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ABSTRACT Relationship loci (rQTL) exist when the correlation between multiple traits varies by genotype. rQTL often occur due to
gene-by-gene (G X G) or gene-by-environmental interactions, making them a powerful tool for detecting G X G. Here we present an
empirical analysis of apolipoprotein E (APOE) with respect to lipid traits and incident CHD leading to the discovery of loci that interact
with APOE to affect these traits. We found that the relationship between total cholesterol (TC) and triglycerides (In TG) varies by APOE
isoform genotype in African-American (AA) and European-American (EA) populations. The e2 allele is associated with strong corre-
lation between In TG and TC while the e4 allele leads to little or no correlation. This led to a priori hypotheses that APOE genotypes
affect the relationship of TC and/or In TG with incident CHD. We found that APOE*TC was significant (P = 0.016) for AA but not EA
while APOE*In TG was significant for EA (P = 0.027) but not AA. In both cases, e2e2 and e2e3 had strong relationships between TC
and In TG with CHD while e2e4 and e4e4 results in little or no relationship between TC and In TG with CHD. Using ARIC GWAS data,
scans for loci that significantly interact with APOE produced four loci for African Americans (one CHD, one TC, and two HDL). These
interactions contribute to the rQTL pattern. rQTL are a powerful tool to identify loci that modify the relationship between risk factors

and disease and substantially increase statistical power for detecting G X G.

ORONARY heart disease [CHD (MIM 608901)] is chal-

lenging because it is a complex trait with a complicated
genetic architecture. The MIM number is a reference in the
Online Mendelian Inheritance in Man (OMIM) database.
Recent genome-wide association studies (GWAS) have been
successful in identifying regions of the genome with signif-
icant marginal effects. However, the combined effect of these
loci explains only a small portion of the estimated total
heritability. The traditional approach in association studies
has been to test one phenotype at a time, even when multiple
interrelated phenotypes are available for each individual.

Copyright © 2013 by the Genetics Society of America

doi: 10.1534/genetics.113.157719

Manuscript received July 20, 2013; accepted for publication September 30, 2013;
published Early Online October 4, 2013.

Supporting Information is available online at http:/Awww.genetics.org/lookup/suppl/
doi:10.1534/genetics.113.157719/-/DC1.

'Corresponding author: Human Genetics Center, School of Public Health, 1200
Pressler, RAS-E531, The University of Texas Health Science Center, Houston,

TX 77030. E-mail: taylor.j.maxwell@uth.tmc.edu

Because biological systems are organized in highly interac-
tive pathways, changes at one level are likely to affect mul-
tiple traits throughout the system. Pleiotropy occurs when
a single gene influences the variation of multiple pheno-
types. Pleiotropic loci are common in complex biological
systems (Stearns 2010) and tend to interact with other loci
affecting traits within the same modular units (Wagner et al.
2007; Kenney-Hunt and Cheverud 2009). Pleiotropy is
thought to play a primary role in the evolution of complex
structures and systems (Wagner and Zhang 2011).

A conundrum in evolutionary biology is how a complex
multitrait system with pleiotropy can evolve when a benefi-
cial mutation for one trait may have detrimental consequen-
ces for another. Recent work (Pavlicev et al. 2011a; Pavlicev
and Wagner 2012) has shown that relationship loci (rQTL)
creates variation in pleiotropy that can be selected upon to
further couple or uncouple trait variation and allow joint or
separate evolution to occur in complex systems. rQTL occur
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when the correlation between multiple traits varies by ge-
notype. They are the product of differential G X G or gene-
by-environment interactions (see Pavlicev et al. 2011b, Fig-
ure 2). For example, differential gene interaction occurs
when the pattern of interaction between two loci is different
for multiple traits. This creates variation in the pleiotropic
effects of a single locus. It also creates a pattern in which the
correlation between two traits varies by genotype at the
single locus level (rQTL). Empirical work has shown that
most rQTL do not exhibit marginal effects., making them
invisible to a typical association study. We can take advan-
tage of this single locus pattern to identify rQTL and use
them as a priori hypotheses to identify other loci that in-
teract with them. This approach to detecting G X G greatly
increases statistical power by reducing the multiple testing
burden, and it connects multiple loci to each other and to
multiple interrelated traits. A theoretical basis for and meth-
odologies to detect relationship loci has been established in
animal QTL work (Ehrich et al. 2003; Cheverud et al. 2004;
Pavlicev et al. 2008, 2011b). An early example comes from
a French population (Boerwinkle et al. 1987), where the
correlation between total cholesterol and triglycerides var-
ied among the most common genotypes of the three iso-
forms of apolipoprotein E (APOE) (MIM 107741). In
another case (Sing et al. 1995), the relationship between
the tertiles of cholesterol and coronary artery disease
(CAD) changed with respect to APOE genotypes and the
order of CAD risk among genotypes changed by cholesterol
tertile.

