Skip to main content
. Author manuscript; available in PMC: 2013 Nov 18.
Published in final edited form as: Neurol Sci. 2011 Jun 1;32(4):10.1007/s10072-011-0633-1. doi: 10.1007/s10072-011-0633-1

Table 1.

FDG-PET studies in clinically and cognitively normal subjects

Reference Study design Subjects Method Regions with CMRglc reductions Interpretation
Small et al. [63] Cross-sectional study 31 SCI and FH–subjects aged 44–67 years old: 12 E4+, 19E4− ROI Parietal (only ROI investigated) N/A
Reiman et al. [56] Cross-sectional study 33 normal subjects FH+ aged 50–62 years old: 11 E4+ homozygotes, 22 E4− ROI Frontal Acceleration of certain aging processes that herald the onset of Alzheimer’s dementia
Temporal
Parietal
Posterior cingulate cortex (effect is maximal)
Small et al. [57] Longitudinal study over 2 years At baseline, 54 normal subjects aged 57–75 years old: 27 E4+, 27E4− SPM + ROI Parietala N/A
Temporala
Posterior cingulate cortexa
At follow-up, 20 normal subjects: 10 E4+, 10 E4−
Reiman et al. [58] Longitudinal study over 2 years 25 normal FH+ aged 50–63 years old: 15 E4+ heterozygotes, 10 E4− ROI Frontal Interaction between E4 allele and aging rather than a static trait Acceleration of aging processes, necessary but not sufficient for AD
Temporal
Posterior cingulate cortex
Parahippocampal gyrus,
Hippocampal formation
Fusiform gyrus
OccipitoTemporal Cortex
Lingual gyrus
Basal forebrain
Thalamus
Midbrain
Cerebellum
Lentiform nucleus
Reiman et al. [59] Cross-sectional study 27 normal subjects aged 25–36 years old: 12 E4+ heterozygotes, 15E4− ROI Frontal AD pathology Functional alterations provide a foothold (vulnerability) for subsequent onset of neuropathology Prenatal or early postnatal abnormal neurological development
Temporal
Parietal
Posterior cingulate cortex
Reiman et al. [60] Cross-sectional study 160 normal subjects aged 47–68 years old: 82 E4+ (36 homozygotes, 46 heterozygotes), 78 E4− SPM + ROI Frontal N/A
Parietal, Precuneus
Temporal
Posterior cingulate cortex
Rimajova et al. [61] Cross-sectional study 30 E4+ normal or SCI subjects aged 55–78 (26 heterozygotes, 4 homozygotes, 23 healthy and 7 SCI), 30 healthy controls age-matched individuals from a database VOI Temporal AD pathology
Posterior cingulate cortex
Anterior cingulate cortex
All effects are higher in heterozygotes
(Japanese database of non demented elderly people aged 60–90 whose E4 status are unspecified)
Mosconi et al. [62] Cross-sectional study 28 normal or SCI subjects aged 45–70 years old: 13 E4+, 15 E4- SPM Frontal N/A
Parietal
Temporal
Fusiform gyrus
Middle occipital gyrus
Thalamus
Mosconi et al. [64] Cross-sectional study 49 FH+ normal or SCI subjects aged 46–80 years old: 16 FHm, 8 FHp, 25 FH- SPM FHm vs. FH−: FHm vs. FHp: Hypometabolism in FHm may be due to mitochondrial deficits, genetic imprinting, chromosome X-related mechanisms, or other causes
Frontal
Parietal Parietal
Temporal Temporal
Posterior cingulate cortex Posterior cingulate cortex
Parahippocampal gyrus Parahippocampal gyrus
Hippocampus Hippocampus
Mosconi et al. [65] Longitudinal 2-year study 66 normal or SCI subjects aged 50–82 years old: 20 FHm, 9 FHp, 37 FH– SPM FHm vs. FH−: FHm vs. FHp: CMRglc decline may be due to a pathologic process that precedes cognitive deficit in healthy elderly
Frontal Frontal
Parietala Parietal
Temporala Temporal
Posterior cingulate cortexa Posterior cingulate cortex
Parahippocampal gyrus Parahippocampal gyrus
Hippocampus
a

Significantly higher rate of decline over 2 years

E4+ ApoE E4 carriers, E4− ApoE E4 non-carriers, FH+ family history of AD in at least one first-degree relative, FHm maternal FH, FHp paternal FH, CMRglc Cerebral metabolic rate of glucose, SCI subjective cognitive impairment, FH+ family history of AD in at least one first-degree relative, ROI region of interest, VOI volume of interest, SPM statistical parametric mapping, N/A not available