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Two-state and operational models of both agonism and allosterism are compared to identify and characterize common
pharmacological parameters. To account for the receptor-dependent basal response, constitutive receptor activity is
considered in the operational models. By arranging two-state models as the fraction of active receptors and operational
models as the fractional response relative to the maximum effect of the system, a one-by-one correspondence between
parameters is found. The comparative analysis allows a better understanding of complex allosteric interactions. In particular,
the inclusion of constitutive receptor activity in the operational model of allosterism allows the characterization of modulators
able to lower the basal response of the system; that is, allosteric modulators with negative intrinsic efficacy. Theoretical
simulations and overall goodness of fit of the models to simulated data suggest that it is feasible to apply the models to
experimental data and constitute one step forward in receptor theory formalism.
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Introduction
Agonists, neutral antagonists and inverse agonists are com-
pounds that bind the receptor at the orthosteric site, that is,
the site where the endogenous hormone or neurotransmitter
binds. The affinity for a common site leads to competition
between orthosteric ligands if we accept that, in principle,
two of these molecules cannot occupy the receptor site simul-
taneously. Allosteric modulators (AMs) are compounds that
bind the receptors at sites other than the orthosteric site.

Because of this, AMs do not compete directly with the endog-
enous ligand for the receptor but rather modulate its activity
indirectly across a subsidiary receptor region. AMs can be
classified as either positive (PAMs) or negative (NAMs)
depending on whether they increase or decrease the activity
of the endogenous ligand respectively. AMs can also have
intrinsic efficacy by themselves, which can be either positive
or negative. AMs are at the centre of present pharmaceutical
research in the GPCR field because they are not so affected by
the selectivity limitations between receptor subtypes for
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drugs acting on the orthosteric site. Moreover, the functional
dependence of AMs lacking intrinsic efficacy on the presence
of the endogenous ligand may present temporal and spatial
activity advantages over orthosteric ligands (Christopoulos
and Kenakin, 2002; Melancon et al., 2012).

Mathematical models are instrumental for the characteri-
zation of drug action. To briefly summarize, we can cite
among other topics, the analysis of curve shape and its effect
on the determination of agonist parameters (Black et al.,
1985; Giraldo et al., 2002); the characterization of inverse
agonism/neutral antagonism and the estimation of agonist
affinity constants (Leff, 1995; Kenakin, 2004; Giraldo, 2010;
Ehlert et al., 2011); the description of functional selectivity
either by operational models (Rajagopal et al., 2011; Kenakin
et al., 2012) or by mechanistic analyses involving the
asymmetric/symmetric activation of receptor dimers (Rovira
et al., 2010); and, particularly and directly relevant to the
present study, the quantification of co-operativity effects of
AMs on agonist function (Keov et al., 2011; Kenakin, 2012).

Currently, there are two main approaches for modelling
the effect of allosteric modulation: a two-state-based model
(Hall, 2000) and an operational-based model (Leach et al.,
2007). It has been argued that most mass-action-based mole-
cular models of allosteric modulation contain too many para-
meters to be fitted to real experimental data and, therefore, it
is more practical to use an operational model of allosterism,
which contains a minimum number of experimentally acces-
sible parameters (Melancon et al., 2012). The pharmacological
property responsible for the difference in the number of
parameters is constitutive receptor activity, which is present in
the two-state (Hall, 2000) but not in the operational model of
allosterism developed by Leach et al. (2007). Importantly,
constitutive receptor activity has recently been incorporated
into the operational model of agonism and proved to be useful
for the analysis of agonist effects at chemokine receptor CCR4
(Slack and Hall, 2012). Of note, an operational model of
allosteric interactions including constitutive receptor activity
was derived earlier (Hall, 2006) from limiting cases of the
ternary complex model (De Lean et al., 1980), paving the way
for subsequent simulations and analysis.

Constitutive receptor activity has increasingly become a
key issue in modern GPCR pharmacology and efforts have
been made to incorporate this property into mathematical
analyses. However, the different approaches and modelling
techniques used by authors active in the field may pose some
difficulties in the understanding and application of a variety
of equations. Accordingly, with the aim of clarifying math-
ematical aspects and singular pharmacological concepts of
agonism and allosterism, a comparative analysis with a
common rationale is made between two-state and opera-
tional models. To this end, an alternative derivation of the
(Hall, 2006) operational model of allosterism, including con-
stitutive receptor activity, is provided with the aim of reduc-
ing the complexity of mathematics as much as possible and
facilitating a comparison between models. It is shown that
two-state- and operational-based models are describing essen-
tially the same pharmacological features, with the former
providing a more microscopic focus and the latter a more
macroscopic approach. Moreover, the comparative analysis
reveals that there is a correspondence between the two
models in each of their parameters if constitutive receptor

activity is present in both. Detailed examination of the phar-
macological parameters of efficacy and co-operativity in each
of the models can help to better understand the complex
mechanism of allosteric action and clarify concepts that are
currently under debate (Canals et al., 2012).

Although we are mainly interested in the analysis of allos-
teric action, it may be useful to start the comparison between
the two approaches from the very beginning, that is, from the
analysis of agonism. For a proper comparison between the
models, we tried to unify the common notation, thus, we
used dissociation equilibrium constants in all cases, and the
same symbols, K for agonists and M for AMs. In addition, a
value of n equal to 1 was used for the operational function
translating receptor occupation/stimulus into response. Frac-
tional responses were expressed as hyperbolic rectangular
(linear rational) (a + b[A])/(c + d[A]) functions, with [A] being
agonist concentration, in which the coefficients may depend
on the concentration of the modulator in the case of allos-
teric modulation.

Finally, it should be noted that all the work presented
herein refers to equilibrium situations. Thus, the model equa-
tions developed are not valid for non-equilibrium situations
such as, for instance, those involving measurements of
calcium transients or slow dissociating prebound insur-
mountable antagonists.

Modelling the function of agonists

The two-state model of agonism
The two-state model was originally developed for ion chan-
nels (del Castillo and Katz, 1957; Monod et al., 1965) and
later applied to receptors (Karlin, 1967; Colquhoun, 1973;
Thron, 1973) (see Leff, 1995 for a detailed review). The model
is based on the assumption that the receptor can reversibly
interconvert between two states, one inactive, R, and the
other active, R* (Figure 1A). This simple proposal has proved
extremely useful for the analysis of agonist action, allowing a
functional distinction between agonists, neutral antagonists
and inverse agonists. It is worth mentioning that inclusion of
constitutive receptor activity essentially leads to a revision of
many of the classical equations in pharmacology that were
based on the absence of a basal response. In this regard, the
Schild and Cheng-Prusoff methods for binding affinity
estimation, which were originally developed for (neutral)
antagonists, have been updated for inverse agonists in the
context of the two-state model (Giraldo et al., 2007). Moreo-
ver, and of especial relevance, we can cite Ehlert et al. (2011),
in which an extension of receptor theory from a two-state
model enabled the authors to estimate observed affinities and
relative efficacies of orthosteric ligands, including agonists,
neutral antagonists and inverse agonists, in receptor systems
exhibiting constitutive activity.

