attractor states
is crucial for memory storage and retrieval under perturbations
and fluctuations. The escape time from the basin quantifies the
capability of communications between the basins. The barrier
heights are shown to be associated with the escape time from one
state to another. Therefore, the topography of the landscape
through barrier height can provide a good measurement of
global stability and function (12, 14–17).
Such probability landscape can be constructed through solving

the corresponding probabilistic equation. However, it is difficult
to solve the probabilistic equation directly due to the exponen-
tially large number of dimensions. Here, we applied a self-con-
sistent mean field approximation to study the large neural
networks (13, 18, 19). This method can effectively reduce the
dimensionality from exponential to polynomial by approximating
the whole probability as the product of the individual probability
for each variable and be carried out in a self-consistent way
(treating the effect of other variables as a mean field). Lyapunov
function can characterize the global stability and function of the
system. Here, we construct a Lyapunov function from the
probabilistic potential landscape.
We constructed nonequilibrium thermodynamics for the

neural networks. Quantifying the main thermodynamical func-
tions such as energy, entropy, and free energy is helpful for
addressing global properties and functions of neural networks.
As an open system that constantly exchanges energy and mate-
rials with the environment, entropy of the network system does
not necessarily increase all of the time. We found the free energy
of the network system is monotonically decreasing. Therefore,
rather than entropy maximization, we propose that the free-
energy minimization may serve as the global principle and opti-
mal design criterion for neural networks.
The original Hopfield model shows a good associative memory

property that the system always goes down to certain fixed point

attractors of the dynamical storing memories. However, more
and more studies show that oscillations with different rhythms in
various nervous systems also play important roles in cognitive
processes (8, 20). For example, theta rhythm was found to be
enhanced in various neocortical sites of human brains during
working memory (21), and enhanced gamma rhythm is closely
related to attention (22, 23). Studying the oscillations may give
rise to new insights toward how the various neural networks in
the nervous system work. Our studies will provide a way to ex-
plore the global properties of various dynamical systems, in
particular the oscillations (12, 13). We will apply our method to
study asymmetric Hopfield circuits and their oscillatory behav-
iors, and tie them with the biological functions.
After the theoretical potential and flux landscape framework

established, we will next study a Hopfield associative memory
network consisting of 20 model neurons. The neurons com-
municate with each other through synapses, and the synaptic
strengths are quantitatively represented by the connection pa-
rameters Tij (5, 6). In this paper, we will focus more on how the
circuits work rather than how they are built. So we used constant
synaptic strengths here. We constructed the probabilistic poten-
tial landscape and the corresponding Lyapunov function for this
neural circuit. We found that the potential landscape and asso-
ciated Lyapunov function exists not only for symmetric connec-
tion case of the original Hopfield model where the dynamics is
dictated by the gradient of the potential, but also for asymmetric
case where the original Hopfield model failed to explore. We
discussed the effects of connections with different degrees of
asymmetry on the behaviors of the circuits and study the robust-
ness of the system in terms of landscape topography through
barrier heights.
One distinct feature that has often been observed in neural

networks is the oscillation. We found oscillations cannot occur for
the symmetric connections due to the gradient natures of the
dynamics. The neural circuit with strong asymmetric connections
can generate the limit cycle oscillations. The corresponding po-
tential landscape shows a Mexican hat closed-ring shape topol-
ogy, which characterizes the global stability through the barrier
height of the center hat. We found the dynamics of the neural
networks is controlled by both the gradient of the potential
landscape and the probability flux. Although the gradient force
attracts the system down to the ring, the flux is responsible for the
coherent oscillations on the ring (12, 13). The probability flux
is closely related to the asymmetric part of the driving force or
the connections.
We also discussed the period and coherence of the oscillations

for asymmetric neural circuits and its relationship with landscape
topography to associate with the biological function. Both flux
and potential landscape are crucial for the process of continuous
memory retrievals with certain directions stored in the oscillation
attractors. We point out that flux may provide driving force for
the associations among different memory basins of attractions.
Furthermore, we discuss how the connections with different de-
gree of asymmetry influence the capacity of memory for general
neural circuits.
Finally, we applied our potential and flux theory to a rapid-eye

movement (REM) sleep cycle model (24, 25). We did a global
sensitivity analysis based on the landscape topography to explore
the influences of the key factors such as release of acetylcholine
(Ach) and norepinephrine on the stability and function of the
system. Our results are consistent with the experimental obser-
vations, and we found the flux is crucial for both the stability and
the period of REM sleep rhythms.

Potential Landscape and Flux Theory, Lyapunov Function,
and Nonequilibrium Thermodynamics for Neural Networks
In general, when exploring the global dynamics of a neural network,
there are several approaches: one is to follow individual deter-
ministic or stochastic trajectories, and the other one is to describe the
system from thermodynamics perspectives with energy, entropy, and
free energy for global characterization of the system. Hodgkin and

Fig. 1. The schematic diagram of the original computational energy func-
tion landscape of Hopfield neural network.
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Huxley proposed a model that quantifies how individual neurons
evolve with time based on their biological features, and the theo-
retical predictions are in good agreement with experimental results.
Many simplified models have been proposed to explore complex
neural networks. The neural networks are often under fluctuations
from intrinsic source and external environments. Rather than in-
dividual trajectory evolution, the probabilistic evolution can char-
acterize the dynamics globally and therefore oftenmore appropriate.
We can start with a set of Langevin equations considering the sto-
chastic dynamics of neural networks under fluctuations: du

dt ¼
FðuÞ þ ζ. Here, u ¼ ðu1; u2; . . . ; unÞ is a vector variable represent-
ing each individual neuron activity ui, for example each individual
neuron’s action potential. The FðuÞ represents the driving force for
the dynamics of the underlying neural network. ζ represents here
the stochastic fluctuation force with an assumed Gaussian distri-
bution. The autocorrelations of the fluctuation are assumed to be
hζðu; tÞζðu; t′Þi ¼ 2DðuÞδðt− t′Þ. The δðtÞ is the δ function. The
diffusionmatrixDðuÞ is defined asDðuÞ ¼ DGðuÞ, whereD is a scale
constant giving the magnitude of the fluctuations and GðuÞ repre-
sents the scaled diffusion matrix. Trajectories of individual neuron
activities can be studied under fluctuations and quantified.
As we know, it is the circuits in the brain instead of individual

