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Abstract

The structural integrity and conformational stability of an IgG1 monoclonal antibody (mAb), after
partial and complete enzymatic removal of the N-linked Fc glycan, was compared to the untreated
mAb over a wide range of temperature (10° to 90°C) and solution pH (3 to 8) using circular
dichroism, fluorescence spectroscopy, and static light scattering combined with data visualization
employing empirical phase diagrams (EPDs). Subtle to larger stability differences between the
different glycoforms were observed. Improved detection of physical stability differences was then
demonstrated over narrower pH range (4.0-6.0) using smaller temperature increments, especially
when combined with an alternative data visualization method (radar plots). Differential scanning
calorimetry and differential scanning fluorimetry were then utilized and also showed an improved
ability to detect differences in mAb glycoform physical stability. Based on these results, a two-
step methodology was used in which mAb glycoform conformational stability is first screened
with a wide variety of instruments and environmental stresses, followed by a second evaluation
with optimally sensitive experimental conditions, analytical techniques and data visualization
methods. With this approach, high-throughput biophysical analysis to assess relatively subtle
conformational stability differences in protein glycoforms is demonstrated.
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Introduction

Monoclonal antibodies (mAbs) have emerged as a key category of therapeutic protein drugs
with over 30 mAbs currently approved in the USA and Europe and many hundreds under
clinical development.: 2 The commonly used 19G mAb includes two light chains and two
heavy chains forming a homo-dimeric, multidomain structure containing an N-linked
glycosylation site in each of the two CH2 domains found in the Fc portion of the heavy
chain.3: 4 The glycosylation pattern of the Fc region of 1gG molecules plays a key role in
IgG functionality and clearance, where the type and amount of glycan moieties control the
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ability and affinity of the Fc region to bind to the various Fc receptors i vivo.5-11 These Fc
receptors are responsible for Fc effector function activities and regulating clearance of 1gGs
from circulation Jn vivo.12-18

The extent and type of glycosylation has been shown to influence the conformational
stability of proteins in general and mAbs in particular.1® There are several studies examining
the effect of deglycosylation on the structure and stability of the Fc region of 1gGs.2%: 21
These studies typically use a single measurement type (e.g., differential scanning
calorimetry) over limited solution conditions (e.g., one or two pH values) to examine the
effect of varying mAb glycosylation patterns.22-26. 30 |n addition, the protease sensitivity of
an IgG (e.g., papain digestion), has been used to examine mAb stability, in which more
cleavage has been noted when the Fc was deglycosylated.34 35 Recent studies have also
examined the conformational stability of purified Fc domains as function of varying
glycosylation.20: 21, 27-30, 32 |nteractions between the glycan moieties and specific residues
within the CH2 domains are responsible for stabilizing the structure of the CH2 domain, and
disruption of these non-covalent interactions by partial or full deglycosylation leads to
destabilization of the entire domain.29: 21. 30-33 The effect of deglycosylation on the
structural integrity of the CH2 domain has been examined by a variety of structural analysis
including X-ray crystallography, °6 SAXS 40 and HDX-MS 54 55 as well as examined by
molecular modeling. 6 57

The pharmaceutical properties (e.g., storage stability and solubility) of mAbs are also
affected by glycosylation, although not necessarily in predictable ways. For example, the
solubility of an IgG1 was increased dramatically after the introduction of an additional
glycosylation site on the Fab domain.38 In contrast, an isolated cryoimmunoglobulin species
from human serum, known to have dramatically reduced cold solubility, was shown to
contain an additional glycosylation moiety in the variable region of the antibody.3” The
aggregation propensity of IgGs may increase upon deglycosylation, which has been
attributed to the destabilization of the CH2 domain as well as exposure of an aggregation-

prone regions within the CH2 domain that are masked in the native 1gG by the glycan
moiety.28: 38, 39, 59, 60

Due to the potential for changes in critical quality attributes for biotech drugs as a result of
manufacturing and/or formulation modifications, comparability studies are performed in
which the pre and post-change drug candidates are evaluated to ensure that these process
and product changes do not affect the drug's structure, safety and function.#1-44 Structural
equivalence between pre and post-change protein drug candidates is evaluated in a step-wise
fashion which may include analytical, biological and clinical evaluations.*! The effect of
varying glycosylation profiles on the design of comparability assessments of protein
therapeutics, including effects on Fc effector function activity of mAbs, has recently been
reviewed. 42 45

Analytical characterization for comparability evaluations includes determination of primary
and higher-order structural integrity using a combination of methods.43 46 A combination of
chromatographic (SE, RP and IE- HPLC) and electrophoretic (clEF, cSDS) methods are
typically utilized along with mass spectrometry (intact molecular weight, peptide and
oligosaccharides maps) to characterize protein's primary structure and post-translational
modifications (e.g., glycosylation patterns). In contrast, analytical methods available to
examine higher-order structure are typically lower resolution in nature (e.g., CD,
fluorescence), ultimately resulting in the requirement for functional potency assays to be
performed to ensure biological activity. Since accelerated or long term stability studies are
typically monitored as part of comparability assessments, 43 46 there is a need for new
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analytical methods for determining the higher-order structure of protein drug candidates that
would provide a more comprehensive picture of their structural integrity and stability.

