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Abstract: These are exciting times for bioinformaticians, computational biologists and drug designers with the genome and proteome se-
quences and related structural databases growing at an accelerated pace. The post-genomic era has triggered high expectations for a rapid 
and successful treatment of diseases. However, in this biological information rich and functional knowledge poor scenario, the challenges 
are indeed grand, no less than the assembly of the genome of the whole organism. These include functional annotation of genes, identifi-
cation of druggable targets, prediction of three-dimensional structures of protein targets from their amino acid sequences, arriving at lead 
compounds for these targets followed by a transition from bench to bedside. We propose here a “Genome to Hits In Silico“ strategy 
(called Dhanvantari) and illustrate it on Chikungunya virus (CHIKV). “Genome to hits” is a novel pathway incorporating a series of 
steps such as gene prediction, protein tertiary structure determination, active site identification, hit molecule generation, docking and 
scoring of hits to arrive at lead compounds. The current state of the art for each of the steps in the pathway is high-lighted and the feasi-
bility of creating an automated genome to hits assembly line is discussed. 
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1. INTRODUCTION 

 The automation of genomes to hit molecules pathway poses 
several challenges. It involves, inter alia, (i) accurate genome anno-
tation, (ii) identification of druggable target proteins, (iii) determi-
nation of 3-dimensional structures of protein targets, (iv) identifica-
tion of hits for the target, (v) optimization of hits to lead molecules 
to realize high levels of affinity and selectivity to the target and low 
toxicity. Here, we describe the progresses achieved in each of the 
above areas, the conceivability of a “Genome to hits” assembly line 
in silico (Fig. 1) and illustrate the approach with chikungunya virus 
(CHIKV).  

2. BACKGROUND 

 We describe here the science and the software behind “Genome 
to Hits” assembly line which comprises six steps (Fig. 1), classifi-
able into three major areas of research viz. (a) genome annotation 
(steps 1 and 2), (b) protein tertiary structure prediction (step 3) and 
(c) structure based drug design (steps 4 to 6). Information available 
on chikungunya virus, which is taken up as an illustrative case in 
this study is summarized in the subsection (d).  

 (a). Genome Annotation. The computational genome annotation 
can play a vital role in finding potential therapeutic target mole-
cules for pathogens. In the present research scenario, it is a big 
challenge to carry out the structural and functional annotation of the 
whole genome sequence or the translated ORFs (open reading 
frames). These annotations can be used in comparative genomics, 
pathway reconstruction and particularly in drug design.  

 Genome annotation is the process of exploring biologi-
cal/functional information from sequences (Table 1). It is done by 
following two main steps: (i) identification of distinct, potentially 
functional elements on the genome, a process called gene prediction  
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in the context of identification of protein coding regions and (ii) 
assignment of biological function to these elements (genes or pro-
teins). 

 Automated annotation tools provide a faster computational 
annotation as compared to manual annotation (curation) which 
involves human expertise. Ideally, these approaches coexist and 
complement each other in the same annotation pipeline. The basic 
level of annotation involves finding genes and isolating the protein 
coding sequences from non-coding sequences. A variety of compu-
tational approaches have been developed to permit scientists to 
view and share genome annotations (Table 2). Most of the available 
computational methods are knowledge-based and adopt techniques 
like Hidden Markov Models or machine learning methods. The 
accuracies of these models are limited by the availability of data on 
experimentally validated genes, and as typically seen in newly se-
quenced genomes, can lead to suboptimal levels of prediction. Ab 
initio methods originating in physico-chemical properties of DNA 
can help overcome the limitations of knowledge-based methods. 

Table 1. Some Typical Features Considered During Genome 

Annotation 

Genome Annotation 

Structural annotation:  

identification of genomic ele-

ments 

Functional annotation:  

assigning biological information to 

genomic elements 

• ORFs and their 

localization  

• gene structure 

• coding regions 

• regulatory motifs 

• biochemical function 

• biological function 

• involved in regulation 

and interactions 

• control of expression  

  