neurons carrying out different cognitive functions. Therefore, we
should focus on the global properties of the whole neural cir-
cuits. For a general equilibrium system, we can always get the
energy function and the driving force is a gradient of an energy
function. Once the energy is known, the equilibrium partition
function and the associated free-energy function to study the
global stability of the system can be quantified. In fact, the
Hopfield associative memory model provides such an example
(5, 6). By assuming the symmetric connections between neurons,
Hopfield is able to find such an underlying energy function and
use it to study the global stability and function for learning and
memory through equilibrium statistical mechanics. However, in
reality, the connections of the neurons in the neural networks are
often asymmetric. Hopfield model with symmetric connections
does not apply in this regime. There is no easy way of finding out
the energy function determining the global nature of the neural
networks in such general case.
Realistic neural networks are open systems. There are constant

exchanges of the energy and information with the environment,
for example, the oxygen intake of the brains for the energy supply.
So the neural network is not a conserved system. The driving
force therefore cannot often be written as a gradient of an energy
function in such nonequilibrium conditions. However, finding an
energy-like function such as a Lyapunov function (monotonically
going down as the dynamics) is essential for quantifying the global
stability of the system. Therefore, the challenge is whether such
a potential function exists and can be quantified to study the
global function for the general neural networks.
We will meet the challenge by developing a nonequilibrium

potential landscape and flux theory for neural networks. Rather
than following a single deterministic trajectory, which only gives
local information, we will focus on the evolution of the proba-
bility distribution, which reflects the global nature of the system.
Then we can establish the corresponding Fokker–Planck diffu-
sion equation for probability evolution of state variable ui:

∂Pðu; tÞ
∂t

¼ −
Xn

i¼1

∂
∂ui

½FiðuÞ pPðu; tÞ�

 þD
Xn

i¼1

Xn

j¼1

∂2

∂ui∂uj

�
Gijðu; tÞPðu; tÞ

�
:

[1]

With appropriate boundary condition of sufficient decay near
the outer regime, we can explore the long-time behavior of
Fokker–Planck equation and obtain steady-state probability
distribution Pss. The Fokker–Planck equation can be written in
the form of the probability conservation: ∂P=∂tþ ∇ · J ¼ 0,
where J is the probability flux: J ¼ FP−∇ · ðDPÞ. From the

expression of the flux J, the driving force of the neural net-
work systems can be decomposed as follows: F ¼ Jss=Pss þ
D ·∇ðPssÞ=Pss þ ∇ ·D ¼ Jss=Pss −D ·∇U þ ∇ ·D. Here, divergent
condition of the flux ∇ · Jss ¼ 0 is satisfied for steady state.
We see the dynamical driving force F of neural networks can
be decomposed into a gradient of a nonequilibrium potential
[the nonequilibrium potential U here is naturally defined as
UðuÞ ¼ − lnðPssðuÞÞ related to the steady-state probability dis-
tribution, analogous to equilibrium systems where the energy is
related to the equilibrium distribution through the Boltzman
law] and a divergent free flux, modulo to the inhomogeneity of
the diffusion, which can be absorbed and redefined in the total
driving force (12–15). The divergent free force Jss has no source
or sink to go to or come out. Therefore, it has to rotate around
and become curl.
When the flux is divergent free ∇ · J ¼ 0 in steady state, it does

not necessarily mean the Jss ¼ 0. There are two possibilities, one
is Jss ¼ 0 and one is Jss ≠ 0. When Jss ¼ 0, the detailed balance is
satisfied and the system is in equilibrium. Furthermore, the dy-
namics is determined by purely the gradient of the potential. This
is exactly the equilibrium case for Hopfield model for neural
networks of learning and memory assuming underlying sym-
metric connections between neurons. However, when Jss ≠ 0, the
detailed balance is broken. The nonzero flux is the signature of
the neural network being in nonequilibrium state. The steady-
state probability distribution can quantify the global natures of
the neural networks, whereas the local dynamics is determined
by both the gradient of the nonequilibrium potential landscape
and the nonzero curl flux.
To quantitatively study the global stability and functions of neural

networks, we need to find out whether a Lyapunov function of
monotonically going down in time exists (12, 13, 18, 19, 26–34) and
how it is related to our potential landscape. We expand the UðuÞ
with respect to the parameter D

�
U ¼ 1

Dϕ ¼ 1
D

P
i¼0D

iϕi

�
for the

case of weak fluctuations ðD � 1Þ in realistic neural networks
and substitute it to the steady-state Fokker–Planck diffusion equa-
tion; then we obtain the D−1 order part and this leads to Hamilton–
Jacobi equation for ϕ0 (28, 29, 34–36):

Xn

i¼1

FiðuÞ ∂ϕ0ðuÞ
∂ui

þ
Xn

i¼1

Xn

j¼1

GijðuÞ ∂ϕ0ðuÞ
∂ui

∂ϕ0ðuÞ
∂uj

¼ 0: [2]

We can then explore the time evolution dynamics of ϕ0 :
dϕ0ðuÞ

dt ¼ ∇ϕ0 · _u ¼ ∇ϕ0 ·F ¼ −
Pn

i¼1
Pn

j¼1GijðuÞ ∂ϕ0ðuÞ
∂ui

∂ϕ0ðuÞ
∂uj ≤0.

Notice that this derivation is based on weak fluctuation
assumptions ðD � 1Þ. The temporal evolution _u can be written as
FðuÞ here and therefore is deterministic without the noise term ζ.
We see that ϕ0 decreases monotonously with time due to the
positive defined diffusion matrix G. The dynamical process will not
stop until the system reaches a minimum that satisfies ∇ϕ0 ¼ 0. In
general, one has to solve the above Hamilton–Jacobi equation for
ϕ0 to obtain the Lyapunov function. Finding the Lyapunov function
is crucial for studying the global stability of the neural networks. For
point attractors, ϕ0 will settle down at the minimum value. For limit
cycles, the values of ϕ0 on the attractors must be at constant (34).
Therefore, the limit cycle cannot emerge from Hopfield model for
neural networks with a pure gradient dynamics because there is no
driving force for the coherent oscillation. However, the nonzero flux
can provide the driving force for the oscillations on the cycle. ϕ0
being a Lyapunov function is closely associated with the population
nonequilibrium potential landscape U under the small fluctuation
limit. Therefore, the function ϕ0 reflects the intrinsic properties of
the steady state without the influences from the magnitude of the
fluctuations. Because ϕ0 is a Lyapunov function that decreases
monotonically with time, the ϕ0 has the physical meaning of the
intrinsic nonequilibrium potential that quantifies the global stability
for neural networks. When the underlying fluctuations are not
weak, we can no longer expand the nonequilibrium potential U with
respect to the fluctuation amplitude parameter D as shown above
and the noise term ζ cannot be neglected in the derivation.
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Therefore, there is no guarantee that ϕ0 is a Lyapunov function for
finite fluctuations. We will see next that the nonequilibrium free
energy always decreases with time without the restriction of weak
fluctuation assumption.
In a manner analogous to equilibrium thermodynamics, we

can construct nonequilibrium thermodynamics (27, 30, 32–35,
37, 38) and apply to neural networks. We can define the po-
tential function ϕ0 and connect to the steady-state probability Pss
as PssðuÞ ¼ expð−ϕ0=DÞ=Z, where Z can be defined as the time-
independent (steady-state) nonequilibrium partition function for
the neural network quantified as Z ¼ R

expð−ϕ0=DÞdu. The
diffusion scale D measures the strength of the fluctuations and
here plays the role of kBT in the Boltzmann formula. We can
define the entropy of the nonequilibrium neural networks as fol-
lows: S ¼ −

