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Abstract: How long does it take to equilibrate the unfolded state of a protein? The answer to this
question has important implications for our understanding of why many small proteins fold with

two state kinetics. When the equilibration within the unfolded state U is much faster than the fold-

ing, the folding kinetics will be two state even if there are many folding pathways with different
barriers. Yet the mean first passage times (MFPTs) between different regions of the unfolded state

can be much longer than the folding time. This seems to imply that the equilibration within U is

much slower than the folding. In this communication we resolve this paradox. We present a for-
mula for estimating the time to equilibrate the unfolded state of a protein. We also present a for-

mula for the MFPT to any state within U, which is proportional to the average lifetime of that state

divided by the state population. This relation is valid when the equilibration within U is very fast as
compared with folding as it often is for small proteins. To illustrate the concepts, we apply the

formulas to estimate the time to equilibrate the unfolded state of Trp-cage and MFPTs within the
unfolded state based on a Markov State Model using an ultra-long 208 microsecond trajectory of

the miniprotein to parameterize the model. The time to equilibrate the unfolded state of Trp-cage

is ~100 ns while the typical MFPTs within U are tens of microseconds or longer.
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Introduction

How long does it take to equilibrate the unfolded

state of a protein? The answer to this question has

important implications for our understanding of why

many small proteins fold with two state kinetics.1–28

The protein folding funnel picture provides key

insights.3,5,6 When a protein folds along multiple

pathways as suggested by the funnel picture, the

folding kinetics will still be two-state regardless of

differences in the intrinsic barriers along each path-

way if the equilibration within the unfolded state

ensemble is much faster than the time it takes to

fold. Yet the mean first passage times (MFPTs)

between different regions of the unfolded state

ensemble are typically much longer than the folding

time; this suggests that the time to equilibrate the

unfolded state ensemble is much longer than the
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time to fold.29,30 So there is a paradox: the single

exponential kinetics can be explained by very fast

equilibration within the unfolded state U relative to

folding, but the long MFPTs within U seem to imply

that the equilibration of the unfolded state is slow

relative to folding. In this communication we resolve

this paradox. It arises when the average time for a

single molecule trajectory to hit a specific location

(the MFPT to state i) within U, is compared with the

time for population fluctuations within the unfolded

state to relax. This relaxation time provides a quanti-

tative measure of the time to equilibrate the unfolded

state. We will show that the MFPT to any state

within the unfolded ensemble is approximately equal

to the time to equilibrate the unfolded state divided

by the population of the target state. The smaller the

size of the target state, the longer the MFPT to that

state, even though the equilibration of the unfolded

state ensemble is very fast. For the Trp-cage example

we use for discussion, MFPTs between different

regions of the unfolded state ensemble are 10s to

100s of microseconds, while the time to equilibrate

the unfolded state is of the order of 100 ns. These

times are to be compared with the folding time for

Trp-cage, which is 5.5 microseconds.

An estimate of the time required to equilibrate

the protein unfolded state is also needed to under-

stand the implications of the recently introduced

kinetic hub model of protein folding.29,31,32 In this

model, the folded state F acts as a hub, so that most

paths, which connect pairs of unfolded states U1

and U2 pass through F.33,34 Hub like behavior

appears to imply that the unfolded state partitions

into subspaces, which largely fold along different

pathways, but we have shown that this is not the

case for Trp-cage.28 Furthermore, when the time to

equilibrate within the unfolded state ensemble is

much faster than the folding time, the hub like

behavior simply reflects the fact that the F state has

sufficient population to have a high probability of

being on most paths between typical points U1 and

U2 within the unfolded state ensemble. It has

recently become clear that hub like behavior is con-

sistent with a smooth folding funnel.28

We use the integral of the time correlation func-

tion, which quantifies how the population fluctua-

tions within the unfolded state relax to equilibrium

as the measure of the time to equilibrate the

unfolded state.35 There are two contributions to the

relaxation of population fluctuations within the

unfolded state ensemble of a protein, or equivalently

the equilibration of the unfolded state. The first cor-

responds to relaxation of fluctuations, which origi-

nate and propagate entirely within the U state and

the second to relaxation within U, which arises from

the equilibration between the unfolded and folded

states. When the former relaxation process is much

faster than the later, the protein folding is two-state.