 Generally for annotation purposes, homologous sequences in 
protein sequence databases are searched. The state of the art tool for 
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such database searches is PSI-BLAST (Position Specific Iterated 
Basic Local Alignment Search Tool) [1, 2]. The performance of 
PSI-BLAST and other database search tools to identify homologs of 
a given query in a sequence database has been measured by others 
[3]. However these benchmarks do not suffice the requirements in 
genome annotation. Our efforts are aimed at eliminating the limita-
tions of PSI-BLAST in correctly annotating protein coding se-
quences in genomes by using ab initio approach. Physico-chemical 
properties such as hydrogen bonding, stacking, solvation etc. show 
clear signatures of the functional destiny of DNA sequences [4-8], 
which has formed the basis of Chemgenome. In the present study, 
we have used Chemgenome, the SCFBio tool (http://www.scfbio-
iitd.res.in/chemgenome/chemgenome3.jsp) to produce and interpret 
structural annotations for the viral genome of Chikungunya virus.  

 (b). Protein tertiary structure prediction. The genome annota-
tion is followed by protein annotation at structural, functional and at 
genomic scale which is essential for routine work in biology and for 
any systematic approach to the modeling of biological systems. To 
bridge the expanding sequence-structure gap, many computational 
approaches are becoming available which assign structure to a 
novel protein from its amino acid sequence. A plethora of auto-
mated methods to predict protein structure have been developed 
based on a variety of approaches. These include (a) homology mod-
eling, (b) fold recognition or threading, (c) ab initio or de novo 
methods. Homology modeling and fold recognition methods utilize 
the information derived from structures solved previously via x-ray 
and NMR methods. This method is effective, popular, reliable and 

fast for protein tertiary structure prediction when a close sequence 
homolog exists in the structural repositories. Several protein struc-
ture prediction tools are available in the public domain (Table 3). 
To make biological sense out of large volumes of sequence data, it 
is necessary to compare the protein sequences with those proteins 
that have been already characterized biochemically. To design drug 
molecules, structural annotation plays an important role. Structural 
genomics (SG) efforts facilitate such comparisons by determining 
the structures for a large number of protein sequences, but most SG 
targets have not been functionally characterized. It is already 
known that accurate functional details of a protein can neither be 
inferred from its sequence alone nor from sequence comparisons 
with other proteins whose structures and functions are known but 
only from its own native structure [9-11].  

 Several efforts are being made to unravel the physico-chemical 
basis of protein structures and to establish some fundamental rules 
of protein folding. Despite the successes, protein tertiary structure 
prediction still remains a grand challenge - an unsolved problem in 
computational biochemistry [11, 12-26]. 

 Ab initio or de novo methods are frequently employed for pre-
dicting tertiary structures of proteins by incorporating the basic 
physical principles, irrespective of the availability of structural 
homologs. In this study, Bhageerath and Bhageerath-H servers are 
employed for protein structure prediction. Bhageerath is an energy 
based software suite for predicting tertiary structures of small 
globular proteins, available at http://www.scfbio-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Flow diagram illustrating the steps involved in Dhanvantari pathway to achieve hit molecules from genomic information. 
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iitd.res.in/bhageerath/index.jsp [12, 27]. It predicts five candidates 
for the native, from the input query sequence. Bhageerath-H [28] is 
a hybrid (homology + ab initio) server for protein tertiary structure 
prediction [29, 30]. It identifies regions which show local sequence 
similarity in respect to sequences in RCSB (protein data bank) to 
generate 3D fragments which are patched with ab initio modeled 
fragments to generate complete structures of the proteins. This 
server again predicts the best five energetically favorable structures, 
which are expected to be close to the native. The knowledge of 
tertiary structures of proteins serves as a basis for structure-based 
drug design.  

 (c). Structure based drug design. Design of small molecules in 
structure based drug discovery requires knowledge of the binding 
pocket on the protein which upon blockade results in loss of func-
tion. Experimental information on protein active sites and function 
loss are useful. In the absence of any experimental information, one 
could identify all potential binding sites on the protein from the 

structural information (Table 4). In this study we use, AADS 
(http://www.scfbio-iitd.res.in/dock/ActiveSite_new.jsp) methodol-
ogy for an automated identification of ten potential binding pockets 
which are expected to bracket the true “active site” (binding 
pocket). AADS requires the 3D structure of the target protein and 
detects the top 10 potential binding sites with 100% accuracy in 
capturing the actual binding (active) site. 

