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ABSTRACT Genetic variation is usually estimated empirically from statistics based on population gene frequencies, but alternative
statistics based on allelic diversity (number of allelic types) can provide complementary information. There is a lack of knowledge,
however, on the evolutionary implications attached to allelic-diversity measures, particularly in structured populations. In this article we
simulated multiple scenarios of single and structured populations in which a quantitative trait subject to stabilizing selection is adapted
to different fitness optima. By forcing a global change in the optima we evaluated which diversity variables are more strongly correlated
with both short- and long-term adaptation to the new optima. We found that quantitative genetic variance components for the trait
and gene-frequency-diversity measures are generally more strongly correlated with short-term response to selection, whereas allelic-
diversity measures are more correlated with long-term and total response to selection. Thus, allelic-diversity variables are better
predictors of long-term adaptation than gene-frequency variables. This observation is also extended to unlinked neutral markers as
a result of the information they convey on the demographic population history. Diffusion approximations for the allelic-diversity
measures in a finite island model under the infinite-allele neutral mutation model are also provided.

THE analysis of the genetic structure of subdivided popula-
tions is a key issue in most evolutionary and conservation

genetics studies. Genetic variation in subdivided populations is
usually estimated as gene diversity (or expected heterozy-
gosity) from gene-frequency data. In addition, genetic dif-
ferentiation among subpopulations is universally estimated
by Wright´s (1943, 1969) fixation index (FST), by its multi-
allelic version (GST, Nei 1973), or by a number of statistics
closely related to FST, all of them based on differences in gene
frequencies among subpopulations. Moreover, FST or GST, es-
timated from neutral molecular markers, also provides a ref-
erence point for evaluating the strength of divergent selection
on quantitative traits (Leinonen et al. 2008; Whitlock 2008).

Allelic-diversity measures, i.e., measures based on the number
of different allelic types segregating in the population, are also
widely used, particularly in conservation genetics studies.
For example, it is recognized that the number of alleles

segregating in a population gives basic information regarding
past fluctuations in population size (Nei et al. 1975; Luikart
et al. 1998). Moreover, the number of rare alleles can be used
as an indicator of the amount of gene flow between sub-
populations (Slatkin 1985; Barton and Slatkin 1986). In addi-
tion, since the number of alleles can be used as an objective
conservation criterion, the applications of allelic diversity to
conservation issues have been widely investigated (Schoen
and Brown 1993; Simianer 2005; Caballero and Rodriguez-
Ramilo 2010; Caballero et al. 2010). In this respect, different
coefficients of allelic subpopulation differentiation have been
proposed for the partition of allelic diversity within and
between subpopulations in structured populations (ElMousadik
and Petit 1996; Petit et al. 1998; Comps et al. 2001; Foulley
and Ollivier 2006; Caballero and Rodriguez-Ramilo 2010).
Another differentiation statistic (D) related to allelic diversity
was proposed by Jost (2008) for the purpose of estimating
differentiation among subpopulations using a partition of
genetic diversity in (orthogonal) independent components
within and between groups. A substantial debate has been
generated recently on whether D should be considered an
alternative or a complement for GST (Heller and Siegismund
2009; Jost 2009; Ryman and Leimar 2009; Gerlach et al. 2010;
Leng and Zhang 2011; Meirmans and Hedrick 2011; Whitlock
2011; Wang 2012).
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The partition of diversity in gene-frequency-diversity or
allelic-diversity components leads to rather different conser-
vation strategies (e.g., Caballero et al. 2010), suggesting a com-
plementarity between both types of diversity measures. There
is, however, a lack of knowledge about the evolutionary impli-
cations of allelic diversity. An aspect on which allelic diversity
might have important implications is the response to selection
for adaptation toward a changing environment. Whereas
short-term response to selection depends on additive genetic
variance and, thus, on the expected heterozygosity (Falconer
and Mackay 1996), long-term response and selection limits
might be more related to the number of alleles initially avail-
able for selection. Biallelic locus selection models have shown
that the contribution of rare alleles to the selection limit is
strongly influenced by the initial population size, so that
population bottlenecks restrict the overall response to selec-
tion (Robertson 1960; James 1970; Hill and Rasbash 1986).
This suggests that the response to long-term selection will
increase with the overall number of alleles segregating in
the loci controlling the selected trait and could be expected
to be larger when more alleles are initially segregating per
locus in a set of multiallelic marker loci. Accordingly, in a struc-
tured population it may be hypothesized that the long-term
rate of adaptation is more dependent on allelic differentiation
among subpopulations than on gene-frequency differentia-
tion. Thus, the possibility of a given subpopulation to adapt
under a changing environment may depend on the possibility
of receiving rare advantageous alleles by migration from other
subpopulations (Blanquart and Gandon 2011).

There is also a lack of theoretical predictions for allelic-
diversity measures. Ewens (1964, 1972) and Kimura and Crow
(1964) provided a simple way to predict the expected number
of alleles found in a sample taken from a single undivided
population. In the context of structured populations, Tillier
and Golding (1988) obtained approximations for the expected
number of alleles in samples taken from a single subpopulation
that exchanges migrants with other subpopulations. However,
these approximations are restricted to very small sample sizes,
because the multiple combinations of different allelic types
must be taken into account in the calculations. Rannala
(1996) derived the distribution of allele frequencies in a sample
taken from an island population of fluctuating size, giving
a general framework for the analysis of allelic-type frequen-
cies. However, no direct predictive formula for the expected
number of alleles per subpopulation was provided in his study.

In this article, we focus our interest on investigating the
relationship between adaptive potential and gene-frequency
or allelic-diversity measures. We carried out computer simu-
lations of single undivided or structured populations that have
reached a mutation–selection–drift equilibrium for a quantita-
tive trait subject to stabilizing selection toward given optima.
By changing the selection optima and allowing the population
to readapt we investigated the relationship between different
gene-frequency and allelic-diversity measures and short- and
long-term response to selection. In addition, we developed pre-
dictive equations for the within- and between-subpopulation

components of allelic diversity by using a diffusion approxima-
tion approach in a finite island model with infinite-alleles neu-
tral mutation.

Methods

We first describe the partition of genetic diversity in a structured
population through gene-frequency measures or through allelic
number measures.