In this communication we mostly focus on the fast

relaxation processes entirely within U. For our anal-

ysis we use a discrete master equation model of Trp-

cage with 20 states parameterized on a 208 micro-

seconds all atom molecular dynamics simulation of

this mini-protein in water provided by the D.E.

Shaw group.23 The kinetics is characterized by the

implied timescale spectrum of the transition matrix,

which contains all the information about the relaxa-

tion times of the states within the discrete time

Markov State Model (MSM). The Trp-cage implied

timescale spectrum has a substantial gap between

the longest implied timescale, which is associated

with folding and the others, therefore the intra U

state fluctuations can be separated from the folding

and the mini-protein folds in a two-state manner

with single exponential kinetics. That the remaining

eigenmodes correspond to intra U-state relaxation

can be verified by comparing the spectrum with the

corresponding implied timescale spectrum obtained

using reflecting boundary conditions at F, as we do

in the following section.

Results and Discussion
We use a master equation to study the timescales

over which the unfolded state equilibrates. The for-

mal solution to the master equation is:

~PðtÞ5 TðtÞ � ~Pð0Þ (1)

where P is a vector of state probabilities and the tran-

sition matrix T (also called the propagator) contains

all the information about the kinetics of the system

(see Supporting Information). The propagator matrix

element Tij(t) is the probability that the system is in

state j at time t given that it was in state i at time zero.

All observables of the system can be calculated in

terms of functions of the Tij(t). The Tij(t) in turn can be

expressed in terms of the eigenvalues and eigenvec-

tors of T. Figure 1 shows the spectrum of implied time-

scales for the Trp-cage transition matrix constructed

from the Shaw trajectory and for a modified transition

matrix with a reflecting boundary added at F. Impos-

ing the reflecting boundary condition here provides a

model for the dynamics of the unfolded state alone. It

can be seen that the spectrum is very similar except

that the largest nonzero eigenvalue is missing from

the spectrum with reflecting boundary condition at F;

this eigenmode corresponds to the relaxation between

the unfolded (U) state ensemble and the folded (F)

state. The large gap between the largest implied time-

scale and the others means that the folding is two-

state and the implied timescale (�1.2 ls) is the inverse

of the sum of the folding plus unfolding rates.

In Figure 2 we show a typical propagator matrix

element Tij(t) from state i to state j, both within U,
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calculated three ways; using absorbing, unmodified

equilibrium, and reflecting boundary conditions at F.

The time dependence of Tij(t) describes the relaxation

process following an initial point perturbation at state

i. On a timescale of a few hundred nanoseconds they

look very similar. Each rises rapidly to a plateau value

which “overshoots” the equilibrium population of state

j by a small amount. When added up over all the states

in U, the excess corresponds to the equilibrium popu-

lation of F that folds from U to F on the slower time-

scale of �5 ms. After a few hundred nanoseconds, the

Tij(t) matrix elements shown in Figure 2 have the fol-

lowing longer time behavior. Under reflecting bound-

ary conditions Tij(t) is approximately constant, the

unmodified transition matrix Tij(t) relaxes to the equi-

librium population with a relaxation time �1.2ms,

while under absorbing boundary condition the matrix

elements relax to zero with a relaxation time �5 ms.

The results shown in Figure 2 are suggestive as to the

timescales for equilibrating the unfolded state, but the

full relaxation involves all the elements Tij(t) of the

propagator. We consider the full expression for the

relaxation now.