 Once the binding pockets on proteins are identified, libraries of 
small molecules are screened against these sites to identify a few hit 
molecules using software such as RASPD (http://www.scfbio-
iitd.res.in/software/drugdesign/raspd.jsp). RASPD protocol is de-
signed in the spirit of structure-based drug design approach but with 
a rapid turnover rate. RASPD screens small molecule databases 
against the active sites based on physiochemical descriptors or in 
general the set of Lipinski parameters such as hydrogen bond do-
nors, hydrogen bond acceptors, molar refractivity, Wiener index 
and volume for the protein and drug and also the functional groups 

Table 2. List of Tools Available for Gene Prediction 

Sl. No. Softwares URLs Methodology 

1. FGENESH  http://linux1.softberry.com/all.htm Ab initio 

2. GeneID  http://www1.imim.es/geneid.html Ab initio 

3. GeneMark  http://exon.gatech.edu/GeneMark/gmchoice.html Ab initio 

4. GeneMark.hmm http://exon.gatech.edu/hmmchoice.html Ab initio 

5. GeneWise http://www.ebi.ac.uk/Tools/Wise2/ Homology 

6. GENSCAN http://genes.mit.edu/GENSCAN.html Ab initio 

7. Glimmer http://www.tigr.org/software/glimmer/ Ab initio 

8. GlimmerHMM http://www.cbcb.umd.edu/software/glimmerhmm/ Ab initio 

9. GRAILEXP http://compbio.ornl.gov/grailexp Ab initio 

10. GENVIEW http://zeus2.itb.cnr.it/~webgene/wwwgene.html Ab initio 

11. GenSeqer http://bioinformatics.iastate.edu/cgi-bin/gs.cgi Homology 

12. PRODIGAL http://prodigal.ornl.gov/ Homology 

13. MORGAN http://www.cbcb.umd.edu/~salzberg/morgan.html Ab initio 

14. PredictGenes http://mendel.ethz.ch:8080/Server/subsection3_1_8.html Homology 

15. MZEF http://rulai.cshl.edu/software/index1.htm Ab initio 

16. Rosetta http://crossspecies.lcs.mit.edu Homology 

17. EuGéne http://eugene.toulouse.inra.fr/ Ab initio 

18. PROCRUSTES http://www.riethoven.org/BioInformer/newsletter/archives/2/procrustes.html Homology 

19. Xpound http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::xpound Ab initio 

20. Chemgenome http://www.scfbio-iitd.res.in/chemgenome/chemgenome3.jsp Ab initio 

21. Augustus http://augustus.gobics.de/ Ab initio 

22. Genome Threader http://www.genomethreader.org/ Homology 

23. HMMgene http://www.cbs.dtu.dk/services/HMMgene/ Ab initio 

24. GeneFinder http://people.virginia.edu/~wc9c/genefinder/ Ab initio 

25. EGPRED http://www.imtech.res.in/raghava/egpred/ Ab initio 

26. mGene http://mgene.org/web Ab initio 
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[31-33]. The most interesting feature of RASPD is that it generates 
a set of hit molecules based on the complementarities of the afore-
mentioned properties with a certain cutoff binding affinity bypass-
ing the conventional docking and scoring strategies, which reduces 
the search time significantly. The libraries incorporated in RASPD 
are a million compound library of small molecules and a natural 
product library. The users can also sketch molecules of their choice 
or use a non-redundant dataset of small molecules NRDBSM [34] 
(http://www.scfbio-iitd.res.in/software/nrdbsm/index.jsp) and sub-
mit them for RASPD screening.  

 The screening is followed by atomic level docking and scoring 
strategies (Table 5) such as Sanjeevini (http://www.scfbio-
iitd.res.in/sanjeevini/sanjeevini.jsp) to identify a few candidates 
which could be pursued as leads for experimental synthesis and 
validation [35, 36]. ParDOCK module of Sanjeevini is an all-atom 
energy based Monte Carlo algorithm for protein-ligand docking. It 
involves the positioning of ligands optimally with best configura-
tion in the protein binding site and scores them based on their inter-
action energies. This utility is freely accessible at 
http://www.scfbio-iitd.res.in/dock/pardock.jsp [37]. ParDOCK uses 
BAPPL scoring function [38] for atomic level scoring of non-
metallo protein ligand complexes and in ranking them accurately 
with their estimated free energies. BAPPL is again freely accessible 
at http://www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp. The 
accuracy of this scoring function in predicting binding free energy 
is high with ±1.02 kcal/mol average error and a correlation coeffi-