In the two-state model, the system is comprised of four
receptor species, two free and two ligand-bound, whose con-
centrations are determined by four chemical equilibria gov-
erned by three independent constants L, K and α (Appendix
1.1). L measures the propensity of the free receptor to form
active states; K, the affinity of the ligand A for the inactive
receptor state; and α, the intrinsic efficacy of the ligand. As can
be seen in Figure 1A, the latter property can be interpreted in
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one of two equivalent mechanistic hypotheses, either the
induction approach (horizontal chemical equilibria: the pro-
pensity of the complexed receptors to become active relative
to the free ones) or the selection approach (vertical chemical
equilibria: the differential affinity of the ligand for active and
inactive receptors) (Giraldo, 2004). Values of α greater, equal or
lower than one, lead to an increase, no change or decrease in
the proportion of active receptors respectively.

It is common to analyse the receptor function in terms of
the fraction of active receptors, f, which ranges between 0 and
1 (Equation 1 and Appendix 1.2).
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Equation 1 contains the L, K and α parameters defined above.
Values of α greater, equal and lower than one, lead to asymp-
totic top f-values greater, equal and lower than basal refer-
ence, which are the effects defining the behaviour of agonists,
neutral antagonists and inverse agonists respectively (Appen-
dix 1.3). In addition, it can be seen that [A50], the value for
half-maximum f, is lower, equal and greater than K (the
dissociation constant for the inactive state of the receptor) for
agonists, neutral antagonists and inverse agonists respec-
tively. It can be proved (see Appendix 1.3) that the apparent
dissociation constant of the ligand matches [A50].

To illustrate the model, Figure 1B displays the response
profiles of five ligands, a full agonist, a partial agonist, a
neutral antagonist, a partial inverse agonist and a full inverse
agonist, which differ only in the value of the α parameter.
Variations in α determine both the maximum or minimum
responses (agonists or inverse agonists) and the potency of
the ligands (location of the curves along the X-axis through
the [A50] quantity).

The operational model of agonism
The operational model of agonism (Black and Leff, 1983)
contains two steps: the binding of an agonist to the receptor
and a transducer function for the conversion of receptor
occupation into response (Figure 2A and Appendix 2a). Equa-
tion 2 embodies the concentration-fractional effect relation-
ship for the operational model of agonism, with Em being the
maximum effect of the system.

Figure 1
(A) The two-state model of agonism: four receptor species, two free (R, inactive and R*, active) and two ligand-bound (AR, inactive and AR*,
active). Because of the thermodynamic cycle, there are four equilibrium constants but only three independent parameters, L, K and α. L measures
the propensity of the free receptor to form active states; K, the affinity of the ligand A for the inactive receptor state; and α, the intrinsic efficacy
of the ligand viewed either as the capacity to alter L in the complexed relative to the free receptors (horizontal equilibria) or the differential affinity
for binding to inactive and active receptors (vertical equilibria). The functional response, f, is defined as the fraction of active receptors, [R]Active/[R]T

(Appendix 1). (B) Simulation with the two-state model of agonism (Equation 1). A basal response, which depends on the L-value, is inherent to
the model and ligands are agonists, neutral antagonists or inverse agonists if they increase, not change or decrease the basal response (α greater,
equal or lower than 1, respectively). Concentration-effect curves for full agonist (α = 103), partial agonist (α = 10), neutral antagonist (α = 1), partial
inverse agonist (α = 10−1) and full inverse agonist (α = 10−3). Fixed parameters: K = 10−6 and L = 0.5.

Figure 2
(A) The operational model of agonism. The ligand A binds the receptor
R with a dissociation equilibrium constant K. A rectangular hyperbolic
function f = E/Em = [AR]/(KE + [AR]) transduces receptor occupation
into response, where KE is the value of [AR] for half the maximum
possible effect, Em. KE is then a measure of the efficiency of transduc-
tion of receptor occupation into response (Appendix 2a). (B) The
operational model of agonism including constitutive receptor activity.
Constitutive receptor activity is incorporated in the model by includ-
ing the concentration of free receptors within the definition of stimu-
lus (S = [R] + ε[AR]). A rectangular hyperbolic function f = E/Em = S/(KE

+ S) transduces stimulus into response, where KE is the value of S for
half the maximum possible effect, Em, then is a measure of the
efficiency of transduction of stimulus into response (Appendix 2b).
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Equation 2 contains two parameters, K (the equilibrium dis-
sociation constant of the ligand for the receptor) and τ (the
operational efficacy of the system determining the asymptotic
top f-value). τ is the quotient between two quantities, [R]T (the
total concentration of receptors) and KE (an index of the
intrinsic efficacy of the agonist for a given receptor). Thus, τ
contains a tissue-dependent term and a molecular-dependent
term. It is worth considering why a rectangular hyperbolic
(E/Em = [AR]/(KR + [AR])) rather than a linear (E/Em = KR[AR]/
[R]T) relationship for the transduction of receptor occupancy
into response was proposed in this model. It can be shown that
if a linear relationship for the transducer function were used
then the concentration for half maximum effect [A50] would be
equal to K, which is not consistent with agonist behaviour.

The operational model of agonism contains one parameter
less than the two-state model of agonism but with a functional
cost, constitutive receptor activity, and, consequently, the
behaviour of an inverse agonist cannot be derived from this
model. It is worth mentioning that although basal response
has been included in the operational model as an ad hoc
parameter in some studies (Eq. 3) (Gregory et al., 2012), this
does not allow the characterization of inverse agonism
because the equation cannot produce effects lower than basal.