The way to estimate the time it takes to equili-

brate a system from equilibrium statistical mechan-

ics is to calculate an integral of the appropriate time

correlation function.35 The correlation function of

interest here corresponds to the decay of the popula-

tion fluctuations in the unfolded state. After some

manipulation (see Supporting Information), this cor-

relation function can be expressed as:
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where wn
R(i) and wn

L(i) are the ith element of the

nth right and left eigenvectors of the T matrix. kn is

the nth eigenvalue of the T matrix. DPi(t) 5 Pi(t)

2 Peq(i). Peq(i) is the equilibrium population of state

i. Pi(t) is an indicator function, which is 1 when the

trajectory is on state i and 0 otherwise at time t.

In Figure 3 we show the unfolded state popula-

tion fluctuation correlation function. When the

motions are restricted to the unfolded state, the

time to equilibrate the unfolded state is estimated

from the time integral of C
_

totðtÞ to be �100 ns; when

the additional relaxation of U due to the much

slower equilibration between U and F is also consid-

ered, the time to equilibrate the unfolded state is

increased to �540 ns. The separation of timescales

between the equilibration within U and the folding

is implicit in the folding funnel model of protein

folding.3,5 While folding on a flat “golf-course” land-

scape,11 which lacks the energy bias can also pro-

duce a separation of timescales, the very fast

equilibration (�100 ns) within the unfolded state is a

feature of the funneled landscape.

Our estimate of the time to equilibrate the protein

unfolded state based on the decay of fluctuations of

the U state population (eq. 2b) is independent of the

kind of experiment chosen to monitor the system. Any

particular experiment will measure the time evolution

of the population fluctuations reweighted by how sen-

sitive that particular probe is to the different modes

by which the population fluctuations relax. If for

example, the experiment is sensitive to the fluctua-

tions of some property f, then the experimental relaxa-

tion time measured for that probe of the unfolded

state dynamics would be:

Figure 1. (a) The implied timescales corresponding to the

10 slowest decaying eigenmodes using transition matrices

T(s), with different boundary conditions, (a) unmodified equi-

librium and (b) reflecting at F and I states. The optimal lag

time 10 ns is chosen for further analysis based on the trade-

off between the network being Markovian and the resolution

being sufficient for studying folding mechanism.
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where f(i), f(j) are the values of the experimental

observables in state i and j.

A common choice of the experimental observable

f is the FRET efficiency, which is a nonlinear func-

tion of the distance between two particular residues

within the protein. The relaxation time thus deter-

mined depends on the choice of those residues.25

We turn now to an analysis of the MFPTs between

different states within the unfolded state ensemble.

From MSMs, the MFPTs between unfolded states

have been reported to be tens of microseconds or lon-

ger.29,31,32 For the Trp-cage model we studied it

extends to �200 microseconds. The MFPT to an

unfolded state i can be obtained from the formula:
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where w}R
}NðiÞ and w}L

}NðiÞ are the ith element of the nth

right and left eigenvectors of the transition matrix

with an absorbing boundary at i Tabs!i. ln is its the

nth implied timescale (see Supporting Information).

The average shown in eq. 4a is taken over all the

other states j in U and includes a sum over all the

eigenmodes n. In Figure 4(a) we show the implied

timescale spectrum of the transition matrix with

absorbing boundary at a typical unfolded state i. The

Figure 2. (a) A typical propagator matrix element Tij(t) from state i to state j, both within U, calculated three ways; using

absorbing at F (black), unmodified equilibrium (blue) and reflecting boundary conditions at F (red). The upper and lower dash

and point lines in each subplot are correspondingly the equilibrium population of state j under reflecting and unmodified equilib-

rium boundary conditions. All the propagator elements are calculated from spectral decomposition using all the 20 eigenmodes

at lag time of 10 ns. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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large gap between the largest implied timescale and

the rest is the signature of the exponential distribu-

tion of first passage times to unfolded state i. The lon-

gest implied timescale is of the order of �100

microseconds. Because the unfolded state ensemble

relaxes on a timescale a hundred to a thousand times

faster than the time it takes on average to reach state

i, the MFPT to state i does not depend on the starting

point within U. The kinetics involving the transitions

between any specific state i and all the other states

taken collectively is then effectively two state and the

MFPT to state i can be written as:

MFPTi �
X

j

PeqðjÞ
1 2 PeqðiÞ

� wR
2 ðjÞwL

2 ðiÞl2 (5)

The MFPT to the unfolded state i chosen for the

example shown in Figure 4(a) is found to be 106

microseconds.