Measures of variation based on gene frequencies

Let us consider a structured population with n subpopulations,
where the frequency of allele k for a given locus in subpopula-
tion i is pi;k, and KT is the total number of alleles in the whole
population. The expected heterozygosity within subpopulations
(HS) and the total expected heterozygosity (HT) are

HS ¼ 12
1
n

Xn
i¼1

 XKT

k¼1

p2i;k

!
; (1)

HT ¼ 12
XKT

k¼1

 Xn
i¼1

pi;k
n

!2

(2)

(Nei 1973). The between-subpopulation component of ge-
netic diversity (HT 2 HS) is also the average Nei´s minimum
distance between subpopulations

DG ¼ 1
n2

2
4 Xn

i; j¼1

dij

3
5; (3)

where dij ¼ 1
2

PKT
k¼1ðpik2pjkÞ2 is the distance between subpo-

pulations i and j, and the statistic GST (Nei 1973) is

GST ¼ ðHT 2HSÞ=HT ¼ DG=HT: (4)

Measures of variation based on allelic numbers

A measure of diversity and differentiation referring to the
number of segregating alleles in the population can be made
in a way analogous to that for gene-frequency diversity as
above (Caballero and Rodriguez-Ramilo 2010). In that ap-
proach, ai is the number of alleles present in a random sam-
ple of g genes obtained from subpopulation i (ElMousadik
and Petit 1996). Its expected value is ai ¼

PKT
k¼1ð12 PikÞ,

where Pik is the probability that allele k is not present in
the sample taken from subpopulation i (rarefaction method-
ology; Sanders 1968; Hurlbert 1971; Kalinowski 2004).
When whole subpopulations, instead of samples, are consid-
ered, Pik = 0 when the allele is segregating in the subpop-
ulation and 1 otherwise. Then, the within-subpopulation
component of allelic diversity is the average allelic number
across subpopulations minus one,

AS ¼
 
1
n

Xn
i¼1

ai

!
21: (5)
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The average allelic distance between subpopulations i and j
(the average number of alleles present in a given subpopu-
lation that are absent in the other) can be obtained as

dA;ij ¼ 1
2

XKT

k¼1

�ð12 PikÞPjk þ Pik
�
12 Pjk

��

(Weitzman 1998; Foulley and Ollivier 2006), and the average
distance between all subpopulations is

DA ¼ 1
n2

2
4Xn

i; j¼1

dA;ij

3
5: (6)

Hence, a global term (AT) is defined as the sum of both
components,

AT ¼ AS þ DA ¼
2
41
n

Xn
i¼1

0
@ai þ 1

n

Xn
j¼1

dA;ij

1
A
3
521; (7)

which indicates the average pairwise diversity of subpopu-
lations, i.e., the number of different alleles available in each
pairwise grouping of subpopulations, minus 1. Note that AT
is not the total number of alleles segregating in the popula-
tion (KT), but generally a number substantially lower. From
the above expressions, a definition of the coefficient of allelic
differentiation is

AST ¼ ðAT2ASÞ=AT ¼ DA=AT: (8)

An alternative statistic proposed by Jost (2008) to measure
genetic differentiation among subpopulations based on gene
frequencies, but highly related to allelic diversity, is

D ¼ ½DG=ð12HSÞ�½n=ðn2 1Þ�: (9)

Neglecting, for simplicity, the term n/(n – 1) that corrects for
the finite number of subpopulations, and noting that KeS ¼
1=ð12HSÞ and KeT ¼ 1=ð12HTÞ are the effective numbers
of alleles (Kimura and Crow 1964; Crow and Kimura 1970;
Jost 2008) of the subpopulations and the total population
respectively, D can be expressed as D � ðKeT 2KeSÞ=KeT:

Thus, D is a measure of diversity in terms of effective numbers
of alleles.

Studying indicators of adaptive potential in
unstructured and subdivided populations

We performed computer simulations with the objective of
investigating the extent to which different genetic measures
account for the rate of adaptation, both in unstructured and
subdivided populations. Simulations were carried out with an
in-house C program available on request from the first author.
In brief (the detailed procedure is explained below), we
considered a quantitative trait under stabilizing selection with
a given optimum, in the case of an unstructured population,
or with different local optima for each subpopulation, in the
case of a structured population. To begin with, we ran different

simulations of populations for a wide range of demographic
and genetic parameters until an equilibrium was achieved.
Each equilibrium provided a different set of initial genetic-
diversity measures corresponding to different scenarios. Then,
we simulated a shift in the trait’s optima, as could occur due
to some change in the environmental conditions, and we
tracked the adaptive process (response to selection) as the
population mean approached the new optima. We then in-
vestigated the relationship between the response to selection
that occurred in each simulation and the amount of initial
diversity provided by the different genetic-diversity variables.

For the unstructured population scenario, we simulated
a population with a constant number N of diploid individu-
als. A quantitative trait under stabilizing selection was as-
sumed to be controlled by 10 unlinked QTL. In addition, 100
multiallelic neutral unlinked loci (markers) were also con-
sidered. New alleles for markers and QTL appeared with
Poisson probability at a rate u per generation according to
an infinite-alleles model. Each new QTL allele had an addi-
tive heterozygous effect on the quantitative trait obtained
from an exponential distribution with mean 0.25 environ-
mental standard deviations and a positive or negative sign
was assigned with equal probability. The genotypic value of
each individual was the sum of the values of their allelic
effects and the phenotypic value was obtained by adding
to the genotypic value an environmental deviation obtained
from a normal distribution with mean zero and variance 1.0.
Parents were chosen according to a probability proportional
to their fitness, obtained from the function wi = exp[–(Zi –
Opt)2/2v2] (Turelli 1984), where wi is the fitness of indi-
vidual i, Zi is its phenotypic value, Opt is the optimum value
for the quantitative trait (Opt = 0), and v2 is an inverse
measure of the intensity of stabilizing selection. Then, they
were mated at random. We assumed v2 = 25, which repre-
sents moderately intense stabilizing selection (Garcia-Dorado
and Gonzalez 1996; Mackay 2010).

For the subdivided population scenario, we considered
the evolution of the same quantitative trait and genetic markers
(simulated according to the procedures described above) for an
island model with randommigration among subpopulations. In
this case, different local optima were considered for the
different subpopulations with fixed values (Opt =+5, +4, +3,
+2, +1, –1, –2, –3, –4, –5 for the n = 10 subpopulations).