In the past decade, multiple papers have appeared from our laboratories describing the
ability of empirical phase diagrams (EPDs) to summarize physical stability data and use this
information for formulation development of therapeutic proteins and vaccines.4’-52 These
EPDs are created through the utilization of large data sets from high throughput analysis of a
protein's conformational stability as a function of environmental stresses (e.g., temperature
and pH) by multiple lower-resolution biophysical techniques (e.g., CD, fluorescence, light
scattering, etc.), followed by the application of multidimensional mathematical analysis
techniques, to produce a colored diagram representing structural changes as a function of
environmental stress. Furthermore, the ability of EPDs to detect major conformational
stability changes in a series of site-directed mutants of acidic fibroblast growth factor
(FGF-1) was recently demonstrated.>? Recent work has also established additional data
visualization methods such as radar charts, Chernoff faces and comparative signature
diagrams to better compare protein samples.51 53

The purpose of this study is to test the feasibility of using high through-put biophysical
analysis and data visualization methods to rapidly evaluate, over a wide range of solution
conditions, differences in the structural integrity and conformational stability of an 1gG1
mADb of varying glycosylation patterns. This work required, for the first time, incorporation
of differential scanning calorimetry and differential scanning fluorimetry data into the EPD
analysis. We also included radar chart methods to better visualize conformational stability
data differences across the 1gG1 glycoforms.

Materials and Methods

Materials

An IgG1 mAb solution was received from Janssen R&D/J&J at 40 mg/ml and frozen in
aliquots at —80° C. Reagent chemicals were purchased from Sigma—Aldrich (St. Louis, MO)
or Fisher Scientific (Pittsburg, PA).

Deglycosylatation of IgG1 mAb

Fully deglycosylated mAb was prepared using PNGase F from Prozyme™ (San Leandro,
CA). Samples of mAb were diluted to 10 mg/ml with reaction buffer (100 mM Tris, 100
mM NacCl, pH 7.5), and then 20 pl (200 pg) of the diluted protein sample was added to 172
ul of the reaction buffer and 8 pl of PNGase F to achieve a 1:100 (w/w) enzyme: protein
ratio. The mixture was incubated at 37 °C for 15 h. Partially deglycosylated 1gG was
produced using Endoglycosydase F2 (Endo F2) from Prozyme™ (San Leandro, CA).
Samples of mAb were diluted to 10 mg/ml using deionized water. Twenty ul (200 pg) of the
diluted protein sample was then added to 38 pl of deionized water, followed by addition of
10 pl of 5X reaction buffer (250 mM sodium acetate, pH 4.5), and 2 ul of Endo F2 to the
mixture. The mixture was incubated for 1h at 37 °C.

Electrospray lonization Mass Spectrometry (ESI-MS)

To confirm deglycosylation, antibody samples with and without reduction, using 10 mM
dithiotreitol (DTT), were diluted to 0.25 mg/ml with 0.1% formic acid. Ten pL of this
solution (approximately 16 pmoles of intact mAb or 50 pmoles of Fc monomer) was
injected into the sample loop of the LC (Agilent Technologies 1200 Series) with a two pump
system. An isocratic loading pump carried the sample from the loop to a Protein
Concentration and Desalting Micro Trap (Bruker-Michrom, Auburn, CA, USA) for 5
minutes desalting with 0.1% formic acid at 200 yL/min. A gradient pump eluted the protein
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from the trap at 50 pyL/min flow rate using a 5-60 % linear acetonitrile gradient in 3 min
followed by a 60-95% gradient in 1 min for cleaning the trap onto the electrospray
ionization (4 kV capillary) source of a time of flight mass spectrometer (model 6220,
Agilent Technologies). The mobile phases used for gradient elution were 0.1% formic acid
and 90% acetonitrile /10% water /0.1% formic acid. The mass spectrometer was operated in
2 GHz extended dynamic range mode with fragmentor voltage of 150V, desolvation gas
flow rate of 10 L/min at 325 °C and nebulizer pressure of 20 psig. Mass spectra were
acquired over an m/z range of 300-3200 with an acquisition rate of 1 spectrum per second
with reference mass correction. The raw mass spectral data was processed using Agilent
Mass Hunter Qualitative Analysis (version B.04). The mass spectra were deconvoluted at
specific mass ranges to search for intact or reduced mAb species.

Sample Preparation for Stability Assessments

Samples were dialyzed overnight at 4° C using a 10 kDa molecular-weight cutoff membrane
(Pierce, Rockford, IL) against 20 mM citrate-phosphate buffer to achieve the targeted pH
range (3-8 with one pH unit increment or 3.5-6.0 with 0.5 pH increments). The ionic
strength in all buffers was adjusted to 0.15 using NaCl. Protein concentration was
determined at each pH using Agilent 8453 spectrophotometer (Palo Alto, California) and
adjusted to 1 mg/ml. For physical measurements, two different sets of experimental
parameters were evaluated: (1) for the pH range of 3-8, the temperature was raised from 10
°C t0 90 °C at 2.5 °C intervals using a 180 sec equilibration time, or (2) for the pH range of
3.5-6.0, 1.25 °C intervals were used as a temperature ramp with a 30 sec equilibration time.