E Basal
E Basal A
K A
m= +

−( ) [ ]
+ +( )[ ]

τ
τ1

(3)

The operational model of agonism including
constitutive receptor activity
To allow the operational model of agonism to account for
constitutive receptor activity, an extension of the model has
recently been proposed (Slack and Hall, 2012). Constitutive
receptor activity was included in the model by defining a
stimulus, S, as S = [R] + ε[AR], which is related to the observed
effect by the rectangular hyperbolic function E/Em = S/(KE + S)
(Figure 2B and Appendix 2b). Equation 4 embodies the
concentration-fractional effect relationship for the opera-
tional model of agonism including constitutive receptor
activity.
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Equation 4 contains three parameters, χ = [R]T/KE (a parameter
determining the capacity of the free receptors of generating
the (basal) response), K (the equilibrium dissociation con-
stant of the ligand for the receptor) and ε (a parameter meas-
uring the different capacity of the ligand-bound receptor of
generating a stimulus relative to the free receptor). Values of
ε greater, equal or lower than one, lead to asymptotic top
values greater, equal or lower than basal response, which are
the effects found for agonists, neutral antagonists and inverse
agonists respectively (Appendix 2b.3).

Because of the mathematical equivalence between Equa-
tions 1 and 4, identical curve profiles are obtained for the
two-state and the operational model of agonism including
constitutive receptor activity if the same values are used for K,
χ and ε (operational) and K, L and α (two-state) respectively.
Thus, Figure 1B can be described in terms of the operational
model in a fashion similar to the two-state model: the varia-

tion of the ε parameter (α in the two-state model) determines
the asymptotic top values of the curves.

Modelling the function of
allosteric modulators

The allosteric two-state model of
receptor activation
The allosteric-two state model of receptor activation (Hall,
2000) was constructed as an extension of the two-state model
of agonism by including a second binding site, that for the
allosteric modulator (Figure 3A). By denoting the orthosteric
ligand as A and the allosteric ligand as B, the model basically
consists of the following parameters: the receptor isomeriza-
tion constant, responsible for constitutive receptor activity
(L); the equilibrium dissociation constants of A and B for the
free receptor (K and M, respectively); the binding cooperativ-
ity between A and B (γ); the intrinsic efficacies of A and B (α
and β respectively); and the activation co-operativity between
A and B (δ). Solving the model leads to the fraction of acti-
vated receptors (Equation 5), which will eventually deter-
mine the observed pharmacological effect (Appendix 3).
Consistently, the expression for f condenses to that for the
two-state model of agonism if [B] = 0.
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Three asymptotes can be considered for f curves: basal, if [A]
and [B] are 0; bottom, if [A] but not [B] is 0; and top, the limit
of f as [A] increases for fixed [B]. We see (Appendix 3.3) that
(i) the basal response is determined by L; (ii) the bottom
depends on L (the reference value), [B] and the affinity and
intrinsic efficacy of B (M and β, respectively); obviously, no
parameter for [A] is present either for the binding or for
activation co-operativities between B and A (γ and δ, respec-
tively); (iii) the top contains all the parameters of the system
with the exception of K because as [A]→∞ all the receptor is
A-bound and the value of the agonist-receptor dissociation
constant is irrelevant.

The agonistic properties of the allosteric modulator B are
determined by β. If B is a pure modulator lacking intrinsic
efficacy then β = 1 (bottom = basal), whereas if B is an agonist
β > 1 (bottom > basal) and if it is an inverse agonist β < 1
(bottom < basal). The δ values relative to 1 will influence the
effect of the modulator on the top relative to the curve with [B]
= 0. In the particular case that both β and δ are equal to 1, then
top = Lα/(1 + Lα) and no effect of B on the top is produced.
However, if the β and δ B-dependent efficacy parameters are
different from one then the top of the curve will depend on [B]
and on the M and γ B-dependent affinity parameters.

To illustrate the behaviour of the model, we have per-
formed some simulations for a particularly interesting group
of ligands, that in which B bears intrinsic negative efficacy
but the activation co-operativities between A and B are either
neutral (δ = 1), positive (δ > 1) or negative (δ < 1) (Figure 3B).
For simplicity, there is neutral binding co-operativity between
A and B (γ = 1). In comparison to the reference ([B] = 0) curve,
the curves including B show (i) the bottoms (left asymptote)
are below the basal response because β < 1; (ii) if δ = 1, a
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down-shift displacement of the whole curve is obtained; (iii)
if δ = 102, both a left and upward shift (A becomes more
potent and efficacious to the right of a particular [A] value,
that for which the curves for B either absent or present cross);
it is worth noting that, in general, the maximal response will
increase relative to the control when the product βδ > 1; (iv)
if δ = 10−1, a nearly complete blocking of receptor effect.
Interestingly, for sufficiently low δ values (for instance, δ =
10−3) the ‘top’ of the curve (right asymptote) drops below its
‘bottom’ (left asymptote): the effect when both A and B are
present is lower than when only B is present.

There are a large number of examples in the literature
showing the effects of PAMs and NAMs in different receptor
systems. We can cite two examples taken from class C GPCRs,
MPEP acting as a NAM of the agonist quisqualate on mGlu5
receptors (Bradley et al., 2011) and CDPPB analogues acting
as PAMs of glutamate on the same receptor (Chen et al.,
2007). Recent reviews of allosteric modulation in A, B and C
GPCR classes are presented in the following publications
(Kenakin and Miller, 2010; Keov et al., 2011; Melancon et al.,
2012). Typically, NAMs are found to cause rightward shifts
and/or decreases in the asymptotic maximum values of
agonist concentration-response curves and PAMs to do the
opposite. However, and as has been shown in Figure 3B,
complex behaviours resulting from intrinsic efficacies and
co-operativities of a different character are obtained.

The operational model of allosterism
The operational model of allosterism (Ehlert, 2005; Kenakin,
2005; 2007; Price et al., 2005; Leach et al., 2007) was con-
structed as an extension of the operational model of agonism
(Black and Leff, 1983) by including a second binding site, that
for the allosteric modulator (Figure 4A and Appendix 4a).
This leads to three independent dissociation constants, two
for the binding of the agonist A and the allosteric modulator

B to the free receptor (K and M, respectively) and a third one
involving the doubly occupied receptor. The dissociation
constant regulating the latter equilibrium can be expressed in
terms of K or M, depending on which is the complex receptor
to which the second ligand binds and a co-operativity
binding factor (α). Following the rationale in Leach et al.
(2007), a total stimulus S is defined as the sum of the stimulus
of all the ligand-bound receptor species, S = εA[AR] + εB[RB] +
εAB[ARB] (Appendix 4a.2). The connection between stimulus
and fractional effect is made by the rectangular hyperbolic
function E/Em = S/(KE + S).