cient of 0.92 between the predicted and experimental binding ener-
gies for 161 protein-ligand complexes. An extended version of 
BAPPL, i.e. BAPPL-Z can be used for the prediction of binding 
energies of the complexes having zinc metal ion in their active 
sites. BAPPL-Z utility is accessible at http://www.scfbio-
iitd.res.in/software/drugdesign/bapplz.jsp [39]. All these tools are 
collectively gathered in Sanjeevini software, which is a complete 
drug design software suite, freely accessible at (http://www.scfbio-
iitd.res.in/sanjeevini/sanjeevini.jsp) [34, 40-47]. Thus, the assess-
ment of candidate molecules is done based on their binding ener-
gies and the molecules identified as good binders to the target are 
considered further for synthesis and testing. 

 (d). Chikungunya Virus. Chikungunya fever (CHIK) is a mos-
quito (Aedes aegypti) borne devastating disease caused by Chikun-
gunya virus (CHIKV), an alphavirus belonging to the family Toga-
viridae. It is one of the most important re-emerging infectious dis-
eases in Africa and Asia with sporadic intervals and is responsible 
for significant global impact on public health problems [48-62]. 
CHIKV is listed as a category C pathogen in 2008 by National In-
stitute of Allergy and Infectious Diseases (NIAID) and as a bio-
safety level 3 (BSL3) pathogen [50, 63-66]. CHIKV causes debili-
tating and prolonged arthralgic syndrome incapacitating the af-
fected population for longer periods. CHIKV is usually found in 
tropics but has widespread across the globe in recent years due to a 
range of transmission vectors, globalization and climatic changes 
[67-111]. The ‘Chikungunya’ word has originated from the Ma-

Table 3. List of Tools Available for Protein Tertiary Structure Prediction 

Sl. No Softwares URLs Description 

1. CPHModels3.0 http://www.cbs.dtu.dk/services/CPHmodels/ Protein homology modeling server 

2. SWISS-MODEL http://swissmodel.expasy.org/SWISS-MODEL.html 
A fully automated protein structure homology-modeling 

server 

3. Modeller http://salilab.org/modeller/ 
Program for protein structure modeling by satisfaction of spa-

tial restraints 

5. 3D-JIGSAW http://3djigsaw.com/ 
Server to build three-dimensional models for proteins based 

on homologues of known structure 

6. PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/ 

A combination of methods such as sequence alignment with 

structure based scoring functions and neural network based 

jury system to calculate final score for the alignment 

7. 3D-PSSM http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html 
Threading approach using 1D and 3D profiles coupled with 

secondary structure and solvation potential 

8. ROBETTA http://robetta.bakerlab.org 
De novo Automated structure prediction analysis tool used to 

infer protein structural information from protein sequence data 

9. PROTINFO http://protinfo.compbio.washington.edu/ 

De novo protein structure prediction web server utilizing 

simulated annealing for generation and different scoring func-

tions for selection of final five conformers 

10. SCRATCH http://scratch.proteomics.ics.uci.edu/ 

Protein structure and structural features prediction server 

which utilizes recursive neural networks, evolutionary infor-

mation, fragment libraries and energy 

11. I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/ Predicts protein 3D structures based on threading approach 

12. BHAGEERATH http://www.scfbio-iitd.res.in/bhageerath/index.jsp 
Energy based methodology for narrowing down the search 

space of small globular proteins 

13. BHAGEERATH-H 
http://www.scfbio-

iitd.res.in/bhageerath/bhageerath_h.jsp 

A Homology ab-initio Hybrid Web server for Protein Tertiary 

Structure Prediction 
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konde root verb kungunyala, meaning “that which bends up” [112, 
113] which is in reference to drying up or becoming contorted and 
signifies the cause of stooped posture developed due to the excruci-
ating joint and muscle pain and other rheumatologic manifestations 
[114, 115]. The disease etiology consists of sudden onset of fever 
with arthalgia, which generally resolves within a few days [116, 
117]. 