R
Pðu; tÞ  ln  Pðu; tÞdu. We can also naturally define

the energy E ¼ R
ϕ0Pðu; tÞdu ¼ −D

R
ln½ZPss�Pðu; tÞdu and the

free energy F ¼ E−DS ¼ DðR P  lnðP=PssÞdu− ln  ZÞ for the non-
equilibrium neural networks.
We can explore the time evolution of the entropy and the free

energy for either equilibrium or nonequilibrium neural networks.
We see the free energy of the nonequilibrium neural networks
F always decreases in time

�
dF
dt ¼ −D2

R
∇ln

�
P
Pss

�
·G ·∇ln

�
P
Pss

�

Pdu ≤ 0
�
until reaching the minimum value F ¼ −D  ln  Z (34).

Therefore, the free-energy function F is a Lyapunov function for
stochastic neural network dynamics at finite fluctuations. The
minimization of the free energy can be used to quantify the second
law of thermodynamics for nonequilibrium neural networks.
Therefore, the free energy is suitable to explore the global stability
of the nonequilibrium neural networks.
The system entropy of the neural networks, however, is not

necessarily maximized. This is because the time derivative of the
system entropy dS/dt is not necessarily larger than zero all of the
times. We can see that the system entropy evolution in time is
contributed by two terms: _S ¼ _St − _Se. Here, the entropy pro-
duction rate is defined as _St ¼

R
dxðJ ·D−1 · JÞ=P2, which is either

positive or zero. The heat dissipation rate or entropy flow rate to
the nonequilibrium neural networks from the environment de-
fined as _Se ¼

R
dxðJ ·D−1 ·F′Þ=P can either be positive or nega-

tive, where the effective force is defined as F′ ¼ F−∇ ·D.
Although the total entropy change rate of the neural network
(system plus environment) _St is always nonnegative, consistent
with the second law of thermodynamics, the system entropy
change rate _S, however, is not necessarily positive, implying the
system entropy is not always maximized for the neural networks.
Although the system entropy is not necessarily positive, the
system free energy does minimize itself for neural networks. This
may provide an optimal design principle of the neural networks
for the underlying topology of wirings or connections.

The Dynamics of General Neural Networks
The Dynamics of Networks at Fixed Synaptic Connections. The
methods to construct global probability potential function and
the corresponding Lyapunov function discussed above can be
applied to general dynamical systems. Now we will explore the
potential landscape and Lyapunov function for general neural
networks. We start with the dynamical equations of Hopfield
neural network of N neurons (6) as follows: Fi ¼ dui

dt ¼ 1
Ci

�PN
j¼1

Ti; jfjðujÞ− ui
Ri
þ Ii

��
i ¼ 1; . . . ;NÞ. The variable ui represents the

effective input action potential of the neuron i. The action
potential u changes with time in the process of charging and
discharging of the individual neuron, and it can represent the
state of the neuron. Ci is the capacitance and Ri is the resistance
of the neuron i. Ti, j is the strength of the connection from neuron
j to neuron i. The function fiðuiÞ represents the firing rate of neuron
i. It has a sigmoid and monotonic form. The strength of the synaptic
current into a postsynaptic neuron i due to a presynaptic neuron j is
proportional to the product of fiðuiÞ and the strength of the syn-
apse Ti,j from j to i. So the synaptic current can be represented by

Ti;jfjðujÞ. The input of each neuron comes from three sources:
postsynaptic currents from other neurons, leakage current due
to the finite input resistance, and input currents Ii from other
neurons outside the circuit (6).
Notice that there is a very strong restriction in the Hopfield

model, which is the strength of synapse Ti,j must be equal to Tj,i.
In other words, the connection strengths between neurons are
symmetric. In this paper, we will discuss more general neural
networks without this restriction and include the asymmetric
connections between neurons as well.
By considering fluctuations, we will explore the underlying

stochastic dynamics by writing down the corresponding Fokker–
Planck equation for the probability evolution; then we can obtain
the Lyapunov function for a general neural network by solving
the same equation shown as Eq. 2.
For a symmetric neural network ðTij ¼ TjiÞ, we can see there is

a Lyapunov function, which is the energy E of the system as
follows (5, 6): E ¼ − 1

2

PN
i;j¼1TijfjðujÞfiðuiÞ þ

PN
i

1
Ri

R ui
0 ξfi′ðξÞdξ−PN

i IifiðuiÞ. For a symmetric situation, it is easy to get the fol-
lowing: dE

dt ¼ −
PN

i

�
dfiðuiÞ
dt

��PN
j TijfiðuiÞ− ui

Ri
þ Ii

�
¼ −

PN
i
dfiðuiÞ
dt

Ci _ui ¼ −
PN

i Cifi′ðuiÞ _u2i . Ci is always positive and the function fi
increases with variable ui monotonously, so the function E always
decreases with time. The Hopfield model, although successful,
assumes symmetric connections between neurons. This is not
true for realistic neural circuits. As we see, unlike the energy
defined by Hopfield, ϕ0 is a Lyapunov function no matter whether
the circuit is symmetric or not. In fact, ϕ0 as the general Lyapunov
function is reduced to the energy function only when the con-
nections of neural network are symmetric such as Hopfield model.
In general, one has to solve the Hamilton–Jacobi equation to get
the information on ϕ0 because there is no general analytical so-
lution for the Lyapunov function one can write down explicitly as
in the symmetric connection case as Hopfield model.
For a symmetric circuit, the driving force can be written as a

gradient, F ¼ −AðuÞ∇EðuÞ, whereAij ¼ δij
Cifi′ðuiÞ. For amore general

asymmetric circuit, the driving force cannot be written as the form of
pure gradient of the potential. We have mentioned before that the
driving force can be decomposed into a gradient of a potential re-
lated to steady-state probability distribution and a curl divergent
free flux. As we will discuss in Results and Discussion, complex
neural behaviors such as oscillations emerge in an asymmetric
neural circuit, although this is impossible for the Hopfield model
with symmetric neural connections. The nonzero flux J plays an
important role in this situation.