Equation 6 embodies the concentration-fractional effect
relationship for the operational model of allosterism. Apart
from the K and M dissociation constants and α binding
co-operativity, the equation includes the operational effica-
cies τA = εA[R]T/KE, τB = εB[R]T/KE and τAB = εAB[R]T/KE = βεA[R]T/KE

= βτA. As in the operational model of agonism, τ includes both
molecular and tissue components. It is worth noting that εAB

was defined as εAB = εAβ, another possibility being εAB = εAεBδ.
The chosen parameters have a different meaning, β describes
the ability of B to alter the signalling capacity of A (asymmet-
ric interaction: its value would be different if it had been
defined as ‘the ability of A to alter the signalling capacity of
B’, that is εAB = εBβ) whereas δ describes the activation
co-operativity between A and B in the ARB complex (sym-
metric interaction: it does not measure the influence of one
compound on the other but their mutual effects on each
other). However, only the former (εAB = εAβ) definition is
satisfactory in this modelling approach in terms of curve
fitting as the latter (εAB = εAεBδ) leads to an additional param-
eter in the final equation, after intrinsic efficacies are com-
bined with system parameters into operational (τ) efficacies.

f
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Figure 3
(A) The allosteric two-state model of receptor activation (adapted from Hall, 2000). Eight receptor species, two free (R, inactive and R*, active), four
singly ligand-bound (AR and BR, inactive and AR* and BR*, active) and two doubly bound (ARB, inactive and AR*B, active), with A and B being the
agonist and the modulator, respectively. Because of the thermodynamic cycles, there are 12 equilibrium constants but only seven independent
parameters, L, K, M, γ, α, β and δ. L measures the propensity of the free receptor to form active states; K and M the affinities of A and B for the inactive
free receptor, respectively; α and β, the intrinsic efficacies of A and B, respectively; γ, the binding co-operativity between A and B; and δ, the
activation co-operativity between A and B. The functional response, f, is defined as the fraction of active receptors, [R]Active/[R]T. (B) Simulation with
the allosteric two-state model of receptor activation (Equation 5). A basal response, which depends on L-value, is inherent to the model and ligands
A and B are agonists, neutral antagonists or inverse agonists if they increase, not change or decrease the basal response (α or β greater, equal or
lower than 1, respectively). Agonist concentration-effect curves in the absence and presence of an AM, B, with intrinsic negative efficacy. All the
parameters are fixed except the activation co-operativity parameter δ, which varies among the curves. Fixed parameters: [B] = 10−4 except for the
black curve for which [B] = 0, K = 10−6, M = 10−6, L = 0.5, α = 10, β = 10−1, γ = 1. Variable parameter: δ = 1, δ = 102, δ = 10−1, δ = 10−3.
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As constitutive receptor activity is not included in the model,
the effect for [A] and [B] equal to 0 (basal response) is 0
(Appendix 4a.3). To account for this issue without changing
the mechanistic nature of the model, basal response has been
included as an ad hoc parameter, as was also done in the
operational model of agonism (Equation 7) (Bradley et al.,
2011). However, as also occurred with the operational model
of agonism, effects lower than the basal response are outside
the scope of the model.

E Basal
E Basal K B M B A

K M B M
m B A

B

= +
−( ) [ ] + + [ ]( )[ ]( )

+ +( )[ ]( ) +
τ τ αβ

τ1 1 ++( ) + +( )[ ]( )[ ]τ α τ βA A B A1

(7)

It is worth noting that constitutive receptor activity was not
incorporated into the model because as the authors stated
(Leach et al., 2007), the resultant number of parameters
makes the model impractical for fitting to experimental data.
Interestingly, the operational model of agonism including
constitutive receptor activity (vide supra) has been applied

to describe experimental data, the effects of agonists at
CC-chemokine receptor 4, with overall satisfactory fitting
parameters (Slack and Hall, 2012). These positive results
encouraged us to incorporate constitutive receptor activity
into the operational model of allosterism. This would allow
us to model the behaviour of allosteric modulators with
intrinsic negative agonist efficacy (inverse agonists).

The operational model of allosterism
including constitutive receptor activity
To incorporate constitutive receptor activity in the opera-
tional model of allosterism, we followed a rationale similar to
that adopted by Slack and Hall in the operational model of
agonism (Slack and Hall, 2012): the concentration of free
receptors was included in the definition of the total stimulus
S, S = [R] + εA[AR] + εB[RB] + εAB[ARB], which, in turn, was
related to the observed effect by the rectangular hyperbolic
function E/Em = S/(KE + S) (Figure 4B and Appendix 4b.2).
Equation 8 embodies the concentration-fractional effect rela-

Figure 4
(A) The operational model of allosterism. Four receptor species, one free (R), two singly bound (AR and RB) and one doubly bound (ARB). Because
of the thermodynamic cycle, there are four equilibrium constants but only three independent parameters, K, M and α. K and M measure the
affinities of the agonist and the modulator for the free receptor, respectively, and α, the binding co-operativity between A and B. Stimulus is
defined including only the occupied receptors (S = εA[AR] + εB[RB] + εAB[ARB]). A rectangular hyperbolic function f = E/Em transduces stimulus into
response, with KE defined as in Figure 2B. (B) The operational model of allosterism including constitutive receptor activity. Constitutive receptor
activity is incorporated in the model by including the concentration of free receptors within the definition of stimulus (S = [R] + εA[AR] + εB[RB]
+ εAB[ARB]). A rectangular hyperbolic function f = E/Em transduces stimulus into response, with KE defined as in Figure 2B. (C,D) Simulation with
the operational model of allosterism, including constitutive receptor activity (Equation 8). Fixed parameters: receptor system, χ = 0.5; partial
agonist A, K = 10−6, εA = 5; AM B, M = 10−6, εB = 1; agonist-modulator co-operativity parameters, α = 10, δ = 5. (C) Agonist concentration-effect
curves in the absence and presence of increasing concentrations of AM B. (D) Modulator concentration-effect curves in the absence and presence
of increasing concentrations of the agonist A, with the same pharmacological parameters for the system and the ligands as in Figure 4C.
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tionship for the operational model of allosterism including
constitutive receptor activity. It is worth mentioning that the
equation is an alternative derivation of one previously
obtained in Hall (2006). By comparing Equations 6 and 8, we
see that including constitutive receptor activity leads to a
model in which intrinsic efficacies (εs) are included instead of
operational efficacies (τs) and a parameter (χ = [R]T/KE) to
account for basal response appears. Ligands A and B are
agonists, neutral antagonists or inverse agonists if they
increase, not change or decrease the basal response (εA or εB

greater, equal or lower than 1 respectively). Finally, for proper
comparison with the allosteric two-state model, the intrinsic
efficacy of ARB is defined as εAB = εAεBδ, with δ measuring the
activation co-operativity between A and B in the ARB
complex.

f
E

E
K M B M B A

K M B
M

m

B A B

B
= =

+ [ ]( ) + + [ ]( )[ ]
+( ) + +( )[ ]( )

+

χ ε ε χ ε αδ
χ ε χ1 1

1 ++( ) + +( )[ ]( )[ ]ε χ α ε ε δχA A B B A1
(8)

Because of the mathematical equivalence between Equations
5 and 8, identical curve profiles are obtained both for the
allosteric two-state model of receptor activation and the
operational model of allosterism including constitutive
receptor activity if the same values are used for χ, K, M, εA, εB,
α and δ (operational) and L, K, M, α, β, γ and δ (two-state)
respectively (see Table 1 for parameter terminology). Thus,
Figure 3B can be described in terms of the operational model
in a manner similar to the two-state model by the same
variations of the δ parameter.