To understand why the MFPTs to states within

U are so long, we consider the relationship between

the average lifetime of a state i within U and the

average lifetime of the collective state consisting of

the remainder of U excluding state i:

tU 2 i 5 ti
1

PeqðiÞ
21

� �
(6)

where ti is the average lifetime of state i and tU-i is

the average lifetime of the collective state U-i con-

sisting of the remainder of U excluding state i. Here

we define the lifetime distribution of a state as the

distribution of times recorded upon entering a state

when the clock starts and then leaving it when the

clock stops, during a single very long trajectory

when the state is visited many times [see Support-

ing Information for the derivation of Eq. 6].

In Figure 4(b) we plot the MFPT to state i [Eq. (4b)]

against the average lifetime of the collective state, tU-i

[Eq. 6] for each of the unfolded states in the 20-state

model. It can be seen that these times are almost equal.

This is true when the time to equilibrate within the

unfolded state (U-i) is much shorter than the average

lifetime of (U-i). Under these circumstances, the MFPT

to any unfolded state i is proportional to the average

lifetime of the state ti divided by the population, and

there is an equality involving Eqs 4, 5 and 6. Because

the average lifetimes of the unfolded states decay on the

same timescale as the decay of the population fluctua-

tions, we find that the MFPT to any state within U is

approximately equal to the time to equilibrate U divided

by the population of the target state. Importantly, the

MFPTs depend on the resolution of the model for the

unfolded state, the more fine grained the model, the lon-

ger the MFPTs to an individual state. On the other

hand, the time to equilibrate the unfolded state is a

characteristic of the macrostate, which depends only

weakly on the resolution. For the 20-state model of Trp-

cage studied here, the longest MFPT (�200ms) is to the

state with the smallest population 0.003, while the aver-

age lifetime of that state is 48 ns, comparable to the

time to equilibrate the unfolded state.

In this communication we have resolved a para-

dox about kinetics within the unfolded state of pro-

teins, which leads to a better understanding of why

most small proteins fold with two-state kinetics.

When the equilibration of the unfolded state ensem-

ble is very fast as it is for most small proteins, the

protein will fold with single exponential kinetics.

While it seems paradoxical that the time to equili-

brate the unfolded state can be orders of magnitude

shorter than MFPTs within U, we have shown there

is no inconsistency. Using a time-correlation function

approach, we have presented a general formula

for the timescale of population relaxation within U

[Eq. (2c)]. Applying this formula to the folding of the

two-state mini-protein Trp-cage, we found that the

Figure 3. (a) The population fluctuation relaxation functions

[Eq. (2)] of the 20-node network at a lag time of 10 ns, using

two different boundary conditions, (a) unmodified equilibrium

and (b) reflecting on F. The integrals of the functions are the

relaxation times, which are 543 and 100 ns correspondingly.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Levy et al. PROTEIN SCIENCE VOL 22:1459—1465 1463



folding follows a two-step process: starting from an

arbitrary nonequilibrium conformational distribution

within the unfolded region the protein population

will quickly relax to a pre-equilibrium within the

unfolded state on timescales (�100 ns for Trp-cage)

much faster than folding. From this time forward,

while the relative populations of all the unfolded

microstates remain constant, the “excess” population

within U, which will populate the folded state at

equilibrium, folds with single exponential kinetics

(rate �1=5.5 ls). It should be noted that as we

reported in a recent article, an individual Trp-cage

folding trajectory only visits a fraction (e.g., �25%)

of the unfolded state space.28 The key to reconciling

this with the rapid equilibration in the U-state is to

realize that while any one trajectory explores only a

small part of U before folding, an ensemble of such

trajectories starting from the same initial condition

within U will explore all of the U states with a prob-

ability that is close to the equilibrium population of

that state before folding.11,28,30 The methodology

developed in this study is also well suited for study-

ing the kinetics of larger and more complex proteins

where the timescales to equilibrate within U and to

fold may overlap and the folding is no longer two

state.