 Female mosquitoes acquire the virus by taking blood from 
viremic vertebrate hosts (Fig. 2). The virus elicits a persistent infec-
tion and replicates at a high pace, especially in the salivary glands 
of the insects [118, 119]. In addition to salivary glands, it replicates 
in various other organs inside body cavity including gut, ovary, 
neural tissue, body fat etc. [120]. When this CHIKV loaded mos-
quito infects a healthy human, it transfers the virus into its blood 
stream. These virions through interaction with the receptors reach 
the target cells by endocytosis. The acidic environment of the en-
dosome triggers conformational changes in the viral envelope that 
expose the E1 peptide [121-125], which mediates virus-host cell 
membrane fusion. This allows cytoplasmic delivery of the core and 
release of the viral genome in cytoplasm. The site of mRNA tran-
scription is in the cell cytoplasm. 

 CHIKV is an enveloped, spherical bodied virus of about 70nm 
in diameter. The virion genome consists of a linear single-stranded 
(ss), positive-sense RNA molecule of approximately 11.8 kb length,  
 

 
Fig. (2). Flow diagram depicting the movement of CHIKV from veremic 
host to mosquito and from mosquito to healthy host. 

Table 4. List of Software Available for Active Site Prediction 

S.No Software URL Description 

1 SitesIdentify http://www.manchester.ac.uk/bioinformatics/sitesidentify/ Sequence and geometry based 

2 PAR-3D http://sunserver.cdfd.org.in:8080/protease/PAR_3D/index.html Structure based 

3 FUZZY-OIL-DROP http://www.bioinformatics.cm-uj.krakow.pl/activesite/ Fuzzy oil drop model 

4 CASTp http://cast.engr.uic.edu Structure based 

5 Pocket-Finder http://www.modelling.leeds.ac.uk/pocketfinder/ Energy based 

6 Q-site finder http://www.modelling.leeds.ac.uk/qsitefinder/ Energy based 

7 PASS http://www.ccl.net/cca/software/UNIX/pass/overview.shtml Structure based 

8 SURFNET http://www.biochem.ucl.ac.uk/~roman/surfnet/surfnet.html Structure based 

9 LIGSITECSC http://projects.biotec.tu-dresden.de/pocket/ Based on Connolly surface 

10 VOIDOO http://xray.bmc.uu.se/usf/voidoo.html Structure based 

11 LiGandFit http://www.phenix-online.org/documentation/ligandfit.htm Structure based 

12 Active site prediction http://www.scfbio-iitd.res.in/dock/ActiveSite.jsp Structure based 

13 AADS http://www.scfbio-iitd.res.in/dock/ActiveSite_new.jsp Structure based 

14 Fpocket http://fpocket.sourceforge.net/ Based on Voronoi tessellation 

15 Pocket Picker http://gecco.org.chemie.uni-frankfurt.de/pocketpicker/index.html  

16 IsoCleft http://bcb.med.usherbrooke.ca/isocleftfinder.php graph-matching-based method 

17 metaPocket http://sysbio.zju.edu.cn/metapocket/ Structure based 

18 LIGSITECS http://gopubmed2.biotec.tu-dresden.de/cgi-bin/index.php Structure based 

19 GHECOM http://strcomp.protein.osaka-u.ac.jp/ghecom/ Structure based 

20 ConCavity http://compbio.cs.princeton.edu/concavity/ Structure based 

21 POCASA http://altair.sci.hokudai.ac.jp/g6/Research/POCASA_e.html Structure based 
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where the 5’ end is capped with a 7-methylguanosine while the 3’ 
end is polyadenylated. The CHIKV genome is comprised of 30% 
A, 25% C, 25% G and 20% T (U) base pairs with two long open 
reading frames (ORF) that encode the non-structural (2474 amino 
acids) and structural polyproteins (1244 amino acids) [126-131].  

 The genomic organization of CHIKV is considered to be 5’cap-
nsP1-nsP2-nsP3-nsP4-(junction)-C-E3-E2-6K-E1-Poly (A)3’ (Fig. 
3). The non-structural polyproteins (nsP1-4) located in an ORF of 
7425 nucleotides get initiated by a start codon at position 77-79 and 
terminated by a stop codon at position 7499-7501. This polyprotein 
is autocatalytically cleaved to produce nonstructural proteins nsP1, 
nsP2, nsP3 and nsP4. In contrast, the structural polyproteins are 
located on an ORF of 3735 nucleotides with a start codon at posi-
tion 7567-7569 and a stop codon at position 11299-11313. Like-
wise, this polyprotein is cleaved to produce the structural proteins 
namely the capsid protein (C), the glycoproteins E1, E2 and E3 and 
6K [126, 132-136]. The polypeptides are cleaved into active pro-
teins by viral and cellular proteases [137-148]. The functional prop-
erties of the active cleaved proteins are summarized in (Table 6). 