We would like you to note that, during the revision of this
paper, an article was published which includes the derivation
of the generalization of Equation 8 to transducer functions
with arbitrary Hill coefficient (Hall, 2013). Inclusion of an
exponential parameter will provide additional flexibility for
fitting purposes. However, in the present study this was not
considered because its use would preclude the isomorphism
between two-state and operational models. This correspond-

ence, which is the key message of this article, holds only for
the important, but still specific, case of a rectangular hyper-
bolic (linear rational) transducer function [E/Em = S/(KE + S)].

To further examine the models under particular condi-
tions, the pharmacological interactions between a partial
agonist and a PAM were considered. Figure 4C shows the
concentration-effect curves for a titrated partial agonist A in
the absence and presence of a PAM B and Figure 4D shows the
curves for a titrated PAM B in the absence and presence of the
partial agonist A. In the simulations, it is supposed that B has
no intrinsic efficacy (εB = 1). The latter property is reflected in
Figure 4C in that the left asymptote does not change as [B]
increases. The parameter δ > 1 means that the right asymptote
increases in the presence of B making the agonist more effi-
cacious. In addition, a leftward shift of the curves is observed
resulting from both α > 1 and δ > 1.

The absence of intrinsic efficacy of B is reflected in
Figure 4D in that the response for [A] = 0 is a horizontal line
equal to basal response. Increasing [A] leads to sigmoid curves
with left asymptotes greater than basal response.

Two-state and operational models: two sides
of the same coin
Two-states and operational models including constitutive
receptor activity describe the same pharmacological phenom-
ena in a parallel manner. Two-state models circumvent the
biochemical complexity to the formation of active receptor
states whereas operational models include explicit functions
for the transduction of stimulus into response. Thus, two-
state models consider only chemical equilibria between
receptor and ligand species (a molecular approach) whereas
operational models take into account the transduction capa-
bilities of the whole pharmacological system (a pharmaco-
logical tissue approach).

An examination of the equations provided by both
models of agonism shows a correspondence between their

Table 1
Parameter correspondence between the allosteric two-state model (Equation 5) and the operational model of allosterism including constitutive
receptor activity (Equation 8)

Pharmacological property
Allosteric
two-state model

Operational model
of allosterism

Constitutive receptor activity (basal response) L χ

Agonist concentration [A] [A]

Allosteric modulator concentration [B] [B]

Agonist dissociation constant K K

Allosteric modulator dissociation constant M M

Intrinsic efficacy of A α εA

Intrinsic efficacy of B β εB

Binding cooperativity between A and B γ α

Activation cooperativity between A and B δ δ

Note the α used has two different meanings: intrinsic efficacy of A in the allosteric two-state model and binding co-operativity between A and
B in the operational model of allosterism. This was done as a compromise to preserve consistency with conventional model parameters used
in reference publications (Hall, 2000; Leach et al., 2007).
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parameters. In this way, we note that Equation 1 and 4 are
mathematically identical. There is a correspondence between
L and χ and between α and ε parameters. The ability of the
free receptor to produce the pharmacological effect (basal
response) is determined by L in the two-state model and by χ
in the extended operational model. In the former case, L is
the equilibrium constant for the interconversion between
inactive and active free receptor states whereas, in the latter
case, χ contains the total receptor concentration and the
capability of the system of transforming stimulus into
response. Furthermore, the intrinsic efficacy of the ligand
(the ability of the ligand to increase or decrease the basal
response) is determined by α (an index measuring the capa-
bility of the ligand-bound receptor to induce the active state
relative to the free one) in the two-state model and by ε (an
index measuring the capability of the ligand-bound receptor
to induce a stimulus relative to the free one) in the extended
operational model.

In an analogous fashion to the phenomenon of agonism,
the analysis of allosterism by the two-state and operational
models displays similar features. By comparing Equations 5
and 8, we see the correspondence between L and χ (basal
response), α and εA (intrinsic efficacy of the agonist A), β and
εB (intrinsic efficacy of the allosteric modulator B), γ and α (the
binding co-operativity between A and B) and δ (the activation
co-operativity between A and B). In order to make the corre-
spondence between the two models more evident, we have
used the expression εAB = εAεBδ for the definition of the intrin-
sic efficacy of ARB instead of εAB = εAβ, which was used in the
operational model of allosterism (Leach et al., 2007). It is not
merely a matter of notation because the parameters have a
different meaning; β describes the ability of B to alter the
signalling capacity of A whereas δ describes the activation
co-operativity between A and B in the ARB complex. It is
worth noting that the definition εAB = εAεBδ in the operational
model of allosterism including constitutive receptor activity does
not increase the number of parameters. However, the same
definition in the operational model of allosterism without
including constitutive receptor activity (Leach et al., 2007) leads
to an increase in the number of parameters when intrinsic
efficacies are combined with system parameters into opera-
tional efficacies (τs), thus, making curve fitting unproductive.

As the inclusion of constitutive receptor activity in both
the operational and two-state models (and the use of a sym-
metric activation co-operativity parameter in the former)
results in mathematically comparable models, then the ques-
tion arises as to whether one should be considering one
model above the other. To address this issue there are two
points that should be taken into consideration: (i) the left
members of Equations 5 and 8 (fractional active receptor
concentration and fractional functional response respec-
tively) correspond to different properties; however, if the
linear relationship [R*]/[R]T = E/Em is proposed then the
models would become identical and (ii) operational models
allow the inclusion of an exponential parameter in the trans-
ducer function, which can improve curve fitting.