The population (either unstructured or subdivided) was
run for 10,000 generations to enable adaptation of the (sub)
populations to their optima. After this preadaptation period,
a large change in the optima (an increase of +4 environmental
standard deviations in the single unstructured population
scenario and +10 in the structured population one) was
carried out in all subpopulations emulating a global environ-
mental change, but the remainder parameters (subpopulation
sizes, mutation and migration rates, intensity of selection,
etc.) were assumed to remain invariable. The adaptation of
the whole population to the new optima was then evaluated
by looking at the mean phenotypic response for the trait after
100 generations.
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With the objective of establishing the relationship be-
tween the different measures of initial genetic variation and
the evolutionary change, simulations in which several param-
eters were randomly chosen for each run were carried out.
Thus, the size (N) of each unstructured population, or of all
the subpopulations of each subdivided one, were obtained
from a uniform distribution between 100 and 1000. In addi-
tion, the mutation rate (u) varied uniformly between 0.00001
and 0.0004 for the unstructured population, while, for the
subdivided population, the mutation rate was maintained
fixed (u = 0.00001) and the migration rate m = 10–x varied
randomly between 0.0001 and 0.1, which was achieved by
sampling x from a uniform distribution between 1 and 4.
Thus, for a given run, a random combination of N and u
(unstructured population scenario) or N and m (structured
population scenario) was applied, allowing for a wide range
of population genetic parameter values across simulations.
Ten sets of 2000 runs were carried out for the single undi-
vided population and five sets of 2000 runs for the structured
population scenario. Simulations for the structured population
scenario were also run with fixed values of the demographic
parameters (N and m).

For each unstructured population, the diversity measures
evaluated were the additive genetic variance (VA) for the
quantitative trait, the average heterozygosity (H* for the
QTL; H for the neutral markers), and the average number
of segregating alleles (K* for the QTL; K for the neutral
markers). In the subdivided population, the statistics analyzed
for the quantitative trait were the within (VW), between-
subpopulation (VB), and total (VT) genetic components of the
variance and the QST index (QST = VB/[2VW + VB]; Spitze
1993). Furthermore, we computed diversity estimates based
on gene frequencies [HS, DG, HT, GST; see expressions (1)–
(4)] and estimates of allelic diversity [AS, DA, AT, KT, AST, D;
expressions (5)–(9)], for QTL (denoted by an asterisk) or for
neutral markers (without asterisk).

Ordinary Pearson correlation coefficients were obtained
between the different diversity variables, measured before
the change in the optimum, and the short-term response to
selection (arbitrarily defined until generation 10; R10), long-
term response to selection between generations 10 and 100
(R10–100 or R10–50, and R50–100), and total response during the
whole 100 generations period (RT). Multiple linear regression
analyses were also carried out using the response to selection
as dependent variable and the different genetic-diversity
variables as independent ones. All analyses were made with
the SPSS package (v. 20).

Evaluation of neutral diffusion predictions for
allelic-diversity statistics

To evaluate the precision of the diffusion approximations of
allelic variables under a neutral island model, computer
simulations were carried out with the C program referred to
above assuming a population subdivided into n = 10 sub-
populations, each with constant census size N = 1000,
where migration among subpopulations occurred under a finite

island model, the number of immigrants being Poisson dis-
tributed with rate m, i.e., with mean Nm for the number of
immigrants per generation and subpopulation. The population
was run for 200,000 generations assuming random mating
(including random self-fertilization). In each generation, mu-
tation to new allelic variants (infinite-alleles model) for 100
unlinked multiallelic neutral loci occurred with Poisson prob-
ability and rate u. The allele types for each marker locus in
the last 20,000 generations were used to calculate the pop-
ulation allelic variables (AS, DA, and AT) from Equation 5–7,
which were averaged over loci to obtain estimates of AST

(Equation 8). The total number of alleles of the population
(KT) was also recorded. Simulated values were compared to
the corresponding diffusion approximations.

Results

The extent to which the different initial genetic-diversity
measures are correlated with the rate of adaptation was
investigated by carrying out multiple simulation runs with
a range of initial demographic and genetic parameter values
corresponding to different effective population sizes and muta-
tion or migration rates, thus implying a substantial variation in
responses to selection across runs (see Supporting Information,
Figure S1 for an example of selection responses in a partic-
ular case). We first present the results for single undivided
populations and then for structured populations.

Correlation between diversity measures and response
to selection in single undivided populations

To ascertain to what extent each variability measure (quan-
titative genetic variance, gene-frequency, or allelic-diversity
variables) accounts for the response to selection, we carried
out a correlation analysis of each variable with response to
selection. The variables in this scenario are the initial additive
genetic variance (VA), the average initial heterozygosity for
the QTL (H*), the average initial number of segregating alleles
for the QTL (K*), and the corresponding variables for the
markers (H, K). The values of the squared correlation co-
efficient (R2) with selection response are presented in Figure
1. Figure 1, top, shows that VA is the best predictor of short-
term response (R10), whereas the number of alleles (K*) is
the best predictor of long-term (R50–100) and total (RT)
responses. Diversity for genetic markers (Figure 1, bottom)
predicts long-term and total response better than short-term
response, correlations being marginally but consistently
larger when based on allelic number. However, for all peri-
ods, these correlations were much smaller than those for the
quantitative trait (QT) or QTL (note the different scale be-
tween the top and bottom of Figure 1).

Correlation between diversity measures and response
to selection in subdivided populations

Constant demographic parameters: We ran a set of simu-
lations for each of several specific combinations of demographic
parameter values (fixed N and m). For each combination of
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parameters, ordinary correlations were computed between
all diversity measures and the short-term (R10), long-term
(R10–100), and total response (RT). Table 1 gives the largest
ordinary correlations (irrespective of sign) for each combina-
tion of parameter values. Regarding neutral genetic marker
variables, correlations between diversity variables for genetic
markers and response to selection were always very small and
nonsignificant, so they are not included in the table. This sug-
gests that when demographic parameters, such as N andm, are
invariable, genetic markers do not convey any information on
response to selection for a quantitative trait.

For QT and QTL variables (Table 1), the largest correla-
tions with short-term response (R10) were for different gene-
frequency measures or the genetic variance for the trait. This
holds for the long-term (R10–100) or total (RT) response in
the cases with Nm , 0.5. However, for the cases with Nm .
0.5, the largest correlations mostly involved allelic measures
(underlined), suggesting that these convey more information
on long-term response than gene-frequency measures in this
scenario.

Variable demographic parameters: We carried out simu-
lations where the values of N andm were randomly changed
across runs. The above results with fixed Nm values (Table 1)
suggest different outcomes for highly isolated subpopulations
(Nm , 0.5, i.e., FST . �0.3) or less isolated subpopulations
(Nm . 0.5, i.e., FST , �0.3). In fact, an inspection to the
response to selection achieved for different values of the
number of migrants (Nm) per generation and subpopulations
(see Figure S2) shows that the two scenarios should be ana-
lyzed separately. In the very highly isolated subpopulation
scenario (Nm , �0.5), an increase in migration implies
higher short- and long-term response. In the less isolated

subpopulations scenario (Nm . �0.5), however, an increase
in migration implies higher short-term response but lower
long-term response. Thus, in what follows, analyses are made
separately for these two levels of migration.