Biophysical Measurements

Far UV circular dichroism (CD), intrinsic tryptophan and extrinsic (using 1-analino-8-
naphthalene ,ANS, dye) fluorescence spectroscopy, static light scattering and differential
scanning calorimetry (DSC) studies were performed as described earlier.>® For more
detailed description of these methods, please refer to the supplemental section.

DSF measurements were performed using MX3005P QPCR system (Agilent Technologies),
with a protein concentration of 0.2 mg/ml and total sample volume of 100 pl. SYPRO™
orange purchased from Invitrogen, Inc. (Carlsbad, CA) supplied in a concentrated form
(5000x) dissolved in DMSO. The dye was diluted to 40x and then added to the protein
samples to achieve 1x dye concentration for measurements. Using FAM filter sets, the
mixture was excited at 492 nm and the emission intensity change with temperature at 516
nm was followed. Temperature was raised from 25 °C to 90 °C using 60 °C/hr as a heating
rate and 1 °C as a step size. Data were transferred to Excel software (Microsoft, Redmond,
WA) for data analysis. A pH range of 4-6 with 0.5 pH unit increment was used, and buffers
were run and subtracted from all samples. DSF curves were integrated, before being utilized
in the construction of the EPD, to get a sigmoidal curve, in a step to get a better
representation of the data in the EPD.

Construction of Empirical Phase Diagrams (EPDs) and Radar Charts

EPDs are constructed to summarize and visualize the conformational stability of IgG1 mAbs
using data sets from selected experimental techniques as a function of pH and temperature.
The experimental measurements are organized in the form of a multi-dimensional vector
matrix and analyzed by Singular value decomposition (SVD) as described in detail
elsewhere.?1: 52 Results are mapped to a RGB color scheme and visualized as changes in
color which indicate changes in the physical states of the protein. Additional data
visualization scheme with radar charts was also used to analyze the data as described in
detail elsewhere.5! A radar chart can have any number of polar axes each of which is
mapped to an experimental technique. A polygon drawn by connecting all points in the polar
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axes represents changes in the physical states of the protein. Similar to an EPD, difference in
the shapes of polygons indicate changes in the conformational state of a protein. Apparent
boundaries between states can be assessed visually or by use of computational aid such as k-
Means clustering. A detailed explanation of radar charts and clustering methods can be
found elsewhere.50

Deglycosylation of the IgG1 mAb

The 1gG1 mAb used in this study had a glycosylation pattern typically observed for
recombinant mAbs produced from SP2/0 cells with ~75% consisting of G1F, G2F and GOF
structures, and the remaining ~25% being spread over various charged species (e.g., mono
and disialylated glycoforms) as described in detail elsewhere.43 The ability of the different
enzymes to remove the two major glycans (GOF, G1F) was monitored by mass spectrometry
analysis of the heavy chain Fc from reduced mAb samples (Table 1). Mass spectrometric
analysis of the reduced mAb samples showed no significant changes to the light chain (data
not shown) while the heavy chain manifested a molecular weight consistent with the specific
enzymatic treatments (Table 1). For example, partial deglycosylation was achieved by the
treatment with endoglycosydase F2 (Endo F2) which cleaves between two GIcNAc residues
and leaves Asn 297 in the protein backbone attached to GIcCNAc-Fuc. Full deglycosylation
was achieved using N-Glycanase (PNGase F) which fully removes the glycan (see Table 1)
and deamidates the Asn to Asp, adding a negative charge to both CH2 domains. Additional
confirmation was obtained by SDS-PAGE and capillary isoelectric focusing analysis which
qualitatively showed the expected shifts in migration of fully deglycosylated mAb in terms
of molecular weight and charge heterogeneity due to glycan removal (data not shown).

Initial biophysical characterization of a native and fully deglycosylated IgG1

The secondary structure of the native and fully deglycosylated IgG1 mAb was evaluated by
far-UV CD analysis from 260 nm to 200 nm at 10 °C (Figure 1A, 2A). Both samples share
the same structural features across all pH values in the form of a broad negative peak at 217
nm, indicating the expected B-sheet rich structure. By following the CD intensity change at
217 nm with increasing temperature (Figures 1B, 2B), the two IgG1 glycoforms show
similarity in their secondary structure stability behavior at higher pH values (pH 6-8) with
an onset temperature of ~60 °C. A lower pH, however, (pH range 3-5), the native IgG1
shows a trend toward enhanced stability compared to its deglysosylated form, with ~1 °C
difference in the onset temperature.

At 10 °C, the native IgG1 produced a higher ANS intensity at pH 3 than other pH values,
suggesting increased exposure of apolar regions at low pH (Figure 1C). For the fully
deglycosyalted 1gG1, higher ANS intensity was observed at all pH values compared to
native 1gG1 (Figure 2C). Thermal stability was studied by following the ANS intensity
change at 486 nm with increasing temperature as shown in Figures 1D and 2D. The native
and deglycosylated forms of the mAb show a similar transition at high pH values (pH 6-8)
with one, major structural transition observed starting at ~60 °C. Differences between the
two 1gG1 forms are observed, however, in more acidic environments (pH 3-5), including an
additional structural transition at lower temperatures. At pH 3, the first transition begins at
approximately 10 °C for the native IgG1, while the protein is already structurally altered at
10 °C for the fully deglycosylated form, suggesting that the fully deglycosylated 1gG1 is
experiencing a higher degree structural disruption at pH 3. In contrast, the second transition
starts at ~35 °C for both samples. Two structural transitions are seen at pH 4 for both 1gG1s,
with a similar onset temperature for the second transition (~57 °C), but a different onset
temperatures in the first transition (~35 °C for the native IgG vs. ~25 °C for the fully

J Pharm Sci. Author manuscript; available in PMC 2014 November 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Alsenaidy et al.