The Dynamics of Neural Networks with Adaptive Synaptic Connections.
In real brains, genes program synaptic connectivity, whereas neural
activity programs synaptic weights. We used constant synaptic
connections before. We should notice that the synaptic connections
actually vary all of the time. In addition, learning is exactly imple-
mented by changes in the strengths of feedforward connections
between different layers in feedforward networks or recurrent
connections within a layer in feedback networks (39). Therefore, it
is crucial to construct frameworks for networks with adaptive con-
nections, which also helps people understand the mechanisms of
prediction and reward (40). Actually, how the connections vary with
time depends on the learning rules we choose. If we take the
adaptive synaptic connections into consideration, based on Hebbian
rules for example, we can write the dynamical equations as follows:
dTij

dt ¼ − Tij

τT
þ η ·ViðuiÞ ·VjðujÞ.

Vi here is the output potential of neuron i, and η is the learning
rate. If the connection Tij varies much more slowly than the state
variable u, we can approximate the connections as constants.
However, when the connection Tij varies as fast as or even faster
than the state variable u, the synaptic connections become dy-
namical and their evolution should not be ignored. Fortunately,
our method provides a way to explore a general neural network
no matter whether the synaptic connections are adaptive or not.
This can be simply realized by including the above dynamical
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equation for the neuron connections Tij and couple together
with the dynamical equation for ui. Then we write down the
corresponding stochastic dynamics and the Fokker–Planck proba-
bility evolution diffusion equation and the corresponding Hamilton–
Jacobi equation for the nonequilibrium intrinsic potential ϕ0ðui;TijÞ.
We can obtain the potential landscape ðUðui;TijÞ ¼ − lnPssÞ and
curl flux Jssðui;TijÞ for the enlarged state space of ðui;TijÞ beyond
neural activity (potential) variable ui along with the connections Tij.
The advantage of this is that we can quantitatively uncover the
dynamical interplay between the individual neural activity and the
connections in between in the general neural networks in shaping
their global function.

Results and Discussion
Potential and Flux Landscape of Neural Network. From the dynamics
of the general neural networks described above, we established
the corresponding probabilistic diffusion equation and solved
steady-state probability distributions with a self-consistent mean
field method. Then we can quantitatively map out the potential
landscape [the population potential landscape U here is defined
as UðxÞ ¼ − lnðPssðxÞÞ] (12–15). It is difficult to visualize the
result directly because of the multidimensionality of the state
variable space of neural activity u. We selected 2 state variables
from 20 in our neural network model to map out the landscape
by integrating out the other 18 variables. We used more than
6,000 initial conditions in this study to collect statistics and avoid
local trapping in the solution.
We first explored a symmetric circuit as what Hopfield did (6).

Fig. 2A shows the potential landscape of the circuit and we can
see that this symmetric circuit has eight basins of attractors. Each
attractor represents a memory state that stores a complete in-
formation. When the circuit is cued to start with an incomplete
information (initial condition), it will go “downhill” to the
nearest basin of attractor with a complete information. This
dynamical system guarantees the memory retrieval from a cue to
the corresponding memory.
As we discussed in the above section, we constructed a

Lyapunov function ϕ0 from the expansion of the potential UðxÞ on
the diffusion coefficient D. It is difficult to solve the equation of
ϕ0 directly due to its huge dimensions. We applied the linear fit
method for the diffusion coefficient D versus the DU to solve the
ϕ0 approximately. Fig. 3A shows the intrinsic potential landscape
ϕ0 of the symmetric neural circuit. In Fig. 3A, we can see there
are also eight basins of attractor. Because ϕ0 is a Lyapunov
function, the potential ϕ0 of the system will decrease with time
and settle down at a minimum at last. This landscape looks

similar to the Hopfield energy landscape shown in Fig. 1. How-
ever, asymmetric circuits are more general and realistic. Unlike
the computational energy defined by Hopfield, which only works
for the neural networks with symmetric connections, ϕ0 is
a Lyapunov function irrespective to whether the circuit has
symmetric or asymmetric connections. Our landscape provides
a way to capture the global characteristics of asymmetric neural
circuits with Lyapunov function ϕ0.
The pattern of synaptic connectivity in the circuit is a major

factor determining the dynamics of the system. Hopfield defined
an energy that is always decreasing with time during the neural
state changes in a symmetric circuit. However, we know that
having the sign and strength of the synaptic connection from
neuron i to j the same as from j to i is not reasonable in a realistic
neural system. So we focus here on the neural circuits without
the restriction of symmetric connections. We chose a set of Tij
randomly. First, we set the symmetric connections, Tij ¼ Tji when
i≠ j. Here, Tii is set to zero, representing that the neuron does
not connect with itself. Fig. 2A shows the potential landscapes of
this symmetric circuit, and we can see eight basins of attractor.
The number of memories stored in this symmetric neural circuit
is eight. Next, we relaxed the restrictions on Tij. We set Tij ¼ Tji
for negative Tij when ji− jj> 4 and ji− jj> 5, and we mapped out
the landscapes in Fig. 2 B and C, respectively. The landscapes
show that the number of stored memories decreases gradually.
When we explored the original circuit without any restrictions
on Tij, there is a possibility in which all of the stable fixed points
disappear and a limit cycle emerges in Fig. 2D. We can see the
potential landscape has a Mexican-hat shape. These figures show
that, as the circuit becomes less symmetric, the number of point
attractors decreases. Because there are many ways of changing
the degree of asymmetry, this result does not mean the memory
capacity of an asymmetric neural network must be smaller than
a symmetric one. We will discuss the memory capacity of general
neural networks later in this paper.
As shown in Fig. 2D, oscillation can occur for unrestricted Tij.