To see which type of variables predicts better the response
to selection, we carried out four sets of regression analyses,
each including the four main diversity measures. Thus, we
performed separate analyses for the quantitative genetic
parameters (VW, VB, VT, and QST), the gene-frequency vari-
ables for QTL (HS*, DG*, HT*, and GST*), the allelic number
variables for QTL (AS*, DA*, AT*, and AST*), and the corre-
sponding sets for marker variables (HS, DG, HT, and GST for
gene-frequency variables or AS, DA, AT, and AST for allelic
variables). Figure 2 shows the values of R2 for each of these
regressions. All five sets of variables explain a relatively large
proportion of the variability for selection response (i.e., show
large R2 values), except for the total response for the scenario
with Nm . 0.5.

In contrast with the results obtained for the undivided
population scenario or the subdivided population scenario
with Nm fixed, measures based on neutral marker loci do
not account for less response than those based on QTL. Thus,
when demographic parameters are variable, diversity meas-
ures based on neutral markers are substantially correlated
with response to selection for a quantitative trait. The results
also clearly show that allelic-diversity variables (Figure 2,
red bars) contain more information about long-term or total
response than gene-frequency (blue) or quantitative trait (black)
variables.

The squared correlations presented in Figure 2 involve
five diversity measures. To see more specifically which di-
versity variables are more correlated with response, Figure 3
gives the correlation for each of these diversity measures with

Figure 1 Squared correlation coefficients (R2) between
initial population genetic-diversity variables and response
to selection (R10, response to selection until generation 10;
R10–50, response from generations 10–50; R50–100, re-
sponse from generations 50–100; RT, total response until
generation 100) for a single undivided population. Popu-
lation size and mutation rate (u) was varied randomly
among simulations (N between 100 and 1000, and u be-
tween 0.00001 and 0.0004). VA: initial additive genetic
variance. H: initial average expected heterozygosity. K: ini-
tial average number of segregating alleles per locus. Terms
with an asterisk refer to QTL whereas terms without one
refer to neutral markers. The results are based on 10 sets
of 2000 simulation runs. Error bars indicate two standard
errors of the mean at each side.
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short-term and total response. Correlation coefficients for all
variables are presented in Table S1. For the strongly subdi-
vided scenario (Nm , 0.5; Figure 3A), the correlations with
the largest magnitude correspond to measures of internal
diversity (Figure 3A, top, with r . 0) and of genetic differ-
entiation between subpopulations (Figure 3A, bottom, with
r , 0). This holds for all five sets of variables and for both
short-term and total response. The measure showing the
largest correlation with short-term response is the within-
subpopulation additive variance (VW), a correlation that can
be ascribed to causality, since short-term response depends
directly on this parameter. For total response, however, the
best predictors are the allelic measures of genetic differen-
tiation (AST and AST*).

For the mild subdivision scenario (Nm . 0.5; Figure 3B),
short-term responses are positively correlated with all meas-
ures of within subpopulations variability (Figure 3B, top), the
largest correlation corresponding to the within-subpopulation
additive variance (VW), and negatively correlated with all
measures of genetic differentiation (Figure 3B, bottom) or of
between-subpopulation genetic distances (VB, DG*, DA*, DG,
DA). However, regarding total response, the best predictors are
the allelic-diversity variables, both for QT-QTL and markers.

Neutral diffusion predictions of allelic-diversity statistics

In what follows we use diffusion approximations to derive
predictions for allelic-diversity measures under an infinite-
island neutral model. Let us assume a neutral locus under
infinite-allele mutation with rate u per generation, in a pop-
ulation subdivided in n ideal subpopulations of size N, fol-
lowing an island model of migration among subpopulations
with rate m. Therefore, the expected gene-frequency differ-
entiation is GST � 1/[1 + M] with M = 4Nm[n/(n – 1)]2 +
4Nu[n/(n – 1)] (Takahata 1983), and the expected effective
size of the population (Wright 1943) is

Ne¼ Nn=ð12GSTÞ: (10)

The expected number of alleles whose frequency lies within
the range p to p + dp in the equilibrium population is f(p)
dp, where

fðpÞ ¼ uð12pÞðu21Þ

p
(11)

(Ewens 1964; Kimura and Crow 1964; Crow and Kimura
1970), where u = 4Neu. Although Equation 11 strictly
applies to a random mating population, we show that it
provides good approximations regarding several proper-
ties of a subdivided population under a wide range of
conditions.

Under the infinite-island model, the distribution of allele
frequencies within subpopulations (ps) is given by the beta
distribution with parameters a = Mp and b = M(12 p), i.e.,

uðps; pÞ ¼ G½M�
G½Mp�G½Mð12 pÞ� ps

Mp21ð12psÞMð12pÞ21 (12)

(Wright 1937, 1940), where G denotes the gamma function,
and p is the whole population allele frequency. Thus, the
total number of alleles segregating in the population is

KT ¼
Z 1

p¼1=ð2NnÞ
fðpÞ  dp (13)

(Ewens 1964, 1972; Crow and Kimura 1970). This latter
expectation can also be approximated with a generally
lower precision by Ewens (1972) formula,

KT �
X2Nn
i¼1

u

uþ i
; (14)

and by KT � ulogð2NnÞ with an even lower precision.
By considering expressions (11) and (12) jointly it is possible

to obtain predictions of diversity measures in a subdivided
population. This approach has been previously followed by
Barton and Slatkin (1986) to obtain the distribution of rare
alleles in a subdivided population. The expected number of
alleles segregating in each subpopulation is

KS ¼
Z 1

p¼1=ð2NnÞ
fðpÞ 

h
12 LðpÞ

i
dp; (15)

where

LðpÞ ¼
Z 1=2N

ps¼0
uðps; pÞdps (16)

is the cumulative distribution function of uðps; pÞ  between
0 and 1/2N, which gives the probability that a given sub-
population lacks an allele that has frequency p in the overall
population. Likewise, the expected number of alleles com-
mon to two subpopulations is

Table 1 The largest (irrespective of sign) ordinary correlation
between diversity measures and response

m N Nm R10 R10–100 RT

0.0001 100 0.01 VW 0.339 VT 0.171 VT 0.186
0.0001 500 0.05 VW 0.302 HT* 20.100 HT* 20.123
0.0001 1000 0.1 VW 0.272 VT 0.111 VW 0.139
0.001 100 0.1 VW 0.347 VB 0.313 VT 0.453
0.001 500 0.5 DG* 20.426 DA* 0.125 AST* 0.146
0.001 1000 1 VB 0.300 DA* 0.106 AST* 0.139
0.01 100 1 VT 0.714 KT* 0.276 VT 0.358
0.01 500 5 DG* 20.444 KT* 0.139 KT* 0.126
0.01 1000 10 DG* 20.393 AST* 0.099 D* –0.149
0.1 100 10 VW 0.378 AT* 0.307 AS* 0.394
0.1 500 50 HT* 0.645 DG* 20.144 AS* 0.262
0.1 1000 100 HT* 0.709 D* –0.260 AT* 0.186