A typical study would use genome-wide single locus tests
to identify rQTL for a pair of traits. Each significant rQTL
would then be used as a locus in a two-locus interaction
model to identify other interacting loci for the two traits. In
this article we work with a single rQTL by using the
Atherosclerosis Risk in Communities Study (ARIC) to
replicate in European-Americans the observation by
Boerwinkle et al. (1987) that the correlation between total
cholesterol (TC) and triglycerides (TG) varies by APOE ge-
notype. This motivated three subsequent hypotheses. The
first hypothesis is that APOE is also an rQTL for TC and TG in
African Americans. The second is that APOE influences the
relationship between TC and/or TG with incident CHD in
both populations. Using genome-wide association data in
ARIC, the last hypothesis is that other loci interact with
APOE to effect these traits and produce the observed APOE
rQTL patterns.

Materials and Methods
Study population

The ARIC study is a very well-phenotyped and ongoing
prospective cohort study primarily focused on heart disease
(ARIC Investigators 1989). Cohort members, totaling
15,792 persons aged 45-64 years at baseline (1987-89),
were randomly chosen from four U.S. communities: Forsyth
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County, North Carolina; Jackson, Mississippi; suburban
Minneapolis, Minnesota; and Washington County, Maryland.
While the Jackson sample includes only African Americans,
the other field centers samples are representative of the
populations in these communities (i.e., mostly non-Hispanic
whites in Minneapolis and Washington County, and about
15% African American in Forsyth County). The ARIC study
includes large numbers of African Americans (N ~ 5000)
and non-Hispanic whites (N ~ 11,000).

During a baseline home interview, persons were invited
to participate in the study, and information was collected on
health status, selected risk factors, family medical history,
employment and educational status, diet, and physical
activity. Cohort members completed four clinic examina-
tions, conducted 3 years apart, in 1987-89, 1990-92 (93%
overall returned), 1993-95 (86% overall returned), and
1996-98 (80% overall returned; 90% of those who exam-
ined in 1993-95 returned). Surveillance of the ARIC cohort
for morbidity and mortality has been carried out by annual
phone interviews with subsequent abstraction of hospital
records to validate cardiovascular events, and completeness
of this annual follow-up has been high. For the last complete
contact cycle available, 95% of still-living cohort members
were contacted and completed a phone interview. The car-
diovascular endpoints of interest to ARIC are CHD deaths,
nonfatal myocardial infarction, coronary, revascularization,
hospitalized congestive heart failure, and stroke.

We focus on incident CHD as an endpoint and measures
of plasma levels of TC, TG, low-density lipoprotein (LDL),
and high-density lipoprotein (HDL). After excluding indi-
viduals on primary cholesterol medications, we used age,
sex, body mass index (BMI), and medications with a sec-
ondary effect on cholesterol as covariates in all analyses.
Most studies that use TG levels use a natural log trans-
formation (In TG) for analyses; however, the original
analysis by Boerwinkle et al. (1987) did not. In the first
model described below, we performed both for comparison
while using only In TG in the subsequent interaction analy-
ses. Analyses with TG and In TG were significant and com-
parable; in fact, In TG had slightly smaller P-values. Table 1
and Table 2 give a summary of characteristics of individuals
with each APOE genotype included in this study. The mea-
sure of incident CHD includes follow-up time and defined
events as a definite or probable myocardial infarction (MI),
fatal CHD, revascularization procedure, or electrocardio-
gram (ECG) evidence of MI. Follow-up time is from visit 1
until death, loss to follow-up, or censoring at 2007. Partic-
ipants included in this study all gave written informed con-
sent for study participation, including genetic research.