Obviously, the system cannot oscillate if it is just driven by the
gradient force of the potential landscape resulting from the
symmetric connections. The driving force F in the general neural
networks cannot usually be written as a gradient of a potential.
As we have mentioned earlier in this paper, the dynamical
driving force F can be decomposed into a gradient of a potential
related to steady-state probability distribution and a divergent
free flux (12–15).
We obtained the Lyapunov function ϕ0 of this asymmetric

neural network. The landscape ϕ0 of the limit cycle oscillations
from an unrestricted asymmetric circuit is shown in Fig. 3B. We

Fig. 2. The 3D potential landscape figures from
restricted symmetric circuit to totally unrestricted
circuit. (A) The potential landscape of symmetric
neural circuit. (B and C ) The potential landscapes
of asymmetric circuits that Tij ¼ Tji for negative Tij
when ji− jj> 4 and ji− jj> 5, respectively. (D) The
potential landscape of the asymmetric circuit without
the restrictions on the connections. D ¼ 1 for multi-
stable case and D ¼ 0:001 for oscillation.
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can see again the Mexican-hat shape of the intrinsic landscape
ϕ0. The potential along the deterministic oscillation trajectories
are lower, and the potentials inside and outside of the ring are
higher. Therefore, this Mexican-hat topography of the landscape
attracts the system down to the oscillation ring. The values of ϕ0
are almost constant along the ring. This result is consistent with
the property of ϕ0 being Lyapunov function. In Fig. 3B, the green
arrows represent the flux, and the white arrows represent the
force from negative gradient of the potential landscape. We can
see the direction of the flux near the ring is parallel to the
oscillation path. The direction of the negative gradient of the
potential is almost perpendicular to the ring. Therefore, the land-
scape attracts the system toward the oscillation ring, and the flux
is the driving force and responsible for coherent oscillation mo-
tion on the ring valley.
Generally, a neural network dynamics will stop at a point

attractor where the Lyapunov function reaches a local minimum.
We have shown that the neural network can also oscillate for some
cases in which the values of Lyapunov function ϕ0 on the oscilla-
tion ring are homogeneous constant. Our Lyapunov function ϕ0
provides a good description of the global intrinsic characteristics.
Although the population potential U is not a Lyapunov function,
the population landscape potential U captures more details of the
system because it is directly linked to the steady-state probability
distribution. For example, U reflects the inhomogeneous proba-
bility distribution on the oscillation ring, and this implies the in-
homogeneous speed on the limit cycle oscillation path. ϕ0 being
global Lyapunov function does not capture this information.
For a symmetric circuit, the system cannot oscillate, because

the gradient force cannot provide the vorticity needed for
oscillations (6). However, from our nonequilibrium probabilistic
potential landscape, we can clearly see that the flux plays an
important role as the connections between neurons become less
symmetric. The flux becomes the key driving force when the
neural network is attracted onto the limit cycle oscillation ring.

Quantifying Global Stability of Neural Network. Consistent with the
symmetric Hopfield model, the memories in neural networks are
stored in attractors. Having quantified the potential landscape,
we can further study the robustness of the neural network by
exploring the landscape topography. We found that barrier
height correlated with the escape time is a good measure of
stability. In Fig. 4A, we can see that, when the fluctuation
strength characterized by the diffusion coefficient D increases,
the population barrier height decreases. Barrier height here is
defined as Umax −Umin. Umax is the maximum potential between
the basins of attractions, and Umin is the potential at one chosen
basin of attractor. We also followed the trajectories of this dy-
namical neural network starting with one selected basin of
attractor, and obtained the average escape time from this basin
to another with many escape events. Fig. 4B shows the re-
lationship between barrier height of one selected basin and the
escape time under certain fluctuations. We can see that, as the
barrier height in potential landscape increases, the escape time
becomes longer. Therefore, larger barrier height means it is
harder to escape from this basin, and the memory stored in this
basin is more robust against the fluctuations.

For the oscillation case, we discuss the barrier height with
respect to the period distribution. Barrier height here is also
defined as Umax −Umin. Umax is the maximum potential inside the
closed ring (the height of the Mexican hat), and Umin is the
minimum potential along the ring. When the fluctuations in-
crease, the period distribution of the oscillations becomes more
dispersed and the SD increases. Fig. 4C shows higher barrier
height leads to less dispersed period distribution. We can use the
Fourier transforms to find the frequency components of a vari-
able that changes periodically. For the oscillation case, there
should be one distinct peak in the frequency domain after
Fourier transforms. If the oscillation is coherent, the corre-
sponding magnitude of the peak is large. We discuss the re-
lationship between the barrier height and the amplitude of the
peak in the frequency domain. Fig. 4D shows that the amplitude
of the peak increases as the barrier height increases. Larger
barrier height makes it more difficult to go outside the ring, and
this ensures the coherence and robustness of the oscillations.
The barrier height provides a quantitative measurement for the
global stability and robustness of the memory patterns.

Flux and Asymmetric Synaptic Connections in General Neural
Networks. Because we have shown that the flux is a major driv-
ing force and crucial for the stability of oscillations, we will ex-
plore the origin of the flux in general asymmetric circuits. What
we know is there is only gradient force but no flux in Hopfield’s
symmetric neural network. So, naturally, the flux suggests to
us the asymmetric part of the network. We also explain this in

Fig. 3. (A) The potential landscape ϕ0 of the sym-
metric circuit. (B) The potential landscape ϕ0 as well
as corresponding force: the green arrows represent
the flux, and the white arrows represent the force
from negative gradient of the potential landscape.

Fig. 4. (A) The potential barrier height in U versus the diffusion coefficient
D. (B) The logarithm of the average escape time versus the barrier height in
potential barrier height U for symmetric circuits. (C) The barrier height
versus the SD σ of period for asymmetric circuits. (D) The barrier height
versus the amplitude of the power spectrum.
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mathematics. As we discussed before, we can decompose the
driving force as F ¼ Jss=Pss −D ·∇U (assuming constant diffusion
without the loss of generality). Furthermore, for a symmetric
neural circuit, the driving force can be written as F ¼ −AðuÞ∇E
ðuÞ, where Aij ¼ δij

Cifi′ðuiÞ. Comparing the above two equations, it is
not difficult to find that the term Jss=Pss may be generated by
the asymmetric part of the driving force. So we decomposed the
driving force into the symmetric part and the asymmetric part:
Fi ¼ 1

Ci

�PN
j¼1STi;jfjðujÞ− ui

Ri
þ Ii

�
þ 1

Ci

�PN
j¼1ASTi;jfjðujÞ

�
, where

i ¼ 1; . . . ;N.
Here, we constructed a connection matrix ST (symmetric

matrix) as the form of a pðTij þ Tji þ b pðTij þ TjiÞ2Þ (a, b are
constants). Clearly, the matrix ST satisfies STij ¼ STji and
ASTij ¼ Tij − STij. Notice that the resulting symmetric part of the
driving force FiðsymmetricÞ ¼ 1