Page 6

deglycosylated 1gG). The native 1gG1 at pH 5 shows only one structural transition starting at
~60 °C while the deglycosylated form manifest two transitions at ~42 and ~60 °C.

Intrinsic (Trp) fluorescence spectroscopy was used to probe the overall tertiary structure
stability of the native and fully deglycosylated mAb. Comparing the two spectra at 10 °C, no
major differences were observed at all pH values (data not shown). By following the
intensity change with increasing temperature for the IgG1 in the native (Figure 1E) and fully
deglycosylated states (Figure 2E), similar structural transitions are seen including an initial
decrease in fluorescence intensity (due to the intrinsic temperature dependent decrease in
quantum yield of the tryptophan's indol ring), a second sudden increase in fluorescence
intensity (indicating the start of a tertiary structure unfolding event), and a third transition
marked by a sudden decrease in fluorescence intensity consistent with aggregation/
precipitation. The major unfolding event (second transition) for both IgG1 forms starts
earlier at pH 3 (~38 °C) and pH 4 (~55 °C) compared to other pH values. Approximate 2-3
°C stability difference for the 1gG1 in the native state (~62.5 °C) was observed for pH (5-8)
compared to the fully deglycosylated 1gG (~60 °C). Peak position changes as a function of
increasing temperature were also analyzed. The peak position for the native 1gG1 (Figure
1F) was 340 nm (shifted from an actual value of 330 nm due to the use of “spectral central
of mass” method) for all pH values at 10°C representative of native/folded tertiary structure.
The peak position gradually increased with increasing temperature followed by a decrease at
around 65 °C (except at pH 3) suggesting aggregation/precipitation. The fully
deglycosylated 1gG1 (Figure 2F) at 10 °C was in a partially unfolded state as indicated by
the red shifted peak position (345 nm at pH 3 and 342 nm for the pH range 4-8 using MSM
analysis). With increasing temperature, both proteins showed a gradual increase in their
peak position as a result of gradual unfolding followed by aggregation/ precipitation and
concomitant loss of signal.

Figures 1G and 2G show the temperature induced aggregation behavior of the native and
fully deglycosylated 1gG1, respectively, as measured by static light scattering. Comparing
the two 1gG1 forms, pH 3 shows a similar trend with no increase in light scattering intensity
even up to 90 °C, whereas, the native and deglycosylated IgG1 at pH 4 starts aggregating at
64.5 °C and 62 °C, respectively, with a greater intensity upon aggregation for the
deglycosylated form. At pH 5 and 6, native 1gG1 starts aggregating at ~62.5 °C and ~65 °C
compared to ~60 °C and ~62.5 °C for the deglycosylated IgG1, implying a destabilizing
influence of removal of the sugar moiety.

The thermal melting curves from CD, ANS, fluorescence peak intensity, fluorescence peak
position, and SLS analysis were used to generate EPDs for the native (Figure 1H) and fully
deglycosylated mAbs (Figure 2H). Comparing the two EPDs, three major regions are
identified that signify different conformational states. The green region represents the 1gG1
in its stable native state and the blue region in a structurally perturbed, partially unfolded
state. The purple/red region represents an aggregated state. Both 1gG1 forms have similar
transition temperatures in the native to the unfolded state events (blue region) in the pH
range of 6-8, suggesting no detectable differences in conformational stability between the
native and fully deglycosylated 1gGs in this pH range. In contrast, notable differences in
conformational stability between the two 1gG1 forms were seen under more acidic
conditions of pH 3-5. Comparing the native (green) region of the EPDs at pH 5 for the two
IgG1 forms, a large stability difference is observed, in which the native IgG1 starts
transitioning to the unfolded state at ~57.5 °C and the fully deglycosylated form at ~47.5 °C.
At pH 4, conformational stability differences are even more dramatic, with transitions to the
unfolded state appearing at ~47.5 °C and ~35 °C for the native and fully deglycosylated
IgG1, respectively. For both 1gG1 forms at pH 3, the structurally perturbed state initiates at
10 °C with this unfolded state undergoing aggregation at ~50 °C.
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Optimization of experimental parameters to better compare conformational stability of
Native and Fully Deglycosylated mAb glycoforms