 Although no specific drugs are available, CHIK is usually 
treated with non-steroidal anti-inflammatory drugs (NSAIDs), with 
inconsistent success [149-172] (Table 7). Owing to the non-
availability of a potential drug to cure the disease, there is an urgent 
need to adopt a skilled strategy to develop new therapeutics. We 
describe in the following section how computational approaches 
can help in reducing the time in arriving at potential lead molecules.  

3. CALCULATIONS & RESULTS: APPLICATION OF THE 
G2H ASSEMBLY LINE TO CHIKV 

 The genome sequence of Chikungunya virus was retrieved from 
NCBI (http://www.ncbi.nlm.nih.gov/nuccore/NC_004162). For 
gene prediction, the sequence was processed using ChemGenome 
3.0 (http://www.scfbio-iitd.res.in/chemgenome/chemgenome3.jsp) 
software [5, 6]. The results displayed the existence of two genes 
which were similar to the already published ones, essentially imply-
ing that in this case, 100% accuracy is achieved with ChemGenome 
3.0. These nucleotide sequences were translated to protein se-
quences by ChemGenome 3.0. The proteins in CHIKV are polypro-
teins i.e. the sequence displayed in results contains sequences for all 
proteins coded by the gene. The individual proteins from polypro-
tein are cleaved during post translational processing. Till date no 
reliable computational approach is available to cleave the polypro-
teins, therefore the sequences were dissected manually for each 
protein, based on literature and experimental evidence to identify 
cleavage site. The ChemGenome 3.0 results are archived at 
http://www.scfbio-iitd.res.in/software/chemgenomeresult.jsp. 

 The sequences extracted from Chemgenome 3.0 served as in-
puts to Bhageerath-H (http://www.scfbio-
iitd.res.in/bhageerath/bhageerath_h.jsp), a tertiary structure predic-
tion server [28]. For each submitted sequence, five structures were 
returned by the server. The results received from Bhageerath-H are 
shown in (Fig. 4). As no homolog information is available to give 
strength to these structural models, all the five structures are con-
sidered as plausible candidates for the native, and considered for 

Table 5. A list of Softwares for Drug Design 

Sl. No. Softwares URL Description 

1 
Discovery studio 

http://accelrys.com/products/discovery-studio/structure-

based-design.html 
Molecular modeling and de novo drug design 

2 Sybyl http://www.tripos.com/ Computational software for drug discovery 

3 Bio-Suite http://www.staff.ncl.ac.uk/p.dean/Biosuite/body_biosuite.html Tool for Drug Design, structural analysis and 

simulations  

4 Molecular Operating 

Environment (MOE) 

http://www.chemcomp.com/ Structure-based drug design, molecular model-

ing and simulations 

5 Glide https://www.schrodinger.com/products/14/5 Ligand-receptor docking 

6 Autodock http://autodock.scripps.edu/ Protein-ligand docking 

7 DOCK http://dock.compbio.ucsf.edu/ Protein-ligand docking 

8 Sanjeevini http://www.scfbio-iitd.res.in/sanjeevini/sanjeevini.jsp A complete software suite for structure-based 

drug design 

9 ArgusLab http://www.arguslab.com/arguslab.com/ArgusLab.html Ligand-receptor docking 

10 eHITS http://www.simbiosys.ca/ehits/index.html Ligand-receptor docking 

11 FlexX http://www.biosolveit.de/FlexX/ Ligand-receptor docking 

12 FLIPDock http://flipdock.scripps.edu/ Ligand-receptor docking 

13 FRED http://www.eyesopen.com/oedocking Ligand-receptor docking 

14 GOLD http://www.ccdc.cam.ac.uk/products/life_sciences/gold/ Protein-ligand docking 

15 ICM-Docking http://www.molsoft.com/docking.html Protein-ligand docking 

16 PLANTS http://www.tcd.uni-konstanz.de/research/plants.php Protein-ligand docking 

17 Surflex http://www.biopharmics.com/ Protein-ligand docking 
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Table 6. Functional Properties of Structural and Non-structural Proteins Found in Chikungunya 