The scenario refers to a subdivided population with n = 10 subpopulations of size N,
and migration rate m per generation, mutation rate u = 0.00001 and strength of
stabilizing selection given by v2 = 25. Results are based on 2,000 simulations per
combination of N and m values. The variables included in the model refer to the
quantitative trait and QTL: VW, VB, VT, QST, HS*, DG*, HT*, GST*, AS*, DA*, AT*,
AST*, D*, and KT* (see text for definitions). In all cases, these correlations were
significantly different from zero with P , 1025. Allelic-diversity parameters are
shown underlined. R10, response to selection until generation 10; R10–100, response
from generations 10 to 100; RT, total response until generation 100.
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KcS ¼
Z 1

p¼1=ð2NnÞ
fðpÞ 

h
12LðpÞ

i2
dp: (17)

The expected allelic diversity within subpopulations (AS)
and the expected average allelic difference between subpo-
pulations (DA) are then

AS ¼ KS 2 1; (18)

DA ¼ KS 2KcS: (19)

Using Equations 7 and 8, this gives AST ¼ ðKS 2KcSÞ=
ð2KS 2KcS 2 1Þ; which can be computed as

AST ¼
R 1
1=ð2NnÞ fðpÞLðpÞ

�
12 LðpÞ

�
dpR 1

1=ð2NnÞ fðpÞ
�
12 L2ðpÞ

�
dp2 1

: (20)

All the above expressions can be modified to account for
sampling of g genes within each subpopulation (gn over the
whole population). Thus, the total number of segregating
alleles in the overall sample of gn copies is

KTðgnÞ ¼
Z 1

p¼1=ð2NnÞ
fðpÞ½12 ð12pÞgn�  dp: (21)

This can also be approximated by Equation 14, replacing
2Nn by gn.

Accordingly, the expected values of KS and KcS would be
obtained as above (Equations 15 and 17, respectively) replacing
expression (16) with

LpðgÞ ¼
Z 1=2N

0
uðps; pÞdps þ

Z 1

1=2N
uðps; pÞð12psÞgdps: (22)

Precision of the diffusion approximations

Figure 4 plots predicted and simulated values of the allelic-
diversity measures (AS, DA, KT, and AST) against Nm for
a range of m values. They are computed for samples of g =
100 neutral genes from each subpopulation for two different
mutation rates (a more comprehensive list of results is shown
in Table S2 and Table S3). In general, predictions for AS and
DA are rather accurate, although those for DA slightly under-
estimate the simulation values for the large mutation rate
scenario. Predictions for KT, however, are well above the val-
ues obtained through simulations for low values of Nm. The
predictions of AST are very precise in all cases.

Discussion

The increasing availability of molecular genetic markers for
almost any species enables the estimation of variation through
gene-frequency diversity (expected heterozygosity) and

Figure 2 Squared correlation coefficients (R2) between initial population genetic-diversity variables and response to selection (R10, response to selection
until generation 10; R10–100, response from generations 10 to 100; RT, total response until generation 100) for a structured population. The scenario
refers to a subdivided population with n = 10 subpopulations, Nmmigrants per generation and subpopulation, mutation rate u = 0.00001, and strength
of stabilizing selection given by v2 = 25. The variables included in the model are quantitative trait (QT) variables (VW, VB, VT, QST: black bars), gene-
frequency variables (HS, DG, HT, GST: blue bars), allelic-diversity variables (AS, DA, AT, AST: red bars). The results are based on five sets of 2000 simulation
runs varying the subpopulation size (N) randomly between 100 and 1000 and the migration rate (m) between 0.0001 and 0.1. Error bars indicate two
standard errors of the mean at each side.
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gene-frequency differentiation (Wright’s fixation index and
its derivatives). For multiallelic markers, such as microsatellite
loci or allozymes, the number of alleles segregating per locus
in the population corrected for sample size is usually also
calculated in most genetic-diversity analyses. However,
other measures of allelic diversity, such as allelic differenti-
ation among subpopulations are not normally considered.
These allelic-diversity estimates can be applied, not only to
multiallelic markers but also to biallelic ones, such as SNPs,
if different multilocus haplotypes are regarded as alleles (see
Pérez-Figueroa et al. 2012 for an example of application).

The issue regarding the distinction between diversity
based on “frequencies” and diversity based on “types” has
been a topic of general interest in the field of ecology re-
garding species diversity (Hill 1973; Jost 2007). This dis-
tinction has also been discussed in the conservation (Petit
et al. 1998; Toro et al. 2009; Caballero and Rodriguez-Ramilo
2010; Caballero et al. 2010) and evolutionary genetics (Jost
2008; Meirmans and Hedrick 2011; Whitlock 2011; Wang
2012) fields. In this article, we have focused on the evolution-
ary implications of allelic-diversity measures regarding its abil-
ity to predict long-term adaptation in single and structured
populations. We thus addressed whether the allelic-diversity
statistics add something relevant to other genetic-diversity

measures in the evolutionary context. Our simulations show
that, in fact, allelic-diversity measures are good predictors of
long-term response to selection. We have also provided pre-
dictions for the allelic-diversity measures for a simple neutral
model and start the discussion with this issue.

Theoretical predictions of allelic-diversity measures

Using diffusion approximations under the infinite-allele
mutation model we have developed predictive equations for
the expected number of alleles within subpopulations in an
island model (AS), the differences in allelic types between
subpopulations (DA), the allelic differentiation AST, and the
total number of alleles in the global population (KT). These
are based on the assumption that the expected number of
alleles with specified frequencies in the overall population
can be approximated using the classical equations (Equation
11) derived for unstructured populations. We have shown
that those approximations can be applied rather accurately
for structured populations (Figure 4), with the only exception
of predicting too many different alleles (KT) when subpopu-
lations are very isolated (Nm , 0.5). The reason is that, for
very small Nm, the theoretical prediction of the effective
population size (Equation 10) tends to infinity. In this case,
the distribution of allele frequencies given by Equation 11