Based on the studies above, EPD data analysis permitted a rapid, visual assessment of
conformational thermal stability differences between the native and fully deglycosylated
IgG1 in the pH range of 3 to 5. Given the size of the temperature steps (2.5 °C) and pH steps
(one pH unit), however, it was difficult to analyze these stability differences in more detail.
Thus, a narrower pH range (3.5 to 6 in 0.5 pH increments) with smaller temperature
increments (1.25°C) was used to generate a new set of EPDs for both IgG1 mAb forms.
Using the same techniques, a more detailed EPD was generated for native protein (Figure
3A) and deglycosylated protein (Figure 3C). The data from these experiments are provided
in Supplementary Figures S1 and S2. These improved EPDs resulted in observation of four
structural regions including a blue region, where both IgG1 forms are in their stable-native
like states, a dark black region, immediately above the blue region probably representing the
IgG's in a molten globule-like state. The third region (green) represents a highly structurally
altered, extensively unfolded state, while the purple/red region comprising protein that is
aggregating and/or precipitating. Comparing the blue regions of the two IgG1 forms to each
other, we see this region covers most of the native state, but covers a much smaller area in
the fully deglycosylated form. This more clearly illustrates conformational stability
differences between the two IgG1 forms. For example, in the pH range of 3.5-4.5, a
noticeable difference in the structural transition temperatures from the native to the molten
globular and unfolded states are observed. Transition temperature differences were less
substantial in the pH range of 5-6 in the EPD with an ~2-3 °C stability difference between
the two 1gG1 forms.

We used the same data set to generate radar charts, a newly developed data visualization
method for protein biophysical data.! Radar charts for the native and fully deglycosylated
IgG1 mAb forms are shown in Figures 3C and 3D, respectively. The reference radar chart
guide to the right of the figure shows the position of the five analytical techniques that are
being evaluated. Consequently, five radii are projecting out from the center of the chart
creating one larger pentagonal image. According to the clustering analysis (K=3), for both
IgG forms, the radar charts are divided into three regions, regions I, 11, and I11. These three
regions are similar to the three regions describe above with EPD analysis (i.e., native-like
state, structurally altered state, and more extensively altered form with aggregation). Region
I is of small quadrilateral shape and corresponds to minimal change in the signals, thus
representing the more stable-native like state. Region | covers 60% (Figure 3C) vs. 42%
(Figure 3D) of the total area of the radar charts for the untreated and fully deglycosylated
1gG mADbs, respectively.

Conformational Stability of Three Different IgG1 mAb Glycoforms Analyzed with Optimized
Analytical and Data Visualization Methods

As a final set of experiments, three forms of the IgG1 mAb of varying glyscoylation were
analyzed: the untreated control, the fully deglycoyslated PNGase F treated protein, and a
partially deglycosylated form generated by treatment with Endo F2 (see Table 1). In
addition, as noted above, since various biophysical techniques (Figures 1-3) differed in their
ability to detect the destabilizing effect of deglycosylation, we selected the most sensitive
methods described above (extrinsic fluorescence spectroscopy with ANS and static light
scattering) for the additional experiments described below. In addition, we also employed
differential scanning calorimetry (DSC) and differential scanning fluorimetry (DSF) which
have previously been shown to be capable of detecting conformational stability differences
in deglycosylated 1gG1 mAbs.21 24, 27, 28,30-33 Eing|ly, the pH range of analysis was also
narrowed to pH 4.0-6.0 to better focus on the structural transition regions and due to
complex, irreproducible behavior of DSC and DSF results when heated at pH 3.5 and below
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(data not shown). The ANS, DSC and DSF data are discussed below and the SLS data for
the three mAb samples are provided in Supplementary Figure S3.

The thermal melting curves for the native (black), partially (green), and fully deglycosylated
(red) mAbs in the presence of ANS are shown in Figure 4. At 10 °C, at all pH values tested,
the fully deglycosylated IgG1 has the highest ANS intensity value, followed by the partially
deglycosylated 1gG1. The ANS intensity differences between the three 1gG1 glycoforms at
10 °C decreases as the pH increases. As the temperature is increased, two transitions are
evident for the three 1gG glycoforms at lower pH with only a single transition observed at
higher pH values. The loss of the first transition occurs at pH 5.0, 5.5, and 6.0 for the native,
partially deglycosylated and the fully deglycosylated 1gG1 mAbs, respectively. The second
thermal transition temperature seems to be less affected by the glycosylation state of the
mADs, since the three samples display similar transition temperatures (~68°C at pH 4.5-6.0
and ~65°C at pH 4.0).

Figure 5 shows DSC thermograms of the three 1gG1s at pH 4-6. The second and third
endothermic peaks observed by DSC are very similar in terms of melting temperatures (74
°C and 82.5 °C, respectively). The first endothermic peak onset temperature, however,
shows both a solution pH and glycosylation pattern dependence. In the pH range of 4 to 5,
the transition onset temperature initiates earlier in the case of the deglycosylated IgG,
followed by the partially deglycosylated and then the native 1gG1. The latter two samples
show similarity in their onset temperature, except at pH 4.5 where the partially
deglycosylated 1gG1 seems to be less stable than the native molecule. At pH 5, the first peak
starts merging with the second peak for both the native and partially deglycosylated 1gGs,
ultimately forming a shoulder. The first peak for the fully deglycosylated mAb, however,
remains completely separated from the second. At higher pH values of 5.5 and 6, the first
transition for both the native and the partially deglycosylated 1gG1 forms are completely
merged into the second peak, while the first transition in the fully deglycosylated I1gG form
remains separated from the other thermal transition peaks at pH 5.5.