Protein Type Proteins Functions 

nsP1  Viral methyl transferase domain (acts as cytoplasmic capping enzyme and transfers 7-methyl-GMP complex 

to mRNA, thus forming the cap structure) 

nsP2  Viral RNA helicase domain and RNA trisphosphatase (part of the RNA polymerase complex) 

 Peptidase C9 domain (cleaves four mature proteins from non structural polyprotein) 

nsP3  Processing domain (crucial for minus strand and subgenomic 26S mRNA synthesis) 

NonStructural  

Proteins 

NP_690588.1 

 

nsP4  Viral RNA dependent RNA polymerase domain (replicates genomic and antigenomic RNA and also tran-

scribes 26S subgenomic mRNA which encodes for structural proteins) 

C  Peptidase_S3 domain (autocatalytic cleavage) 

 Trypsin like serine protease domain 

E3  Alphavirus E3 spike glycoprotein domain (tentative) 

E2  Alphavirus E2 glycoprotein domain (virus attachment to host) 

 Transmembrane domain 

6K  Alphavirus E1 glycoprotein domain (virus glycoprotein processing and membrane permeabilization) 

 Signal peptide domain 

 Transmembrane domain 

Structural proteins 

NP_690589.2 

 

E1  Alphavirus E1 glycoprotein domain (class II viral fusion protein) 

 Glycoprotein E dimerization domain (forms E1-E2 heterodimer in inactive state and E1 trimerizes in active 

state) 

 Immunoglobulin E set domain 

 Transmembrane domain 

 

Table 7. A list of Drugs Available for Treating Chikungunya Fever 

Drug Category Description 

Chloroquine Antirheumatic Agents / Antimalarials / Amebicides It is believed to inhibit the heme polymerase activity 

Aspirin Anticoagulants / cyclooxygenase(COX) Inhibitors / 

PlateletAggregation Inhibitors 

Irreversibly inhibits the activity of both types of cyclooxygenase 

(COX-1 and COX-2) 

Ibuprofen Anti-inflammatory Agents / COX Inhibitors / Analge-

sics / Nonsteroidal Anti-inflammatory Agents 

(NSAIAs) 

A non-selective inhibitor of cyclooxygenase, an enzyme invovled in 

prostaglandin synthesis via the arachidonic acid pathway 

Naproxen COX Inhibitors / Gout Suppressants It is believed to be associated with the inhibition of cyclooxygenase 

activity 

Ribavirin Antiviral Agents / Antimetabolites A potent competitive inhibitor of 

inosine monophosphate (IMP) dehydrogenase, viral RNA polym-

erase and messenger RNA (mRNA) guanylyl trasferase (viral); may 

get incorporated into RNA in RNA viral species. 

Prednisolone Hormonal Glucocorticoids The antiinflammatory actions of glucocorticoids are thought to 

involve phospholipase A2 inhibitory proteins, lipocortins 

Acetaminophen Analgesics, Non-Narcotic / Antipyretics Inhibits various forms of cyclooxygenase, COX-1, COX-2, and 

COX-3 enzymes 
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Fig. (3). The lifecycle of CHIKV in the host cell. 

 

further studies. It may be noted that tertiary structure prediction of 
structural proteins associated with membranes is a nascent area with 
low success rate at this stage and hence the focus here has been on 
nonstructural proteins which can fold autonomously. 

 Most of the experimentally determined structures have some 
information of ligand binding domain/site but in the present sce-
nario, CHIKV proteins lack the structural information, thus necessi-
tating detection of ligand binding sites (active sites). In order to 
facilitate active site detection, an automated version of active site 
finder i.e. AADS (Automated active site docking and scoring) 
(http://www.scfbio-iitd.res.in/dock/ActiveSite_new.jsp) is utilized 
which predicts the potential binding site(s) and further performs the 
docking of the selected molecule to the top ten cavities in an auto-
mated mode [40]. Binding sites on each of the five structural mod-
els of each nonstructural protein are identified. Not all cavities de-
termined by the active site identifier may be true binding sites with 
functional implication but one among them is very likely to be such 
a site. The additional cavities can be checked for their ability to act 

as allosteric sites. The predicted top 10 binding sites are shown as 
black dots in the protein structures (Fig. 4).  