Data fitting with overparameterized models
Overparameterization is a characteristic of operational
models. It has been shown that neither Equation 2 nor Equa-
tion 4 can be used to directly fit a single experimental E/[A]

curve if Em, the maximum effect of the system, is unknown
(Leff, 1987; Slack and Hall, 2012; Roche et al., 2013). Because
of the correlation between parameters, to obtain reliable
parameter estimates at least two E/[A] curves with differenti-
able asymptotic maximum responses are needed and this
can be done by using the receptor inactivation method
(Furchgott, 1966). Decreasing the number of available recep-
tors has the effect of lowering both the τ parameter in the
operational model of agonism and the χ parameter in the
operational model of agonism including constitutive receptor
activity. In both cases this leads to concentration-effect
curves with asymptotic maximum values lower than that of
the control curve.

Fitting E/[A] curve data under the operational model of agonism
with constitutive receptor activity. To examine the fitting capa-
bility of Equation 4, two steps were followed: (i) data genera-
tion and (ii) curve fitting.

(i) For data generation the Monte Carlo method was used; it
was assumed the experimental situation we are simulat-
ing involves an agonist and a constitutively active recep-
tor (Equation 4). A rationale similar to that employed in
Slack and Hall (2012) was used and five χ parameter
values were included (one for the control curve and the
remaining four for those curves after receptor inactiva-
tion). The input or true theoretical values were Em = 10, K
= 10−9, ε = 102, χ1 = 0.5, χ2 = 0.1, χ3 = 0.05, χ4 = 0.01 and
χ5 = 0.005. Fifty E/[A] data sets, each composed of five
χ-varied curves and log[A] ranging between −15 and −4
with an increment of 0.5, were generated by Monte Carlo
method; it was assumed the pharmacological effects
follow normal distributions with the proposed input
value and standard deviations equal to 3% of the mean.

(ii) For curve fitting, a hybrid approach composed of two
(global and local) optimization methods was used. Global
methods are especially indicated for exploring the
parameter space whereas local methods are suitable for
finding a local minimum close to an initial seed point
(Ashyraliyev et al., 2009). Differential Evolution (DE), an
algorithm belonging to Evolutionary Computation
methods and with proven efficiency over continuous
spaces (Storn and Price, 1997), and gradient-based non-
linear regression (NLR) were used for global and local
optimizations respectively. DE and NLR were used
sequentially with the aim of the former providing the
latter with good quality seed points.

Table 2 includes the theoretical parameter values and the
mean and standard deviations of the parameter estimates.
Results show an excellent agreement between estimated and
input parameters. Figure 5A shows the Monte Carlo simu-
lated data points (mean and standard deviations for each
agonist concentration) and the curves obtained from Equa-
tion 4 using the mean values of the parameter estimates.
Because the ligand is a full agonist (εχ > >1 or, equivalently,
εχ/(1 + εχ) ≈ 1) the asymptotic maximum response for the
control curve is close to Em. We see that the effect of receptor
inactivation on the χ parameter translates into both left
(free receptor) and right (saturating agonist concentration)
asymptotes.
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Fitting E/[A] curve data under the operational model of allosterism
with constitutive receptor activity. To exemplify this case, we
will assume that we are working with the same input data as
in the previous case (the same tissue, the same receptor and
the same agonist) but in the presence of an AM at a defined
(10−4) concentration (Equation 8). Thus, curves in Figure 5A
are the control curves for Figure 5B. The theoretical param-
eters of the modulator are M = 10−9, and εB = 10−1 and those for
the agonist-AM interaction α = 10−1 and δ = 0.5. Monte Carlo
simulated data were generated as in the previous case (distri-
butions for pharmacological effects were assumed to be
normal with standard deviations equal to 3% of the mean)
and the same hybrid fitting procedure was used. On the
fitting procedure, the parameter values estimated in the pre-
vious case (Em, χ, εA, K) were assumed to be known and kept
fixed. Of note, the NLR part of the algorithm performed badly
and convergences were not achieved. Accordingly, we
decided to test whether using two concentrations (10−6 and
10−4) of the AM rather than a single one could circumvent the
problem. As it can be seen in Table 3, the hybrid DE-NLR

approach produced excellent results. Comparison between
Figures 5A and 5B shows the effect of compound B as a NAM
with negative intrinsic efficacy and negative co-operativities
both for binding and activation: left and right asymptotes are
lowered and a right-shift displacement of the curves is
observed.

Concluding remarks

A comparison between concentration-effect equations for
two-state and operational models have revealed their equiva-
lence when constitutive receptor activity is included in the
operational model; and, in addition, the conceptual link
present between pure molecular- and pharmacological tissue-
dependent models. Importantly, the extension of the opera-
tional model of allosterism by including constitutive receptor
activity allows the characterization of response curves with
bottom values lower than the basal response arising from
allosteric modulators with negative intrinsic efficacy.

The overparameterized nature of operational models
together with the increase in the number of parameters after
including constitutive receptor activity inevitably results in
difficulties for the fitting to experimental curves. To solve this
problem, the combination of experimental conditions (such
as receptor inactivation method and examination of the
system in the absence and presence of multiple concentra-
tions of AMs) and computational strategies (such as the use of
hybrids of global and local optimization methods) can be
useful. To this end and because of the increasing complexity
of modern pharmacology, it would be useful if experimental
and theoretically-orientated pharmacologists work together
in close collaboration with computer scientists in order to
develop pharmacological models that are both robust and
reliable.

Table 2
Theoretical values and parameter estimates for a pharmacological
system described by the operational model of agonism including
constitutive receptor activity (Equation 4)

Parameter

Theoretical
(population
mean) values

Parameter
estimates
Mean ± SD

Em 10 10.01 ± 0.10

log(K) −9 −9.00 ± 0.03

log(ε) 2 2.00 ± 0.04

log(χ1) −0.30 −0.30 ± 0.01

log(χ2) −1 −1.00 ± 0.01

log(χ3) −1.30 −1.30 ± 0.02

log(χ4) −2 −2.00 ± 0.03

log(χ5) −2.30 −2.30 ± 0.03

Fifty E/[A] data sets, each composed of five χ-varied curves and
log[A] ranging between −15 and −4 with an increment of 0.5,
were generated by Monte Carlo method from theoretical (popu-
lation mean) values assuming normal distributions with SDs 3%
of the mean. A hybrid global/local method Differential Evolution
(DE)/gradient-based non-linear regression (NLR) was used for
curve fitting. All parameters except Em were assumed to be
log-normally distributed. The parameter space for exploration
with DE was defined as: Em, (5,100); log(K), (−15,−3); log(ε),
(0,4); log(χ1) to log(χ5), (−5,5). In addition, the 3-parameter
DE/rand/1/bin scheme reported in (Storn and Price, 1997) was
used. For a real search space of dimension D (being D the
number of parameters; eight in our simulation), the population
is randomly initialized with NxD vectors. In our simulations, we
used the common n = 40 value. Each vector in the population is
allowed to evolve by mutation and recombination operators.
The mutation rate is given by a parameter F ∈ [0; 2] and the
combination rate by CR ∈ [0; 1]. Following (Das and Konar,
2005), F = 0.9 and CR=0.5 parameter values were chosen for DE
algorithm. All programmes were conducted under the R soft-
ware environment (R Development Core Team, 2012).