Using SYPRO orange as an extrinsic dye which shows increased fluorescence upon
exposure to more apolar environments such as those associated with structural alterations in
proteins, the thermal stability of the different IgG1 samples as a function of pH and
temperature was followed (Figure 6). Among the three IgG1 mAb samples and pH values
examined, a major transition at 70 °C was consistently observed except for the partially
deglycosylated IgG1 at pH 4, in which the observed transition is very broad and is seen at a
lower temperature (62 °C). Multiple additional transitions (prior to the main transition) are
evident for the three 1gG1 samples at pH 4.0. A destabilization effect due to carbohydrate
removal is evident since both the partially and fully deglycosylated IgG1 forms start
unfolding at ~28 °C compared to the native 1gG at ~46 °C. At pH 4.5 and 5.0, an initial
transition is noted at a lower temperature for the partially deglycosylated compared to the
native 1gG1 although they peak at about the same temperature. The presence of the multiple
transitions for the fully deglycosylated IgG1 at pH 4.5 and 5.0, indicates more structurally
disrupted states than the other mAb samples at lower temperatures. At pH 5.5 and 6.0, two
of the IgG1 forms show a single major structural transition, with the fully deglycosylated
form also manifesting a pre-transition at pH 5.5.

Using the results obtained from the four techniques described above, EPDs and radar charts
were generated for the three 1gG1 samples (Figure 7). Comparing the EPDs of the native
(Figure 7A), the partially deglycosylated (Figure 7B), and the fully deglycosylated proteins
(Figure 7C), the three EPDs share a common blue and green region. The blue region (based
on separate evaluation of the data) signifies the region where the protein is in its stable,
native-like state. The green color defines the region where the protein is in a structurally
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altered state. A third region appears in all the three EPDs, but with different colors and
different intensities, corresponds to aggregation/precipitation of the protein. Comparing the
blue (native structure) region across the three 1gG1 glycoforms at pH 5.5 and 6.0, the native
and the partially deglycosylated 1gG1 samples have the same transition temperatures near 64
°C. The fully deglycosylated IgG, however, starts its transition at lower a temperature (59
°C). At pH 5.0, the native and the partially deglycosylated 1gG forms show a transition at 63
°C and 61 °C, respectively. For the fully deglycosylated IgG at pH 5.0, additional color
elements are observed indicating the existence of a partially unfolded, conformationally
disrupted state at this pH (see the ANS and DSF data in Figures 4 and 6, respectively). At
pH 4.0 and 4.5, the native IgG1 is less stable, with structural transitions at 50 and 55 °C,
respectively. The partially deglycosylated 1gG1 at pH 4 and 4.5 develops an additional light
blue region, consistent with the existence of a partially unfolded state. (See the ANS data in
Figure 4). The fully deglycosylated 1gG at pH 4.5 shows a more structurally disrupted state
compared to the other 1gG forms, while an additional green region is observed for the fully
deglycosylated 1gG1 form at pH 4.0, indicating the existence of the extensively structurally
altered state even at lower temperatures.

Radar charts were generated from the same data as shown on the right side of Figure 7.
Spanning the same pH and temperature range examined with colored EPDs, similar regions
were identified for the different IgG1 glycoforms indicating the existence of different
conformational states (in the radar plots, structural transitions were identified by clustering
analysis with k=3 as described in the methods section). The native-like, stable region for the
untreated, control mAb (Figure 7A), the partially deglycosylated mab (Figure 7B), and the
fully deglycosylated protein (Figure 7C) are depicted as dot-like entities (minimal structural
transitions) and occupy 67, 52 and 40% of the radar chart's total area, respectively. Based on
this simple analysis of the areas in the radar plots representative of native-like, stable form
of the mADb, the effect of glycosylation on IgG1 conformational stability is readily evident,
with the decreased area qualitatively proportional to the enzymatic truncation of sugar
moieties.

Discussion

In this study, a direct comparison of the structure and conformational stability of an 1gG1
mAb and its truncated glycoforms was performed with a variety of biophysical techniques,
over a wide range of solution conditions. Data was also analyzed with two vector based
technologies. The different glycoforms were prepared by enzymatic treatments. Mass
spectrometric analysis of the reduced IgG1 mAbs (Table 1) directly demonstrated that the
partial and full deglycosylation was successful since the measured molecular weights of the
heavy chain of the mAb glycoforms were in close proximity to the expected values. The
native mAb contained the expected mixture of glycan structures for SP20 cells, in which the
G2F/G1F, G1F/G1F and G2F/GOF glycosylation patterns are the dominant glycosylated
forms as described elsewhere.*3 The partially deglycosylated mAb, produced by enzymatic
treatment with Endo F2, contained a Fucose-GlcNac as a major glycan species structures
consistent with the theoretical (average) mass. The presence of the fully deglycosylated
protein, achieved by digesting with PNGase F, was evident from MS analysis (Table 1),
where complete removal of the glycan and subsequent deamidation of the backbone Asn to
Asp, was achieved as a result of the enzymatic reaction.