 In search of probable hits, the 10 cavities per structure identi-
fied by AADS are further subjected to RASPD (Rapid screening of 
preliminary drugs) (http://www.scfbio-
iitd.res.in/software/drugdesign/raspd.jsp) software [41]. The 
RASPD returned more than 500 molecules against the predicted 
cavities of CHIKV proteins with -8.00 kcal/mol as the binding en-
ergy cutoff.  

 The in silico drug design beyond this stage involves rigorous 
docking and scoring [173, 174]. The hits identified from screening 
via RASPD above are further docked with their respective target 
site using Sanjeevini software (http://www.scfbio-
iitd.res.in/sanjeevini/sanjeevini.jsp) which utilizes ParDOCK as a 
docking tool. For all the modeled structures, one molecule for each 
cavity has been proposed on SCFBio’s CHIKV webpage which is 
accessible at http://www.scfbio-iitd.res.in/software/chikv.jsp. This 
webpage contains information on the genome annotation, protein 
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tertiary structure prediction, and hit molecule identification and 
docking and scoring results of the complete genome to hit protocol.  

 The best 20 molecules selected against the nonstructural pro-
teins of CHIKV are displayed in (Table 8). From here on, the in 
silico strategies go hand-in-hand with experimentation. In an itera-
tive process of synthesis, testing, modification, docking and scor-
ing, these molecules can be further improved to yield candidate 
drugs while taking care of the ADMET profiles [175-180]. 

4. DISCUSSION ON THE G2H ASSEMBLY LINE 

 The wealth of information available from experimental host-
pathogen interaction studies invites computational biologists to 
develop databases and newer computational methods to advance 
further focused experimentation. Consequently, bioinformatics is 
rapidly evolving into independent fields addressing specific prob-
lems in interpreting (i) genomic sequences, (ii) protein sequences 
and 3D-structures, as well as (iii) transcriptome and macromolecu-
lar interaction data. It is thus increasingly difficult for the biologist 
to choose the computational approaches that perform best in inhibit-
ing the growth of pathogen in the host.  

 

 A basic overview of the G2H technology is given in this review 
with an application to Chikungunya virus. G2H assembly line is a 
culmination of several recent advances in computational chemistry 
and computational biology implemented in a high performance 
computing environment. At least three areas for further improve-
ment can be immediately identified: (i) development of algorithms 
for cleavage of polyproteins, (ii) algorithms for identification of 
druggable protein targets, (iii) improved accuracies in tertiary struc-
ture prediction of nonstructural proteins, (iv) development of meth-
ods for determining tertiary structures of structural proteins and (v) 
identification of hit molecules with reduced toxicities. This protocol 
should ultimately result in an accelerated emergence of new meth-
ods for treating infectious diseases. Similarly, metabolic disorders 
can also be accessed via the “Genome to Hit” pathway.  

5. CONCLUSION & PERSPECTIVES 

 Post-genomic research era encompasses many diverse aspects 
of modern science. The “Genome to hits” pathway described here 
symbolizes the emergence of an integrated technology to address 
specific health issues, and more specifically provides a novel and 
rapid approach to identifying new and potent hit molecules from 
genomic information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). An illustration of the protein structures of CHIKV predicted by Bhageerath-H shown along with their binding pockets. 
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Table 8. Structural Representations of 20 Molecules Showing high Affinity to the Nonstructural Proteins of CHIKV. (Computed 

Binding Energies are also Shown in kcal/mol Underneath Each Molecule) 

Protein Model-1 Model-2 Model-3 Model-4 Model-5 
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SUPPLEMENTARY INFORMATION ON CHIKUNGUNYA 

AT SCFBIO WEBSITE 

 Details of the results on genes and protein tertiary structures 
predicted, binding pockets, hit molecules identified and lead mole-
cules proposed for synthesis are available for free download from 
the SCFBio website (http://www.scfbio-
iitd.res.in/software/chikv.jsp). These results will be updated peri-
odically with improvements in protocols for protein structure pre-
diction and ADMET evaluations. 
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