Table 3
Theoretical values and parameter estimates for a pharmacological
system described by the operational model of allosterism including
constitutive receptor activity (Equation 8)

Parameter

Theoretical
(population
mean) values

Parameter
estimates
Mean ± SD

Log(M) −9 −9.01 ± 0.05

log(εB) −1 −1.00 ± 0.01

log(α) −1 −1.00 ± 0.02

log(δ) −0.30 −0.30 ± 0.01

System- (Em and χ) and agonist-dependent (K, εA) parameters
were taken from parameter estimates in Table 2 and kept fixed
[Curves from Table 2 (Figure 5A) represent the control curves
from those from Table 3 (Figure 5B)]. Two concentrations (10−6

and 10−4) were used for the allosteric modulator. Details for
Monte Carlo simulated data generation and curve fitting as
described at the bottom of Table 2. All parameters were
assumed log-normally distributed. The parameter space for
exploration with DE was defined as: log(M), (−15,−3); log(εB),
(−4,0); log(α), (−4,4) and log(δ), (−4,4).
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Appendix

1. The two-state model of agonism

The two-state model is shown in Figure 1.

1.1. The equilibrium constants of the model

R R L
R
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L← →⎯ =
[ ]
[ ]

*;
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A R AR K
A R
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K+ ← →⎯ =
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Note that the quotient K/α is the equilibrium dissociation
constant of the ligand to the active receptor.

1.2. The fraction of active receptors

f
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R
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=
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α
α1 1

where [R]Active = [R*] + [AR*]
and [R]T = [R] + [AR] + [R*] + [AR*]

1.3. Geometric descriptors of the curves

• Left asymptote (Basal response: f for [A] = 0)

Basal

L

=
+

1

1
1

• Right asymptote, the asymptotic f-value as [A] increases
(Top: lim f

A[ ]→∞
)

Top
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=
+

1

1
1

α

• The midpoint, the [A] value for half maximum f-value

A
K L

L
50

1
1

[ ] =
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Figure 5
This figure illustrates a simulated experiment in which curves in Figure 5A (the allosteric modulator B is absent) are the control curves for Figure 5B
(the allosteric modulator B is present). The whole set of curves of the experiment is separated into two (Figure 5A and Figure 5B) for clarity. (A)
Monte Carlo data (mean ± SD) and curve fitting (solid lines) under the operational model of agonism with constitutive receptor activity. Fifty sets
each composed of five χ-varied (χ = 0.5, 0.1, 0.05, 0.01 and 0.005) curves were generated for an agonist-receptor system, in which Em = 10, K
= 10−9 and ε = 102, by assuming that responses follow Equation 4 under a normal distribution with mean equal to the former theoretical values
and SD equal to 3% of the mean for log[A] ranging between −15 and −4. For curve fitting a hybrid approach between a global Evolutionary
Computation method and a local gradient-based non-linear approach was used (see Table 2). (B) Monte Carlo data generation and curve fitting
under the operational model of allosterism with constitutive receptor activity. As in Figure 5A, 50 sets each composed of five χ-varied (χ = 0.5,
0.1, 0.05, 0.01 and 0.005) curves were generated for an agonist-receptor system with parameters equal to those in Figure 5A (Em = 10, K = 10−9

and ε = 102) in the presence of an allosteric modulator with M = 10−9 and εB = 10−1 that interacts with the agonist as determined by α = 10−1 and
δ = 0.5, at two fixed concentrations, [B] = 10−6 and [B] = 10−4. Monte Carlo response data were generated as in Figure 5A using Equation 8 and
the defined system, agonist and modulator parameters. Curve fitting was performed as in Figure 5A, keeping the parameter estimates obtained
for the agonist when acting alone fixed (see Table 3): long-dashed lines [B] = 10−6 and short-dashed lines [B] = 10−4, colour code as in Figure 5A.
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[A50] is lower, equal and greater than K for agonists (α > 1),
neutral antagonists (α = 1) and inverse agonists (α < 1)
respectively.

• The apparent dissociation constant, a conditional constant
considering all the free and ligand-bound receptor species

K
R R A
AR AR

K L
L

app =
[ ] + [ ]( )[ ]
[ ] + [ ]

=
+( )

+
*

*
1

1 α

It can be seen that Kapp and [A50] are coincident.

2a. The operational model of agonism

The operational model of agonism contains a single chemical
equilibrium, the binding of the ligand to the receptor.

2a.1. The equilibrium constant of the model

A R AR K
A R
AR

K+ ← →⎯ =
[ ][ ]
[ ]

;

Note that the constant K in the operational model and in the
two-state model of agonism does not define the same param-
eter. In the two state-model, active (R*) and inactive (R) recep-
tor states are considered and, in this model, K defines the
affinity of the agonist for the inactive receptor state. In this
regard, the presence of active receptor states induced by
agonist binding has been considered in a recent article and
the apparent affinity constants obtained analysed (Roche
et al., 2013).

2a.2. The fractional observed effect. A rectangular hyper-
bolic equation is proposed for the relationship between the
concentration of complex receptors and the observed effect.
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and [R]T = [R] + [AR]

2a.3. Geometric descriptors of the curves

• Left asymptote (Basal response: f for [A] = 0)

Basal = 0

The receptor does not have constitutive activity. The model
cannot describe the function of inverse agonists.
• Right asymptote, the asymptotic value as [A] increases

(Top: lim f
A[ ]→∞

)

Top =
+

1

1
1
τ

τ defines the operational efficacy of the ligand, as greater is τ
greater is the asymptotic top values of the agonists. Full
agonists yield top values close to 1 whereas partial agonists
produce top values significantly lower than 1.
• The midpoint, the [A] value for half maximum effect

A
K

50
1

[ ] =
+ τ

[A50] is lower than K and as more efficacious the agonist is
greater is the difference between K and [A50].

2b. The operational model of agonism
including constitutive receptor activity

The model contains a single chemical equilibrium, the
binding of the ligand to the receptor.