The destabilizing effects of removing the N-linked glycan in the CH2 domain of the Fc
region of IgGs has previously been demonstrated by selected techniques under certain
conditions. In this regard, the ability of EPDs and radar charts to detect changes in
conformational stability due to differences in post-translational modifications of a protein
was examined in this work in a “model system” using three different glycoforms of an IgG1
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mAb. Although this work covered a wider range of solution conditions, experimental
techniques and data visualization approaches, some of the conditions examined here overlap
with previous studies. The results with the IgG1 mAb of this work are consistent with
previous reports with other 1IgG1 antibodies. For example, as a result of complete or partial
removal of the CH2 domain N linked glycan, destabilization of the CH2 domain of an 1gG1
has been shown by DSC. 22: 26, 30. 31, 33 | addition, an increase in fluorescence intensity
spectra using intrinsic (Trp) and extrinsic (SYPRO orange dye) fluorescence spectroscopy
was seen with full deglycosylation.33 Differential scanning fluorimetry (DSF) has been used
to evaluate conformational stability differences of an 1gG1 in different formulation
buffers.23 The effect upon complete or partial removal of the N-linked glycan on the
conformational stability of purified Fc proteins has also recently been evaluated using
DSC,21: 27,28 a5 well as CD and extrinsic (ANS) fluorescence spectroscopy.2’ Results from
DSC indicated a destabilization effect on the CH2 domain of the Fc protein upon complete
or partial deglycosylation, while results from CD and extrinsic fluorescence indicated a
significant destabilization effect under acidic conditions and less of an effect at neutral to
basic pH.

The results of this work demonstrate a two-step methodology to evaluate differences in the
conformational stability between several mAb glycoforms. First, “standard” EPD data
analysis was used to screen mAb conformational stability using a variety of methods that
probe different aspects of structure over a wide range of an environmental stresses (e.g.,
temperature and pH). Second, based on these initial results, an additional evaluation was
conducted using the most sensitive experimental methods, with a focus on a narrower range
of environmental conditions (near values associated with structural changes in the protein),
using a combination of EPDs and radar charts for data visualization. For example, when
comparing the untreated to the fully deglycosylated IgG1, a noticeable destabilization effect
was first evaluated over a wide range of pH and temperature conditions by a variety of
biophysical techniques (Figures 1 and 2). This initial evaluation showed the destabilization
effects under mildly acidic conditions with some variability between the different analytical
techniques in terms of their ability to detect structural changes as a result of deglycosylation.
Based on these results, data were collected under “zoomed-in” conditions focusing on an
optimal pH range (4.0-6.0 in 0.5 increments), where notable structural changes are detected,
combined with 1.25 °C temperature steps to improve resolution (over the initially used 2.5
°C increments). We also implemented the most sensitive analytical methods including ANS
fluorescence spectroscopy, DSC, DSF and light scattering (LS). In addition, we added a
partially deglycosylated mAb glycoform to better assess the sensitivity of this methodology.
The “zoomed-in” EPDs and radar charts from these three 1gG1 glycoforms (Figure 7)
clearly reflect differences in the major structural variations between the three samples. Radar
charts have the advantage of reflecting the individual technique(s) which reflect the
structural change at an identifiable site in the diagram. For the three mAb glycoforms
studied, radar charts clearly point to an ANS-DSF influence in detected structural changes
associated with region I1, with LS becoming a major tool for monitoring aggregation
(Region 111) at higher temperatures.

Although this work demonstrates the ability to compare conformational stability trends
across mAb samples of known glycosylation content, the generation of EPDs and Radar
charts for more formal evaluations such as regulatory comparability studies currently has
practical limitations. For example, although visualization and rank ordering of structural
transitions between samples is clearly useful for semi-qualitative comparisons of
conformational stability, it still requires expert analysis by individual scientists of the
individual biophysical data sets to confirm (and if necessary adjust) readouts from the initial
clustering analysis. This is due to a combination of potential effects including noise in raw
data, propagation of error when combining data sets across different instruments and
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experiments, and limitations of clustering analysis. > Ongoing work in our laboratory is
evaluating and addressing these topics including more advanced mathematical treatments to
potentially allow for statistical comparisons and independence from a separate expert
review. For example, comparative signature diagrams are an alternative approach recently
described 33 to statistically compare differences in spectral readouts from different
instruments when evaluating two protein samples across different temperatures and pH
values.

In summary, this work combines data sets from multiple biophysical techniques that monitor
different aspects of a protein's higher-order structural stability as function of environmental
stress (e.g., secondary structure by CD, tertiary structure by fluorescence spectroscopy,
quaternary structure and aggregation by light scattering). Data visualization by EPDs and
Radar charts allows for convenient and rapid analysis of these large biophysical stability
data sets. We also incorporated conformational stability data from DSC and DSF in EPD
and Radar charts construction, for the first time, due to the sensitivity of these two methods
in detecting more subtle structural stability differences between the different mAb
glycoforms across different solution conditions. By assessing conformational stability as a
function of environmental stress (pH, temperature), subtle differences in structural integrity
may potentially be detected when these differences are not readily apparent when monitored
using lower resolution methods under non-stressed conditions (analysis at low temperature
at neutral pH). Thus, evaluation of conformational stability differences may not only be an
effective surrogate to monitor subtle differences in higher order structure between protein
samples as part of formulation development, but also a useful complement to traditional
accelerated stability data often used in analytical comparability studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Biophysical characterization of the untreated (control) IgG1 mAb as a function of
temperature and pH. (A) CD spectra at 10 °C, (B) CD intensity change at 217 nm with
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temperature, (C) ANS spectra at 10 °C, (D) ANS melting curve at 486 nm, (E) Fluorescence
intensity vs. temperature, (F) Fluorescence peak position changes with temperatures, (G)
Static light scattering intensity change with temperature, and (H) empirical phase diagram

analysis of data.