Ci

�PN
j¼1STi;jfjðujÞ− ui

Ri
þ Ii

�
has the

general form of Hopfield model for a symmetric neural circuit.
To explore the relationship between the asymmetric part of driving
force FiðasymmetricÞ and the flux term Jss=Pss, we calculated the
average magnitude of FiðasymmetricÞ and Jss=Pss along the limit
cycle for different asymmetric circuits. Here, the average magnitude

of FðasymmetricÞ is defined as Favg ¼ ∮FðasymmetricÞdl
∮ dl

, and the defi-

nition of average Jss=Pss is similar (details are in SI Text). We also
use S, which is defined as S ¼ 1

2

PN
ij jTij −Tjij, to describe the degree

of asymmetry of a neural circuit. In Fig. 5A, we can see when
S increases (the network becomes less symmetric), the average
FðasymmetricÞ and Jss=Pss along the limit cycle increases. It is not
difficult to understand that the asymmetric part of driving force
becomes stronger when the circuit is more asymmetric. The similar
trend of average Jss=Pss versus S in Fig. 5B shows that the asym-
metric part of driving force and the flux are closely related. The
result is consistent with our view that the nonzero probability flux
Jss=Pss are generated by the asymmetric part of the driving force.
Next, we explored how the system is affected when the degree

of asymmetry of the circuit changes. The coherence is a good
measure of the degree of periodicity of the time evolution (the
definition of coherence is shown in SI Text). The larger value of
coherence means it is more difficult to go in a wrong direction
for oscillations. Fig. 5C shows the coherence increases when
the degree of asymmetry S increases. Asymmetric connections

ensure the coherence is good, which is crucial for the stability of
the continuous memories with certain direction. For example, it is
more likely to go in the wrong direction along the cycle for a less
coherent oscillation, and this may cause fatal effects on the
control of physiological activities or memory retrieval.
We also explored the period of the oscillation. Fig. 5D shows

the period τ of oscillation decreases as the degree of asymmetry
S increases. As we have discussed before, the system is mainly
driven by the flux after attracted to the oscillation ring by the
gradient force. Larger force ðJss=PssÞ leads to shorter period of
a cycle. Besides, larger force means the system cannot be easily
influenced by the fluctuations around. The oscillation becomes
more stable as the circuit is more asymmetric. It is natural to
expect that shorter period of the oscillation means higher fre-
quency of some repetitive actions. If so, the flux is also the key of
controlling factor for the frequency of some crucial physiological
activities such as breath and heartbeat. However, uncovering the
relation between neuronal oscillators and the much slower bio-
chemical–molecular oscillators, such as circadian rhythms, is still
a challenge.
Furthermore, we explored whether the degree of asymmetry

affects the capacity of memories. Here, we use a statistical
method to show the memory capacity in general asymmetric
neural circuits. For any special set of connections Tij that are
given randomly, we follow the trajectory of evolution with time
to find its steady state and we do the calculation with more than
6,000 different initial conditions. For the generality of our
results, we explored four networks with different sizes, whose
number of neurons are N = 8, 12, 16, and 20, respectively. Here,
we provide the results from 10,000 different random sets of
connections for each network. Here, we introduce a measure of

the degree of symmetry η ¼
P

i≠j
TijTjiP

i≠j
T2
ij

to be consistent with the

previous studies (41, 42). In Fig. 6, we use 1− η to describe the
degree of asymmetry. We can see that, for a certain network size,
the capacity (average number of point attractors) decreases as
the network connections become more asymmetric. For certain
degree of asymmetry, the capacity increases as the network size
increases. Our results are consistent with the previous studies
(41–43). Some details of the dynamical behavior of a system with
weak asymmetric are studied in ref. 44.
We point out here that the flux that correlates with the

asymmetric parts of the driving force for neural networks is a
measure of how far away the system is from equilibrium state
from our study. The presence of the flux that breaks the detailed
balance of the system reduces the number of point attractors
available and therefore the memory capacity of the neural net-
works. Larger fluxes, although not favoring the point attractors,
do lead to continuous attractors such as limit cycle oscillations
for storing memory in a sequential form, which means better
associativity between different memories. Furthermore, previous
studies have hinted that the relationship between storage ca-
pacity and associativity is determined by the neural threshold in
spin system (45). Our results suggest that the flux provides a
quantitative measure of the competition between storage ca-
pacity and memory associativity. We will explore more details
on this in future work.
Concluding the results, we found that asymmetric synapse

connections break the detailed balance and the asymmetric part of
driving force becomes larger as the circuit is less symmetric.
Larger asymmetric part of driving force leads to larger flux, which
can generate the limit cycle. Here, we need both the potential
landscape and flux to guarantee a stable and robust oscillation.
The oscillatory pattern of neural activities widely exists in our

brains (8, 46–48). Previous studies have shown much evidence
that oscillations play a mechanistic role in various aspects of
memory including the spatial representation and memory
maintenance (21, 49). The continuous attractor models have
been developed to uncover the mechanism of the memory of eye
position (50–52). However, understanding how sequential orders
are recalled is still challenging (53, 54), because the basins of the

Fig. 5. (A) Average Jss=Pss (asymmetric part of driving force F) along the
limit cycle with solid line (dotted line) versus the degree of asymmetry S. (B)
Average Jss=Pss versus asymmetric part of driving force F along the limit cycle.
(C) The phase coherence versus the degree of asymmetry S. (D) The period τ
of the oscillations versus the degree of asymmetry S.
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attractions storing the memory patterns are often isolated with-
out connections in the original symmetric Hopfield networks.
Some studies indicated that certain asymmetric neural networks
are capable of recalling sequences and determining the direction
of the flows in the configuration space (55, 56). We believe that
the flux provides the driving force for the associations among
different memories. In addition, our cyclic attractors and flux may
also help to understand phenomena like “earworm” that a piece of
music sticks in one’s mind and plays over and over. Synchroniza-
tion has been important in neuroscience (57). Recently, phase-
locking among oscillations in different neuronal groups provides
a new way to study the cognitive functions involving communica-
tions among neuronal groups such as attention (58). We notice
that the synchronization can only happen among different groups
with coherent oscillations. As shown in our study, the flux is closely
related to the frequency of oscillations. We plan to apply our
potential and flux landscape theory to explore the role of the flux
in modulation of rhythm synchrony in the near future.