2b.1. The equilibrium constant of the model

A R AR K
A R
AR

K+ ← →⎯ =
[ ][ ]
[ ]

;

2b.2. The fractional observed effect. A receptor stimulus
is defined which includes the concentration of both the free
and the ligand-bound receptors.

S R AR= [ ] + [ ]ε

A rectangular hyperbolic equation is proposed for the rela-
tionship between the receptor stimulus and the observed
effect.
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2b.3. Geometric descriptors of the curves

• Left asymptote (Basal response: f for [A] = 0)
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• Right asymptote, the asymptotic f-value as [A] increases
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• The midpoint, the [A] value for half maximum effect
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[A50] is lower, equal and greater than K for agonists (ε > 1),
neutral antagonists (ε = 1) and inverse agonists (ε < 1)
respectively.

3. The allosteric two-state model of
receptor activation

The allosteric two-state model of receptor activation is shown
in Figure 2.

3.1. The equilibrium constants of the model

R R L
R
R

L← →⎯ = [ ]
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*;
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K+ ← →⎯ =
[ ][ ]
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;
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3.2. The fraction of active receptors
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where [R]Active = [R*] + [AR*] + [R*B] + [AR*B]
and [R]T =[R] + [AR] + [RB] + [ARB] + [R*] + [AR*] + [R*B] +
[AR*B]

3.3. Geometric descriptors of the curves

• Left asymptote in the absence of A and B (Basal response: f
for [A] = 0 and [B] = 0)
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• Left asymptote in the absence of A (Bottom: f for [A] = 0)
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It is worth noting that if γ = 0, that is, [ARB] = [AR*B] = 0, then
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. Note that this is an extreme negative

co-operativity situation resulting in mutually exclusive
binding of the ligands.
• The midpoint, the [A] value for half maximum effect
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4a. The operational model of allosterism

The operational model of allosterism (Leach et al., 2007) con-
tains four chemical equilibria, corresponding to the binding
of the agonist or the allosteric modulator to the free receptor
or to a receptor occupied by the other compound. However,
because of thermodynamic closure, there are only three inde-
pendent equilibrium constants.

4a.1. The equilibrium constants of the model
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4a.2. The fractional observed effect. The individual
stimuli are given by

SAR = εA[AR]. SRB = εB[RB] and SARB = εAB[ARB]

And the total stimulus by

S S S SAR RB ARB= + +

A rectangular hyperbolic equation is proposed for the rela-
tionship between the total stimulus and the observed effect.
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= =
+

f
K B M B A

K M B M B
B A

B A A

=
[ ] + + [ ]( )[ ]

+ +( )[ ]( ) + +( ) + +( )[ ](
τ τ αβ

τ τ α τ β1 1 1 ))[ ]A

With

τ
ε

A
A T

E

R
K

=
[ ]

, τ ε
B

B T

E

R
K

=
[ ]

and τ ε βε βτAB
AB T

E

A T

E
A

R
K

R
K

=
[ ]

=
[ ]

=

and [R]T = [R] + [AR] + [RB] + [ARB]

4a.3. Geometric descriptors of the curves

• Left asymptote in the absence of A and B (Basal response: f
for [A] = 0 and [B] = 0)

Basal = 0

• Left asymptote in the absence of A (Bottom: f for [A] = 0)

Bottom
B

M B
B

B

=
[ ]

+ +( )[ ]
τ

τ1

• Right asymptote, the asymptotic f-value as [A] increases
(Top: lim f

A[ ]→∞
)

Top
M B

M B
A

A A

= + [ ]( )
+( ) + +( )[ ]
τ αβ

τ α τ β1 1

• The midpoint, the [A] value for half maximum effect

A
K M B

M B
B

A A
50

1
1 1

[ ] = + +( )[ ]( )
+( ) + +( )[ ]

τ
τ α τ β

4b. The operational model of allosterism
including constitutive receptor activity

As in the operational model of allosterism (Leach et al., 2007)
included in Appendix 4a, the operational model of alloster-
ism including constitutive receptor activity contains four
chemical equilibria, corresponding to the binding of the

BJP D Roche et al.

1200 British Journal of Pharmacology (2013) 169 1189–1202



agonist or the allosteric modulator to the free receptor or to a
receptor occupied by the other compound.

4b.1. The equilibrium constant of the model. The same
equations as in Appendix 4a.1.

A R AR K
A R
AR

K+ ← →⎯ =
[ ][ ]
[ ]

;

B R RB M
B R
RB

M+ ← →⎯⎯ =
[ ][ ]
[ ]

;

AR B ARB
M ARB
B AR

M+ ← →⎯⎯ =
[ ]

[ ][ ]
α α;

RB A ARB
K ARB
A RB

K+ ← →⎯⎯ =
[ ]

[ ][ ]
α α;

4b.2. The fractional observed effect. The individual
stimuli are given by

SR = [R], SAR = εA[AR], SRB = εB[RB] and SARB = εAB[ARB]

In comparison with Appendix 4a.2, the free receptor pro-
duces a stimulus with an intrinsic efficacy of 1.

And the total stimulus by

S S S S SR AR RB ARB= + + +

A rectangular hyperbolic equation is proposed for the rela-
tionship between the total stimulus and the observed effect.

f
E

E
S

K Sm E

= =
+

f
K M B M B A

K M B
M

B A B

B

A

=
+ [ ]( ) + + [ ]( )[ ]

+( ) + +( )[ ]( )
+ +

χ ε ε χ ε αδ
χ ε χ

ε χ
1 1

1(( ) + +( )[ ]( )[ ]α ε ε δχ1 A B B A

With χ =
[ ]R
K

T

E
, εAB = εAεBδ and [R]T = [R] + [AR] + [RB] + [ARB]

4b.3. Geometric descriptors of the curves

• Left asymptote in the absence of A and B (Basal response: f
for [A] = 0 and [B] = 0)

Basal =
+

1

1
1
χ

• Left asymptote in the absence of A (Bottom: f for [A] = 0)

Bottom
M B

M B
B

B

=
+ [ ]( )

+( ) + [ ] +( )
χ ε

χ ε χ1 1

• Right asymptote, the asymptotic f-value as [A] increases
(Top: lim f

A[ ]→∞
)

Top
M B

M 1 B
A B

A A B

=
+ [ ]( )

+( ) + +( )[ ]
χε ε αδ
ε χ α ε ε δχ1

• The mid-point, the [A] value for half maximum effect

A
K M B M B

M B M B
B

A B
50[ ] =

+ [ ]( ) + + [ ]( )
+ [ ]( ) + + [ ]

χ ε
χε ε δα α
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