Figure 3 Ordinary correlation coefficients (r) between initial population genetic-diversity variables and response to selection (R10, response to selection
until generation 10; RT, total response until generation 100) for a structured population. The scenario refers to a subdivided population with n = 10
subpopulations, Nm , 0.5 (A), or Nm . 0.5 (B) migrants per generation and subpopulation, mutation rate u = 0.00001, and strength of stabilizing
selection given by v2 = 25. Black bars, quantitative trait variables; blue bars, gene-frequency-diversity variables; and red bars, allelic-diversity variables.
Top row: within-subpopulation-diversity measures (VW, HS, AS). Second row: between-subpopulation-diversity variables (VB, DG, DA). Third row: global-
diversity measures (VT, HT, AT). Bottom row: differentiation statistics (QST, GST, AST). The results are based on five sets of 2000 simulation runs varying the
subpopulation size (N) randomly between 100 and 1000 and the migration rate (m) between 0.0001 and 0.1. Error bars indicate two standard errors of
the mean at each side.
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(a formula that assumes panmixia in the population) pre-
dicts too many alleles with too small frequencies (often well
below the smallest possible value 1/2Nn), which does not
match the real distribution for a highly structured population.
However, these extremely rare alleles make only a slight con-
tribution to the prediction of the number of alleles in single
subpopulations (AS), the allelic differences between pairs of
them (DA), or the allelic differentiation index (AST), which
are based on the subpopulation gene-frequency distribution
(Equation 12). These predictive equations for the number of
alleles in subpopulations can be useful, since previous approx-
imations were limited to small sample sizes (Tillier and Golding
1988) or did not focus on obtaining predictive equations for the
expected number of alleles (Rannala 1996).

An alternative to the above infinite-allele model that is
occasionally used to predict the number of segregating alleles
per locus is to assume that each locus contains a virtually
infinite number of mutable sites with overall mutation rate u
and to compute the expected number of segregating alleles
per locus as the expected number of segregating sites (S)
per locus. Several studies have been devoted to obtaining
predictions of S in structured populations (Tajima 1989;

Notohara 1997; Wakeley 1998, 2001). Note that, as u ap-
proaches zero (Nei 1987), Equation 11 for f(p) approaches
the corresponding expression for a model with infinite sites
and two alleles per site, which is given by u/p (1 – p). This
implies that, for low mutation rates, the two models (one
locus with infinite possible alleles or with infinite sites, each
with two alleles) give fairly similar results, but for high
mutation rates the number of segregating sites per locus is
substantially larger than the number of segregating alleles
per locus, because each allele can differ from the rest by
more than one site difference. To check this we used expres-
sions (13), (35), and (38) fromWakeley (1998), derived from
the time to coalescence, to predict the number of segregating
sites per locus in a subpopulation or in the total population in
an island model with n = 10, N = 1000, and m = 0.001.
Assuming that these numbers were estimated in samples of
size g = 100, we obtain (Table S3) that, for u = 0.0002, the
values of AS are 9.44 (simulated), 9.11 (diffusion), and 31.30
(Wakeley) and those for KT are 41.14 (simulated), 44.05 (diffu-
sion), and 54.4 (Wakeley), denoting a clear overestimation when
using the prediction of segregating sites assuming an infinite-site
locus as a proxy for the number of segregating alleles. For the

Figure 4 Comparison between
computer simulations (lines) and
diffusion approximations (sym-
bols) for different allelic-diversity
variables. The scenario considered
refers to a subdivided population
with n = 10 subpopulations, each
of size N = 1000 individuals, mu-
tation rate u = 0.00001 (A–D) and
0.0002 (E–H), variable migration
rate (m), and g = 100 sampled
genes per subpopulation. AS:
average allelic diversity within sub-
populations. DA: average pairwise
allelic distance between subpo-
pulations. KT: average total num-
ber of alleles segregating in the
whole population. AST: allelic
differentiation.

Allelic Diversity and Adaptation 1381

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.158410/-/DC1/genetics.113.158410-5.pdf


case u = 0.00001, however, both approaches give predictions
relatively close to the values obtained by simulation.

Correlation between diversity measures and response
to selection

Our results with a single undivided population clearly show
that, whereas additive variance is the main factor accounting
for the short-term response to selection, as expected from
basic theory (Falconer and Mackay 1996), the late and total
response are less dependent on the initial additive variance
and more strongly correlated with the overall initial number
of alleles available for selection (Figure 1). However, to un-
derstand the causes of this correlation, it is useful to consider
the correlations of response with the diversity measures for
genetic markers, which are of course much smaller than those
observed for the quantitative trait (QT) and QTL. What is
striking in this respect is that the initial number of marker
alleles K (or the corresponding initial heterozygosity H) is
more strongly correlated with long-term than with short-term
response (Figure 1, bottom). This should be ascribed to the
information that K or H convey on the number of new muta-
tions that are expected to occur during the adaptive process.
The reason is that the expected number of new mutations is
proportional to Nu, and K is the best indicator for Nu (r =
0.994), followed byH (r= 0.964). This is illustrated in Figure 5,
which also shows, in support of the previous argument, that
the initial genetic variance VA and the short-term response
scarcely depend on Nu (r= 0.078, r=20.002, respectively).
Similarly, the correlations of VA with K or with H are very
small (r = 20.004 or 0.085, respectively). On the contrary,
long-term and total response are more dependent on Nu (r =
0.2), because they depend on the future mutational input.
Figure 5 also suggests that the larger correlation of late re-
sponse with K, compared to the corresponding correlation
with H, is due to the fact that, in agreement with theoretical
expectations, the relationship between H and Nu is not linear,
unless Nu values are very small, while the relationship of K
with Nu remains linear for a much larger range of Nu values.

It is worthwhile to note that the correlation of the initial
number of QTL alleles (K*) with response also increases in
the long term, although the relative increase is more modest
that in the case of K. Furthermore, the correlation of K* with
Nu (r = 0.356), although smaller than that estimated for
neutral markers, is much larger than the correlation between
VA and Nu (r = 0.078). Therefore, it seems reasonable to
infer that the reason why the number of QTL alleles is more
informative on long-term adaptive potential than the initial
additive variance is mainly that it contains more information
on the expected mutational input of adaptive variability.

For a subdivided population the situation is more complex,
as selection, migration, and drift have a combined impact
on local adaptation. On the one hand, when an adaptive
equilibrium has been attained, dispersal is generally expected
to reduce the level of local adaptation, because the input of
suboptimally adapted migrants increases within-subpopulation
genetic variance (Lenormand 2002). On the other, for a low

migration rate scenario, the process of local adaptation after
an environmental change can be enhanced by migration
(Blanquart et al. 2012). In fact, when selection fluctuates
in time, the level of local adaptation is maximized at inter-
mediate rates of migration (Blanquart and Gandon 2011).
Analogously, our simulation results indicate that, for low
migration rates (Nm , �0.5), increasing migration substan-
tially increases short- and, mainly, long-term response (Fig-
ure S2) but, for less subdivided populations (Nm . �0.5),
increased migration causes an increase of short-term response
but smaller late response, having little effect on total response.
Thus, we analyzed these two different scenarios independently.