Genetic data

APOE genotypes were obtained by using TagMan assays
(Applied Biosystems, Foster City, CA) to genotype the 112
(rs429358) and 158 (rs7412) amino acid variants from exon
4 of APOE (Morrison et al. 2002; Hsu et al. 2005). Genome-
wide assocation data for the ARIC participants consist of



Table 1 Summary of characteristics of African-American individuals with APOE genotype data in the ARIC study after adjusting for age,

sex, BMI, and secondary cholesterol medication

African American All e2e2 eZe3 eZe4 e3e3 e3e4 edeq
Count 3149 37 427 160 1411 976 138
Genotype % 1 1.2 13.6 5.1 44.8 31.0 4.4

Sex (% male) 0.38 0.41 0.37 0.41 0.36 04 0.36

Age (mean = SD) 53.35 = 5.81 53.32 + 6.12 53.26 = 5.71 53.16 + 5.64 53.4 + 58 53.32 = 5.91 53.64 + 5.84
BMI 29.16 = 5.81 29.01 = 6.73 29.85 £ 6.3 29.38 = 6.17 29.23 £ 5.89 28.8 = 544 28.63 = 5.12
Triglyceride (mg/dl) 1.2 £ 0.59 1.47 = 0.75 1.19 = 0.55 1.29 = 0.61 1.18 = 0.59 1.22 = 0.58 1.25 + 0.59
Total chol (mg/dl)  213.79 + 43.69 193.30 + 49.48 197.55 = 39.05 210.70 + 39.43 214.18 + 42.53 219.59 = 4523 225.77 + 45.62
LDL-C (mg/dl) 136.56 = 42.15 104.99 + 4431 119.33 = 36.75 132.4 = 37.42 136.66 + 41.11 144.15 = 42.83 148.4 = 43.43
HDL-C (mg/dl) 55.79 + 16.69 62.35 + 21.18 57.28 * 16.81 55.71 £ 15.86 56.53 + 17.13 539 + 15.62 55.26 + 16.36
inc CHD per 1000 135 108 126 151 133 142 138
In(triglycerides) 53.35 +0.44 53.32 = 0.48 53.26 = 0.42 53.16 = 0.44 53.4 + 044 53.32 =+ 0.43 53.64 = 0.43

genotypes for nearly one million SNPs using the Affymetrix
6.0 platform (Tkram et al. 2009). An additional million SNPs
were imputed in the Europoean-American sample using
MaCH with HapMap as a reference panel (Dehghan et al.
2009). We used only observed genotypes in the African-
American population. Quality control criteria for SNPs and
individuals matched previous studies with these data (Dehghan
et al. 2009; Tkram et al. 2009). All data use and analyses are
approved by an institutional IRB HSC-SPH-11-0320. The GWAS
data for the ARIC study are available in dbGAP.

Genetic analyses

All analyses were performed using the R statistical software
environment (R Development Core Team 2012) with the
addition of the Survival package (Therneau 2012). In addi-
tion, for the GWAS data, we used the Rserve (Urbanek
2012) package in R to link with the PLINK software package
(Purcell et al. 2007; Purcell 2012). After excluding those on
primary cholesterol medications, we fit the following linear
model separately in both populations,

TCjjx = u + age + sex + bmi + secondaryCholMed

+ APOE + InTG + APOE X InTG + ey, 1)
where APOE is a variable with six levels (one for each ge-
notype). The significance of the interaction term was
assessed using full vs. reduced models. Significance of this
test rejects the null hypothesis that the correlation between
the two traits is equal across genotype classes and that the
beta coefficients from each bivariate regression within gen-
otypes do not differ. Because there are three alleles (e2, e3,
e4), APOE isoform data are often collapsed to two alleles
(e4, non-e4) to make it easier to paramaterize (i.e., additive,
dominance). We did not do this because there was no linear
additive relationship among the genotypes in Boerwinkle
et al. (1987). As a result, we used all five degrees of freedom
available from the six possible genotypes. The ARIC study is
large enough (see Table 1 and Table 2) to have many indi-
viduals for even the rarest genotypic classes (i.e., e2e2 and
ede4).

Because both TC and TG are positively correlated with
CHD in the general population, we hypothesized that the
APOE genotypes change the relationship of one or both of
these lipids with CHD. A Cox proportional hazards model
was used to test whether TC and/or In TG interacts with
APOE with respect to CHD separately in each population.
A full vs. reduced-model likelihood-ratio test was used to test
for significance of the APOE*TC and APOE*In TG terms in
each model. The Cox proportional hazards model is a semi-
parametric survival method that uses a partial log-likelihood
to estimate the effect of independent variables on the hazard
function in relation to time to event data. It assumes a para-
metric form for the effect of the predictors on the hazard
function; but unlike parametric models, it does not make
any assumptions about the shape of the baseline hazard func-
tion (Agresti 2002). Below is the model including In TG; the
other model replaces In TG with TC:

CHD;j = age + sex + bmi + secondaryCholMed

+APOE + InTG + APOE X InTG +- ejj. 2
The null hypothesis posits that TC or In TG-related risk for
incident CHD is equivalent across APOE genotypes.