Potential and Flux Landscape for REM/Non-REM Cycle. After explor-
ing a general but somewhat abstract neural network model, we
also apply our potential and flux landscape theory to a more re-
alistic model describing the REM/non-REM cycle with the human
sleep data (24, 25, 59). The REM sleep oscillations are controlled
by the interactions of two neural populations: “REM-on” neurons
[medial pontine reticular formation (mPRF), laterodorsal and
pedunculopontine tegmental (LDT/PPT)] and “REM-off” neu-
rons [locus coeruleus (LC)/dorsal raphe (DR)]. A limit cycle model
of the REM sleep oscillator system is similar to the Lotka–Volterra
model used to describe the interaction between prey and predator
populations in isolated ecosystems (60, 61). The mPRF neurons
(“prey”) are self-excited through Ach. When the activities of REM-
on neurons reach a certain threshold, REM sleep occurs. Being
excited by Ach from the REM-on neurons, the LC/DR neurons
(“predator”) in turn inhibit REM-on neurons through serotonin
and norepinephrine, and then the REM episode is terminated.
With less excitation from REM-on neurons, the activities of LC/DR
neurons decrease due to self-inhibition (norepinephrine and sero-
tonin). This leads to the REM-on neurons to release from in-
hibition. Thereafter, another REM cycle starts.
This circuit can be described by the following equations: dx

dt ¼
a pAðxÞ p x p S1ðxÞ− b pBðxÞ p x p y and dy

dt ¼ − c p yþ d p x p y p
S2ðyÞ. Here x and y represent the activities of REM-on and REM-
off neural population, respectively. The detailed form of the inter-
actions such as AðxÞ and BðxÞ is shown in SI Text.

Based on the above dynamics of REM sleep system, the po-
tential landscape and the flux of the REM/non-REM cycles are
quantified. As shown in Fig. 7A, the potential landscape U has
a Mexican-hat shape, and the oscillations are mainly driven by
the flux indicated by the red arrows along the cycle. Because how
initial conditions (circadian phase) influence the duration and
intensity between the first and other REM periods, as well as
how the changes of the parameters representing specific physi-
ological situations influence the dynamics of REM oscillations
have been discussed by the previous studies (24), here we mostly
focused on the global stability and sensitivity of the REM
oscillations using our potential and flux theory. We did a global
sensitivity analysis to explore the influences of parameter
changes on the stability of the system through changing the in-
teraction strength a and b. The global stability is quantified by
the landscape topography represented by the barrier height of
the center island of the Mexican-hat landscape. When the center
island is high, the chance of escaping from the oscillation ring
valley to outside is low and the system is globally stable. We can
see in Fig. 7 A and B, the potential inside the ring (the height of
the center island of the Mexican hat) becomes lower when the
parameter a decreases from 1 to 0.6. This means oscillations are
less stable and less coherent. As we have discussed above, barrier
height is a good measurement of the robustness. The effects of
a and b on the barrier height are shown in Fig. 7C. We can see
the increase of a makes the system more stable, and the system
becomes less stable for larger b. In our model, raising the level of
a means increasing the Ach release within mPRF, and the con-
nection b is associated with the norepinephrine release (24).
Much evidence has shown that Ach plays an important role in
maintaining the REM sleep, and the REM sleep is inhibited
when Ach decreases (62). Previous studies have also shown in-
creased norepinephrine is ultimately responsible for REM sleep
deprivation (63). Our theoretical results are consistent with these
experimental data. We have also shown that the flux plays a key role
for the robustness of oscillations, and Fig. 7D shows this explicitly:
the barrier and the average flux along the ring is larger as
a increases [the system is more stable and oscillations are more
coherent (Fig. 5C)]. Both the potential landscape and the flux are
crucial for the robustness of this oscillatory system. Furthermore, we
investigated the effects of the parameters on the period of REM
sleep cycles. We can see in Fig. 7E, the larger a leads to shorter
period due to the increase of the flux as the main driving force of
the oscillation on the ring valley. Previous investigators have shown
the REM sleep rhythm can be shortened by repeated infusions of
Ach agonist such as arecholine (64). The period almost remains
unchanged as b changes because the strength of flux is affected less

Fig. 6. The memory capacity versus the degree of asymmetry 1− η for
networks with different sizes. The y axis indicates the average number of
point attractors.

Fig. 7. (A and B) The potential landscape for b ¼ 2:0 and a ¼ 1:0,0:6, re-
spectively. The red arrows represent the flux. (C) The effects of parameters
a and b on the barrier height. (D) The effects of parameters a and b on flux.
(E) The effects of parameters a and b on period.
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by the parameter b. These results showed again the flux is not only
crucial for the stability of oscillations but can also provide a way to
explore the period of biological rhythms. Exploring such a system
may also give new insights to the understanding of the mechanism
of gamma oscillations in the hippocampus where the theory and
experiment have converged on how a network can store memories,
because the interactions between REM-on and -off neurons share
some similarities with the interactions between excitatory pyramidal
cells and inhibitory interneurons in hippocampal region CA3 (65).
The application of our landscape and flux framework to the

specific REM sleep cycle system provides us more information
on what we can do with our general theory. By quantifying the
potential landscape topology, we can measure the global stability
in terms of barrier height. For oscillatory systems, both potential
landscape topology and the flux are crucial for maintaining the
robustness and coherence of the oscillations. From the global
sensitivity analysis of the landscape topography, we are able to
uncover the underlying mechanisms of neural networks and find
out the key nodes or wirings of such networks for function. Our
theory can be used to explain experimental observations and
provide testable predictions. Furthermore, quantifying the flux
can provide a new way to study the coherence and period of
biological rhythms such as the REM sleep cycles and many
others. This quantitative information cannot be easily obtained
by previous studies. Our theory can be applied to other neural
networks. For example, the flux may also provide new insights to
the mechanism of the retrieval of sequential memories processes.
We will return to this in future studies.

Models and Methods
To explore the nature of probabilistic potential landscape, we will study
a Hopfield neural network composed of 20model neurons (5, 6). Each neuron
is dynamic, which can be described by a resistance–capacitance equation. In
the circuit, the neurons connect with each other by synapses. The following
set of nonlinear differential equations describes how the state variables of
the neurons change with time in the circuit:

Ci
dui

dt
¼

XN

j¼1

Ti,j fj
�
uj
�
−
ui

Ri
þ Iiði ¼ 1, . . . ,NÞ: [3]

This model ignores the time course of the action potential propagation
and synapses’ change for simplicity; these simplifications make it possible to
compute a complicated circuit with more neurons. Besides, this model
reflects some important properties of biological neurons and circuits. In this
paper, we use the Hill function as the form of the sigmoid and monotonic
function fðuÞ. All Ci and Ri are equal to 1. For simplicity and stressing the
effects of connections here, we also neglect the external current I. The
strengths of connections here are all chosen randomly from 0 to 30 for
general circuits. Details are given in SI Text.