When there is no variation in demographic parameters
(fixed N and m), the variability on adaptive potential and
genetic differentiation are due to random events that fluctu-
ate through time (including drift and the number of migra-
tions and mutations that occurred). In this situation (see
Table 1), the initial values of the genetic measures for QT
and QTL are causal indicators of short-term response, but
poor indications of long-term adaptation, while those for neu-
tral markers are poor indicators of any response to selection.
The results indicate, nevertheless, that allelic-diversity varia-
bles correlate more strongly with late and total response for
populations that are not heavily structured (Nm . 0.5, i.e.,
FST smaller than about 0.3), so that allelic-diversity measures
become good predictors of adaptation in these scenarios.

The above conclusions generally hold when N and m vary
across replicates (Figure 2 and Figure 3). In the strongly
subdivided scenario (Nm , 0.5), the best predictors of total
response are the allelic measures of genetic differentiation
(AST and AST*, with negative correlations). The reason is
that, under too strong isolation, subpopulations initially har-
bor small amounts of genetic variance, and migration provides
only small inputs of variability during adaptation, leading to
impaired adaptive potential (Figure S2). In the low-isolation
scenario (Nm . 0.5), R2 becomes much smaller for long-
term or total response than for short-term response since,
for this scenario, the metapopulation largely works in the
long term like a single undivided population regardless of
the m value, so that the information about m contained in
these measures becomes irrelevant to long-term response.
Even so, all allelic-diversity measures provide a larger cor-
relation with total response than the corresponding variables
from gene frequency of QTL or quantitative trait components of
variance (see Figure 3B). This supports the relevance of allelic-
diversity measures as good indicators of global adaptation.

The large explanatory capacity of measures based on
marker loci must be ascribed to the information that they
convey on the population structure, rather than to their
association with the genetic variance responsible for adapta-
tion. Thus, even if no linkage between loci is assumed, as is
the case with our simulations, random variation in migration
or any other demographic events will affect simultaneously
both QTL and neutral markers, so that neutral markers reflect
to some extent the demographic conditions that influence the
QTL. Therefore, information from only neutral markers shows
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an association with adaptive potential that can be similar or
even larger than that from QTL. In fact, under variable N and
m values, the components of genetic variance for the trait and
the diversity measures for the QTL usually contribute less
information than the genetic markers in the long term. This
probably occurs because QTL are strongly constrained by nat-
ural selection, at least with the relatively intense stabilizing
selection used in our simulations, so that they convey scarce
information on the demographic properties of the population.
In addition, the amount of information provided by neutral
markers can in principle be enhanced by increasing the num-
ber of analyzed markers. Therefore, the results support the
use of diversity measures obtained from neutral markers to
infer the adaptive potential regarding quantitative traits, at
least when an important number of markers can be analyzed.

In summary, we have shown that allelic-diversity meas-
ures can be predicted at least for a neutral infinite-alleles
island model and that they may contain information regarding
the evolutionary potential for adaptation to putative future
environmental changes. Our results also imply that the
information on long-term adaptive potential contained in
diversity measures from marker loci, including those based
on allelic types, is due, to a good extent, to the information
that these measures contain on Nu and Nm.
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Figure S1   Example of simulated selection responses (change in the phenotypic mean for the selected quantitative trait) 

occurred after a change in the selection optimum in the population. The scenario refers to a subdivided population with n = 

10 subpopulations, with a subpopulation census size randomly taken between 100 and 1000 and a migration rate among 

subpopulations randomly taken between 0.0001 and 0.1. 
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Figure S2   Initial quantitative trait variance components and responses to selection for the simulations plotted 

against the number of migrants per generation and subpopulation (Nm, in log10). The scenario refers to a subdivided 

population with n = 10 subpopulations, number of migrants per generation and subpopulation (Nm) either < 0.5 or 

> 0.5, mutation rate u = 0.00001 and strength of stabilising selection 2 = 25. Results are based on 2,000 simulations 

varying the subpopulation size (N) randomly between 100 and 1000, and the migration rate (m) between 0.0001 

and 0.1. VW: Within-subpopulation genetic variance; VB: Between-subpopulation genetic variance; VT: Total genetic 

variance; R10: response to selection until generation 10; R10-100: response from generations 10 to 100; RT: total 

response until generation 100. 

 

The figure shows that whereas the short-term response (R10) increases monotonically with Nm, the late response 

(R10-100) increases with Nm for log(Nm)  –0.3 (Nm < 0.5), and decreases thereafter. This indicates that, when 

subpopulations are considerably isolated from one another (Nm < 0.5, corresponding to an expected FST > 1/3), 

VW is very low and VB rather high, and late and total response increase with Nm, due to the slow but continuous 

increase of Vw at the expense of VB. For higher levels of migration (Nm > 0.5; corresponding to FST < 1/3), VW 

increases substantially with migration, implying an increase in the short-term response, but VB and VT decline 

consistently, implying a decline in late response. 
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Table S1   Ordinary correlation coefficients between initial population genetic diversity variables and response to 

selection for a structured population 

 

  Nm  <  0.5  Nm  >  0.5 

  R10 R10-100 RT  R10 R10-100 RT 

 VW 0.786 0.269 0.450  0.839 –0.515 0.084 

QT VB
 –0.011 0.270 0.228  –0.715 0.543 0.052 

 VT 0.050 0.293 0.264  –0.455 0.468 0.178 

 QST –0.774 –0.251 –0.431  –0.833 0.536 –0.055 

QTL HS
* 0.738 0.487 0.623  0.726 –0.387 0.143 

 DG
* –0.678 –0.417 –0.547  –0.930 0.581 –0.082 

 HT
* –0.458 –0.268 –0.357  0.009 0.082 0.105 

 GST
* –0.830 –0.500 –0.659  –0.904 0.544 –0.104 

 AS
* 0.690 0.634 0.734  0.414 0.033 0.382 

 DA
* –0.433 0.079 –0.054  –0.519 0.615 0.299 

 AT
* 0.443 0.598 0.635  0.249 0.175 0.414 

 KT
* –0.385 0.009 –0.100  –0.097 0.428 0.427 

 AST
* –0.805 –0.672 –0.800  –0.749 0.613 0.107 

 D* –0.621 –0.369 –0.490  –0.889 0.561 –0.072 

Markers HS 0.660 0.690 0.774  0.248 0.165 0.401 

 DG –0.779 –0.550 –0.689  –0.882 0.562 –0.065 

 HT –0.483 –0.116 –0.234  –0.225 0.454 0.353 

 GST –0.782 –0.650 –0.774  –0.875 0.473 –0.165 

 AS 0.531 0.694 0.742  0.385 0.090 0.426 

 DA –0.091 0.425 0.337  –0.368 0.561 0.360 

 AT 0.344 0.646 0.648  0.248 0.198 0.441 

 KT –0.137 0.373 0.280  –0.150 0.458 0.419 

 AST –0.748 –0.710 –0.816  –0.895 0.601 –0.029 

 D –0.774 –0.521 –0.662  –0.881 0.568 –0.057 

 