Materials and Methods
A MD trajectory of Trp-cage, which contains 1 mil-

lion snapshots and saved at every 200 ps, was

obtained from D.E. Shaw Research.23 The simula-

tion length is 208ms using a modified CHARMM22

all-atom force field in the TIP3P explicit solvent. A

25000-node fine-grained network and a 20-node

coarse-grained network were generated from the tra-

jectory (see Supporting Information for detailed

descriptions of how the fine-grained network was

generated).

Acknowledgments

Some of the calculations were performed using the

XSEDE allocation TG-MCB100145. The authors

thank Dr. Attila Szabo for very helpful discussions.

ND would like to thank Dr. Kyle Beauchamp from Dr.

Vijay Pande group for help with the MSMBuilder2.36

References

1. Creighton TE (1988) Toward a better understanding of
protein folding pathways. Proc Natl Acad Sci U S A 85:
5082–5086.

2. Jackson SE, Fersht AR (1991) Folding of chymotrypsin
inhibitor 2. 1. Evidence for a two-state transition. Bio-
chemistry (Mosc.) 30:10428–10435.

3. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG
(1995) Funnels, pathways, and the energy landscape of
protein folding: a synthesis. Proteins 21:167–195.

4. Eaton WA, Thompson PA, Chan C-K, Hage SJ,
Hofrichter J (1996) Fast events in protein folding.
Structure 4:1133–1139.

5. Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997)
Theory of protein folding: the energy landscape per-
spective. Annu Rev Phys Chem 48:545–600.

6. Dill KA, Chan HS (1997) From Levinthal to pathways
to funnels. Nat Struct Biol 4:10–19.

7. Zwanzig R (1997) Two-state models of protein folding
kinetics. Proc Natl Acad Aci U S A 94:148–150.

8. Perl D, Welker C, Schindler T, Schr€oder K, Marahiel
MA, Jaenicke R, Schmid FX (1998) Conservation of
rapid two-state folding in mesophilic, thermophilic and
hyperthermophilic cold shock proteins. Nat Struct Biol
5:229–235.

9. Jackson SE (1998) How do small single-domain pro-
teins fold? Fold Des 3:R81–R91.

10. Cieplak M, Henkel M, Karbowski J, Banavar J (1998)
Master equation approach to protein folding and
kinetic traps. Phys Rev Lett 80:3654–3657.

Figure 4. (a) The implied timescale spectrum to the state, which is highlighted as red in Figure 4(b). (b) The average lifetime of

the collective state (U-i), which excludes the state i versus the MFPT to state i using Eq. (4b). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

1464 PROTEINSCIENCE.ORG Equilibrate the Unfolded State of a Protein



11. Bicout DJ, Szabo A (2000) Entropic barriers, transition
states, funnels, and exponential protein folding
kinetics: a simple model. Protein Sci 9:452–465.

12. Dinner AR, �Sali A, Smith LJ, Dobson CM, Karplus M
(2000) Understanding protein folding via free-energy
surfaces from theory and experiment. Trends Biochem
Sci 25:331–339.

13. Mirny L, Shakhnovich E (2001) Protein folding theory:
From lattice to all-atom models. Annu Rev Biophys
Biomol Struct 30:361–396.

14. Makarov DE (2002) How the folding rate constant of
simple, single-domain proteins depends on the number
of native contacts. Proc Natl Acad Sci U S A 99:3535–
3539.