For each phenotype (TC, In TG, incident CHD), we
performed a genome-wide scan for loci that interact with
APOE. GWAS data were not available for many of the indi-
viduals with APOE genotypes (795 AA, 1376 EA), leaving
2354 AA and 7677 EA individuals for the APOE*SNP inter-
action analyses. We used two different traditional genome-
wide significance thresholds for the European-American
(P < 5 X 1078) and the African-American (P < 4 X 1077)
scans because of the large difference in the number of tests
(~2.2 million for EA vs. ~800,000 for AA). Since there is an
a priori hypothesis for each phenotype, we need correct for
only genome-wide significance within each phenotype. In-
stead of creating two additive continuous variables (0, 1, 2)
for the two SNPs that define the APOE isoforms, we treated
it as a variable with six levels (one for each genotype) rep-
resented by five (0, 1) indicator variables for n — 1 geno-
types and five degrees-of-freedom. The second locus
paramaterized as a simple additive locus with one degree of
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Table 2 Summary of characteristics of European-American individuals with APOE genotype data in the ARIC study after adjusting for age,

sex, BMI, and secondary cholesterol medication

European American All e2e2 eZe3 e2eq e3e3 e3e4 ede4
Count 9053 66 1145 210 5399 2048 185
Genotype % 1 0.7 12.6 2.3 59.6 22.6 2.0

Sex (% male) 0.45 0.48 0.45 0.48 0.45 0.44 0.46
Age (mean = SD) 5415+ 572 5465 *626 5406 *538 53.88 £ 563  54.11 =571 5426 = 572  54.67 + 533
BMI 26.74 = 472 26.8 = 3.91 26.96 = 4.83 26.22 = 4.71 26.8 =473 26.54 = 4.65 26.42 = 4.66
Triglyceride (mg/dl) 1.43 = 0.69 1.81 £ 0.9 1.51 £ 0.77 1.48 = 0.71 1.4 = 0.67 1.44 = 0.66 1.64 = 0.77

Total chol (mg/dl)
LDL-C (mg/dl)

HDL-C (mg/dl) 51.66 = 1421 4924 £ 1036 52.66 = 13.99
Inc CHD per 1000 155 182 142
In(Triglycerides) 54.15 + 0.45 54.65 + 0.49 54.06 + 0.47

213.02 £ 39.05 194.46 = 52.58 201.03 = 38.66 203.74 = 37.11
136.05 £ 36.82 113.23 = 42.78 121.61 = 3578 124.48 = 3499 136.82 * 36.24 143.19 * 36.02 145.27 = 34.81

213.40 £ 38.27 219.59 + 37.89 223.07 = 35.57

53.1 =+ 1461 51.75 £ 1415 51.03 £ 1447 4871 = 13.08
124 157 156 185
53.88 £ 0.45 5411 £ 0.44 54.26 = 0.43 54.67 £ 0.43

freedom limiting the interaction test to 5 degrees of freedom.
Below is the general model where we are interested in the
APOE*SNPadd interaction term:

TCjjx = u + age + sex + bmi + secondaryCholMed
+ APOE + SNP,qq + APOE X SNP,qq + €jjx. 3

A standard linear model was used for TC and In TG and an
analogous Cox proportional hazards model for incident
CHD. Secondarily, we performed analyses for LDL and
HDL because they are components of TC and because APOE
has known direct effects on both. The null hypothesis for the
interaction term is that the relationship of the SNP with the
trait is the same among APOE genotypes.