The scenario refers to a subdivided population with n = 10 subpopulations, Nm migrants per generation and 

subpopulation, mutation rate u = 0.00001 and strength of stabilising selection given by 2 = 25. The variables 
included in the model are for quantitative trait (QT) and QTLs: VW, VB, VT, QST, HS

*, DG
*, HT

*, GST
*, AS

*, DA
*, AT

*, AST
*, D* 

and KT
*; and for neutral markers: HS, DG, HT, GST, AS, DA, AT, AST, D and KT (see main text for definitions). R10: response 

to selection until generation 10; R10-100: response from generations 10 to 100; RT: total response until generation 
100. Average values (and its standard deviation) of KT

* across runs was 3.6 (0.9) and that of KT was 3.0 (0.8). The 
results are based on 5 sets of 2000 simulation runs varying the subpopulation size (N) randomly between 100 and 
1000, and the migration rate (m) between 0.0001 and 0.1. 
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Table S2  Comparison between computer simulations and diffusion approximations (E[] in bold face) for different 

gene frequency and allelic diversity variables. 

 

u = 0.00001        

Nm AS E[AS] DA E[DA] AST E[AST] KT E[KT] 

0 0.299 0.301 1.152 1.146 0.794 0.792 12.36 68.198 

0.01 0.512 0.547 1.203 1.174 0.701 0.682 10.50 37.366 

0.05 0.923 1.059 1.028 0.969 0.527 0.478 7.31 16.269 

0.1 1.444 1.277 0.935 0.749 0.393 0.370 6.57 11.208 

0.5 1.652 1.483 0.533 0.385 0.244 0.206 5.45 6.223 

1 1.628 1.574 0.436 0.330 0.211 0.173 4.94 5.515 

5 1.961 1.909 0.365 0.280 0.157 0.128 4.75 4.928 

10 2.218 2.080 0.337 0.269 0.132 0.115 4.76 4.853 

50 2.431 2.464 0.265 0.248 0.098 0.092 4.64 4.792 

100 2.592 2.598 0.283 0.236 0.098 0.083 4.72 4.785 

500 3.009 2.782 0.233 0.180 0.072 0.061 4.87 4.779 

1000 3.110 2.802 0.217 0.136 0.065 0.046 4.91 4.778 

u = 0.0002        

0 5.605 4.887 5.945 4.382 0.515 0.473 66.05 112.854 

0.01 5.784 5.058 6.049 4.435 0.511 0.467 65.16 110.190 

0.05 6.370 5.782 6.402 4.683 0.501 0.448 64.84 101.763 

0.1 7.323 6.552 6.854 4.872 0.483 0.427 63.67 94.500 

0.5 11.942 10.520 7.653 5.352 0.391 0.337 61.33 74.240 

1 15.569 13.205 7.768 5.389 0.333 0.290 61.87 68.030 

5 23.456 20.803 7.196 5.249 0.235 0.202 61.55 61.392 

10 26.924 24.416 6.750 5.222 0.200 0.176 60.98 60.419 

50 33.847 32.129 5.857 4.880 0.147 0.132 60.08 59.614 

100 36.821 34.941 5.323 4.777 0.126 0.120 58.88 59.511 

500 40.904 38.592 4.822 3.610 0.105 0.086 58.87 59.429 

1000 43.009 38.968 4.649 2.707 0.098 0.065 59.92 59.419 

 

The scenario considered refers to a subdivided population with n = 10 subpopulations, each of size N = 1000 

individuals, mutation rate u, variable migration rate (m), and no sampling (all subpopulation individuals are 

analysed). See main text for definitions. 
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Table S3   Comparison between computer simulations and diffusion approximations (E[] in bold face) for different 

allelic diversity variables. 

 

u = 0.00001        

Nm g AS E[AS] DA E[DA] AST E[AST] KT E[KT] 

0 100 0.188 0.207 1.052 1.072 0.848 0.838 11.250 44.151 

 50 0.182 0.170 1.047 1.041 0.852 0.860 11.224 37.873 

 20 0.144 0.129 1.012 1.007 0.876 0.887 10.838 29.597 

 10 0.119 0.103 0.990 0.986 0.893 0.906 10.596 23.505 

1 100 1.293 1.290 0.368 0.337 0.221 0.207 3.950 4.282 

 50 1.192 1.168 0.367 0.345 0.236 0.228 3.806 4.012 

 20 0.980 0.982 0.350 0.346 0.264 0.260 3.460 3.568 

 10 0.792 0.806 0.339 0.347 0.301 0.301 3.196 3.231 

1000 100 1.968 1.839 0.250 0.277 0.113 0.131 3.870 3.751 

 50 1.565 1.569 0.248 0.277 0.137 0.150 3.474 3.487 

 20 1.189 1.202 0.249 0.277 0.173 0.187 3.084 3.124 

 10 0.898 0.923 0.248 0.278 0.217 0.231 2.818 2.848 

u = 0.0002        

0 100 3.439 3.274 3.995 3.431 0.537 0.512 44.390 69.487 

 50 2.900 2.738 3.510 3.060 0.548 0.528 39.004 58.257 

 20 2.174 2.085 2.857 2.609 0.568 0.556 31.742 43.646 

 10 1.629 1.639 2.366 2.295 0.592 0.583 26.290 33.168 

1 100 9.441 9.106 5.608 4.803 0.373 0.345 41.140 44.052 

 50 7.877 7.366 4.894 4.392 0.383 0.374 35.330 38.171 

 20 5.580 5.392 3.955 3.818 0.415 0.415 28.250 29.810 

 10 3.865 3.786 3.173 3.180 0.451 0.457 22.940 23.658 

1000 100 20.181 20.206 4.847 5.236 0.194 0.206 39.390 28.938 

 50 15.401 15.320 4.529 5.044 0.227 0.248 33.694 33.583 

 20 9.451 9.350 3.957 4.358 0.295 0.318 26.608 26.507 

 10 5.802 5.758 3.283 3.600 0.361 0.385 21.428 21.271 

 

The scenario considered refers to a subdivided population with n = 10 subpopulations, each of size N = 1000 

individuals, mutation rate u, variable migration rate (m), and g sampled genes per subpopulation. See main text for 

definitions.