To obtain the underlying potential landscape that is defined as U ¼ − lnPss,
we first calculated the probability distribution of steady state. The corre-
sponding diffusion equation describes the evolution of the system that can
give the exact solution of steady-state probability. However, it is hard to solve
this equation directly due to the huge dimensions. We therefore used the self-
consistent mean field approximation to reduce the dimensionality (13, 14).

Generally, for a system with N variables, we have to solve a N-dimensional
partial differential equation to obtain the probability Pðx1,x2, . . . ,xN ,tÞ. This is
impossible for numerical calculation. If every variable has M values, then the
dimensionality of the system becomesMN, which is exponential in size of the
system. Following a mean field approach (14, 18, 19), we divide the proba-
bility into the products of individual ones: Pðx1,x2, . . . ,xN ,tÞ∼∏N

i Pðxi ,tÞ and
solve the probability self-consistently. Each neuron feels the interactions from
other neurons as an average field. Now the degrees of freedom are reduced
to M×N. Therefore, the problem is computationally feasible due to the di-
mensional reduction from exponential to polynomials.

The self-consistent mean field approximation can reduce the dimensionality
of the neural network for computational purposes. However, it is still often
difficult solve the coupled diffusion equation self-consistently. The moment
equations are usually relatively easy to get. If we have the information of all of
the moments, then in principle we can uncover the whole probability distri-
bution. In many cases, we cannot get the information of all of the moments.
We then start from moment equations and make simple ansatz by assuming
specific relation between moments (14, 19) or giving specific form of the

probability distribution function. Here, we use Gaussian distribution as an
approximation. We need two moments to specify Gaussian distribution, mean
and variance.

Let us consider the situation where the diffusion coefficient D is small;
the moment equations for neural networks can then be approximated as
follows:

uð:tÞ ¼ C½uðtÞ�, [4]

σð:tÞ ¼ σðtÞATðtÞ þ AðtÞσðtÞ þ 2D½uðtÞ�, [5]

Here u, σðtÞ, and AðtÞ are vectors and tensors representing the mean,
variance, and transformation matrix, respectively, and ATðtÞ is the transpose

of AðtÞ. The matrix elements of A are Aij ¼ ∂Ci ½uðtÞ�
∂ujðtÞ . According to this equation,

we can solve uðtÞ and σðtÞ for the neural networks. We consider here only
the diagonal element of σðtÞ from the mean field approximation. Therefore,
we can obtain the evolution of distribution for one variable using the mean
and variance by Gaussian approximation:

Pðu,tÞ ¼ 1ffiffiffiffiffiffi
2π

p
σðtÞ exp−

½u−uðtÞ�2
2σðtÞ : [6]

The total probability is equal to the product of probability for each in-
dividual variable from the self-consistent mean field approximation. Fur-
thermore, the weight of each point stable state is not equal for a multistable
system. This indicates that the probability of some stable states are higher
than others. We need to find the weight of these attractors relative to the
others. We do so by calculating the percentage of each final attractor state
starting frommany different initial conditions. We check howmany different
initial states eventually go to specific basins. These quantify the weight co-
efficient of each stable state. Finally, once we have the steady-state prob-
ability distribution, we construct the potential landscape by adding those
individual Gaussian distributions around each attractors with the relative
weights collected from the multiple initial conditions.

Once we obtain the probability distribution, we solve the Lyapunov
function approximatively based on linear fitting. As discussed before, the
potential can be expanded on small D as UðxÞ ¼ ϕ0ðxÞ=Dþ ϕ1ðxÞ þ . . .. We
use the data of 0:001<D< 0:002 to fit a line (the diffusion coefficient D
versus the −DlnPss). In addition, the slope of this line is the value of ϕ0.

Conclusion
We have established a potential and flux landscape theory for
general neural network dynamics. We quantify the probabilistic
potential landscape and the corresponding Lyapunov potential
landscape for a general asymmetric Hopfield neural network
consisting of 20 model neurons (5, 6). We applied a self-con-
sistent mean field approximation method to reduce the degrees
of freedom of the system for solving the steady-state probability
distribution that determines the probabilistic potential land-
scape. Based on the probabilistic potential landscape, we con-
structed a Lyapunov function characterizing the global stability
and function of the neural circuit. The point attractor states with
the highest probability represent memories stored in the circuit.
We quantified the landscape topography with the barrier heights
that are correlated with the escape time and used that to study
the robustness of the stored memories against the fluctuations.
We quantified the potential landscape of the neural circuits

without the restriction of symmetric connections. The oscil-
lations can emerge for a neural network circuit with asymmetric
synaptic connections. Being different from Hopfield’s associate
memory energy function, the Lyapunov function we constructed is
not restricted to the symmetric connections, and therefore the
circuits can be either symmetric or asymmetric. In other words, the
Lyapunov function characterizes the global behavior of not only
symmetric but also the asymmetric neural networks. The values of
Lyapunov function along the oscillation ring are constant.
We found that the driving force for local dynamics of neural

networks can be decomposed into the gradient of the potential and
the curl flux. For oscillations, the landscape attracts the neural
network toward the closed ring and the probability flux drives the
neural network for coherent oscillation along the closed-ring valley.
We found the flux is closely associated with the asymmetric part of
the driving force. The flux is crucial for the coherent oscillatory
pattern of neural activities associated with repetitive continuous
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memories. The flux is the key to understand the synchronization
among neurons and brain rhythms. Our result indicates asymmetric
neural networks may store less distinct memories than a symmetric
one for point attractors. However, continuous attractors that store
continuous memories with certain directions can appear in general
asymmetric neural circuits, but not in symmetric neural circuits.
Furthermore, the flux may provide the origin and driving force for
the associations among different memories.
We have applied our potential and flux landscape theory to

an REM sleep cycle model (24, 25). We did a global sensitivity
analysis based on the global topography of the landscape to
explore the influences of key factors such as the release of Ach

and norepinephrine on the stability and function of the system.
Our theoretical predictions are consistent with the experimental
observations. Quantifying the flux is not only crucial for exploring
the robustness of neural systems but also provide a tool to study the
period of biological rhythms such as the REM sleep cycles.
In the future, we hope to apply our general potential and flux

landscape theory in this study to other complex neural networks.
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