15. Yang WY, Gruebele M (2003) Folding at the speed
limit. Nature 423:193–197.

16. Kaya H, Chan HS (2003) Simple two-state protein fold-
ing kinetics requires near-levinthal thermodynamic
cooperativity. Proteins 52:510–523.

17. Weikl TR (2004) Cooperativity in two-state protein
folding kinetics. Protein Sci 13:822–829.

18. Rhoades E, Cohen M, Schuler B, Haran G (2004) Two-
state folding observed in individual protein molecules.
J Am Chem Soc 126:14686–14687.

19. Ellison PA, Cavagnero S (2006) Role of unfolded state
heterogeneity and en-route ruggedness in protein fold-
ing kinetics. Protein Sci 15:564–582.

20. Barrick D (2009) What have we learned from the studies
of two-state folders, and what are the unanswered ques-
tions about two-state protein folding? Phys Biol 6:015001.

21. Zheng W, Andrec M, Gallicchio E, Levy RM (2009)
Recovering kinetics from a simplified protein folding
model using replica exchange simulations: A kinetic
network and effective stochastic dynamics. J Phys
Chem B 113:11702–11709.

22. Best RB, Hummer G (2009) Coordinate-dependent dif-
fusion in protein folding. Proc Natl Acad Sci U S A
107:1088–1093.

23. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011)
How fast-folding proteins fold. Science 334:517–520.

24. Karplus M (2011) Behind the folding funnel diagram.
Nat Chem Biol 7:401–404.

25. Soranno A, Buchli B, Nettels D, Cheng RR, Muller-
Spath S, Pfeil SH, Hoffmann A, Lipman EA, Makarov
DE, Schuler B (2012) Quantifying internal friction in
unfolded and intrinsically disordered proteins with
single-molecule spectroscopy. Proc Natl Acad Sci U S A
109:17800–17806.

26. Zhang Z, Chan HS (2012) Transition paths, diffusive
processes, and preequilibria of protein folding. Proc
Natl Acad Sci U S A 109:20919–20924.

27. De Sancho D, Mittal J, Best RB (2013) Folding kinetics
and unfolded state dynamics of the GB1 hairpin from
molecular simulation. J Chem Theory Comput 9:1743–
1753.

28. Deng N, Dai W, Levy RM (2013) How kinetics within
the unfolded state affects protein folding: An analysis
based on Markov state models and an ultra-long MD
trajectory. J Phys Chem B 130524112618003.

29. Bowman GR, Pande VS (2010) Protein folded states
are kinetic hubs. Proc Natl Acad Sci U S A 107:10890–
10895.

30. Lane TJ, Schwantes CR, Beauchamp KA, Pande VS.
Probing the origins of two-state folding. Physicsbio-Ph
Arxiv13050963.

31. Voelz VA, Bowman GR, Beauchamp K, Pande VS
(2010) Molecular simulation of ab initio protein folding
for a millisecond folder NTL9(1239). J Am Chem Soc
132:1526–1528.

32. Bowman GR, Voelz VA, Pande VS (2011) Taming the
complexity of protein folding. Curr Opin Struct Biol 21:
4–11.

33. Dickson A, Brooks CL (2012) Quantifying hub-like
behavior in protein folding networks. J Chem Theory
Comput 8:3044–3052.

34. Dickson A, Brooks CL (2013) Native states of fast-
folding proteins are kinetic traps. J Am Chem Soc 135:
4729–4734.

35. Chandler D (1987) Introduction to modern statistical
mechanics. New York: Oxford University Press.

36. Beauchamp KA, Bowman, GR, Lane TJ, Maibaum L,
Haque, IS, Pande VS (2011) MSMBuilder2: Modeling
conformational dynamics on the picosecond to millisec-
ond scale. J Chem Theory Comput 7:3412–3419.

Levy et al. PROTEIN SCIENCE VOL 22:1459—1465 1465


	l
	l
	l
	l