Data shown for n=3 measurements.
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Figure 2.

Biophysical characterization of PNGase treated, fully deglycosylated 1IgG1 mAb as a
function of temperature and pH. (A) CD spectra at 10 °C, (B) CD intensity change at 217
nm with temperature, (C) ANS spectra at 10 °C, (D) ANS melting curve at 486 nm, (E)
Fluorescence intensity vs. temperature, (F) Fluorescence peak position changes with
temperatures, (G) Static light scattering intensity change with temperature, and (H)
empirical phase diagram analysis of data. Data shown for n=3 measurements.
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Figure 3.

Empirical Phase Diagram (EPD) and Radar Chart analysis of the conformational stability of
1gG1 mAb samples. (A) EPD of untreated (control) 1gG1, (C) radar chart of untreated
(control) 1gG1, (B) EPD of fully deglycosylated 1gG1, and (D) radar chart of fully
deglycosylated 1gG1. The temperature ramp was in 1.25°C increments.
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Figure 4.

Normalized ANS fluorescence intensity change as a function of temperature in the presence
of untreated (control) 1gG1 (black line), partially deglycosylated IgG1 (green line), and fully
deglycosylated 1gG1 (red line) from pH 4 to 6. Normalized results were generated by fitting
the data to be equal to 1 at the maxima and to O at the minima for incorporation into the
EPDs and radar charts. Curves shown here are averages of three runs.
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Figureb.

Differential scanning calorimetry (DSC) analysis of untreated (control) IgG1 (black line),
partially deglycosylated 1gG1 (green line), and fully deglycosylated IgG1 (red line) from pH
4 to 6. Normalized heat capacity changes were generated by fitting the data to be equal to 1
at the maxima and to 0 at the minima for incorporation into the EPDs and radar charts.
Curves shown here are averages of three runs.

J Pharm Sci. Author manuscript; available in PMC 2014 November 01.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Alsenaidy et al.

Page 20

1.2

1.0+

0.4

0.2

0.0 -

Normalized Flu intensity (A.U)

0.2+ T

pH 4

Temperature (°C)

121 PH 4.5 121
P~ 1 = 1.0
) 1.0 3
< ~
> 03] > 084
@ ]
8 06 § os-
£ £
3 -
2 04 E 0.4
T
N o02- E 0.2
© ©
©
g 0.0 g 0.0
z z
0.2+ . ; . " . , : 0.2-+— T T T T T T
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80
Temperature (°C) Temperature (°C)
129 pH 5.5 124 pH 6
4
5 104 5 101
< <
% 0.8 :; 0.8
@
§ 0.6 -| S 0.6
£ E
S £
i 0.4 E 0.4
-]
°
N 02 8 0.2
© =
§ 0.0+ § 0.0
z z
0.2+ T T T T T T T 0.2+ . . , i i ;
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80
Temperature (°C) Temperature (°C)
—u— Native —e— PNGaseF — 4 EndoF
Figure®6.

Differential scanning fluorimetry (DSF) analysis of untreated (control) IgG1 (black line), the
partially deglycosylated 1gG (green line), and the fully deglycosylated 1gG1 (red line) from

pH 4 to 6. Normalized results were generated by fitting the data to be equal to 1 at the

maxima and to O at the minima for incorporation into the EPDs and radar charts. Curves

shown here are averages of three runs.
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Figure7.

Empirical Phase Diagram (EPD) and Radar Chart analysis of the conformational stability of
1gG1 mAb samples. Panel A shows the EPD (left) and the radar chart (right) for the
untreated (control) 1gG1. Panel B shows the EPD (left) and the radar chart (right) for the

partially deglycosylated mAb due to Endo F2 treatment. Panel C shows the EPD (left) and
the radar chart (right) for the fully deglycosylated mAb due to PNGase F treatment.
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Table 1

Mass spectrometry results of the heavy chain region of reduced samples of the IgG1 mAb. First column shows
the average masses of the PNGase F and Endo F2 treated IgG1 mAb obtained from MS analysis along with
the masses measured for the two most abundant glycoforms (GOF and G1F) of the untreated mAb. The
second, third and fourth columns show observed change in mass, predicted change in mass, and modification
expected due to enzymatic treatment of the IgG1 mADb, respectively.

1gG1 Glycoform  Heavy Chain (Da) A4 massobserved (Da) Amasspredicted (Da) Modification of Asn 297

PNGase F treated 491683 * - - Deglycosylation, N — D
Endo F2 treated 49516.8 +348.5 +348.3 +GIcNAc-Fucose
Untreated: -

GOF glycosylated 50612.5 +1445 +1444.6 +GOF

G1F glycosylated 50774.7 +1607 +1606.5 +GIF

Abbreviations: N: Asparagine, D: Aspartic acid, GIcNAc: N-acetylglucosamine, F: Fucose, G: Galactose, GOF: GIcNAc2Man3GIcNAc2Fuc, G1F:
GalGIctNAc2Man3GIcNAcFuc.

*
The theoretical mass of the aglycosylated mAb heavy chain is 49167.3 Da.

Hk
GOF, G1F are two main peaks used to follow deglycosylation (Supplemental figure 4)
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