Some types of G X G interactions can be classified as
spreading or sign epistasis. Spreading epistasis occurs
when the effect for locus 1 exists in one genotypic context
but not another. Sign epistasis occurs when the allelic
effects change direction across genetic backgrounds. Pavli-
cev et al. (2011b) found that rQTL have a higher propor-
tion of sign epistatic interactions than non-rQTL. Sign
epistasis sometimes involve compensatory mutations,
which occur when the deleterious effect of a mutation at
one locus is alleviated with a context dependency at an-
other locus. In terms of pleiotropy, a mutation at a pleiotro-
pic locus may have a beneficial impact on trait 1 while
having a deleterious impact on trait 2. A mutation at an-
other locus may create an interaction that alleviates the
deleterious effects of the pleiotropci locus on trait 2 while
preserving the beneficial impact on trait 1. Based on their
pleiotropy and compensation model, Pavlicev and Wagner
(2012) suggest that most adaptive signatures in genome
scans could be the result of compensatory changes.

Results

Table 1 and Table 2 give counts and summary character-
istics for the ARIC participants with APOE genotype data.
The relationship between TC and TG significantly differed
by APOE genotypes based on the model in Equation 1
(P = 10-7 EA, 10-5 AA) and the pattern was very similar
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in the two populations (see Figure 1). Boerwinkle et al.
(1987) did not have enough individiuals with e2e2 geno-
types to estimate the correlation between TC and TG.
Here we see that the correlation is very high (0.716 in
both populations). The results using In TG are virtually
the same.

From the models based on Equation 2, APOE*TC was
significant for AA (P = 0.016) and not in EA (P = 0.57)
and APOE*TG was significant for EA (P = 0.027) but not AA
(P = 0.34) (see Figure 1). All results were the same when
using a natural log transformation of TG (P = 0.016 EA; P =
0.29 AA). The hazard ratio (exponential of the coefficient)
from Cox regression within genotypes (including covariates)
is shown in Figure 1. When the hazard ratio is >1 it denotes
a positive correlation between CHD and TC or In TG and
values <1 suggest a negative correlation between CHD and
TC or In TG. The pattern of change in TC/In TG correlation
across APOE genotypes loosely resembles the hazard ratio
changes in the CHD/In TG and CHD/TC models with the
primary differences related to where the heterozygotes lie
with respect to the homozygotes.

In a post-hoc analysis with the components of TC, we
found that LDL also has a strong relationship (P = 9.6 X
10-%EA; P = 1.4 X 10~5 AA) with In TG as observed before
but the relationship of In TG with HDL was weak or negli-
gible (P = 0.013 EA; P = 0.264 AA). In African-Americans
LDL had a stronger interaction (yet similar pattern) with
APOE genotype to affect CHD than APOE*TC (P = 0.0066
for APOE*LDL vs. P = 0.016 for APOE*TC) while there was
no evidence for an APOE*HDL interaction. There was no
evidence for an APOE*LDL or APOE*HDL interaction in
the European-American population.

The covariate adjusted correlation between TC and In TG
in the general population (0.24 for AA and 0.33 EA) is
reflective of the e3e3 genotype, which is by far the most
common genotype. This is also true for hazard ratios for
CHD/TC (in AA) and CHD/In TG (in EA). The risk relation-
ship seen in the general population is a weighted average
with e3e3 providing the largest influence while other less
common genotypes pull in opposite directions (Figure 1).
TC in AA and In TG in AA have much a stronger positive



Total Cholesterol & In(Triglycerides) by APOE genotype

Figure 1 (Top) Within APOE genotype cor-
relations between total cholesterol and tri-
glycerides after correcting for age, sex,
BMI, and secondary cholesterol medication
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CHD risk for individuals with the e2e2 and e2e3 genotypes
while there is no risk (or negative) for those with e2e3 or e4e4.

Initially, 10 loci that significantly interact with APOE in
African Americans were found, one for incident CHD, six
for TC, one for LDL, and two for HDL. Six loci were found
for European Americans and they were all for TC. However,
from QQ plots we found the scans for TC and LDL showed
P-value inflation while CHD and HDL did not (see Supporting
Information, Figure S3). The inflation does not appear to be
due to stratificaiton for two reasons: because the use of prin-
ciple compenents as covariates did not the affect the analyses
(see below) and because traditional marginal single SNP
tests with those traits did not show QQ plot inflation. G X G
interaction tests sometimes exhibit type I error inflation due
to underestimates of the covariance matrix (Voorman et al.
2011). Work done by BlUzkova et al. (2011) and Voorman
et al. (2011) showed that sandwich estimators and the para-
metric bootstrap can be used to obtain valid P-values, with the
parametric bootstrap as the gold standard.

To obtain an empirical estimate of the P-values for the
TC (six EA, six AA) and LDL (one AA) loci, for each locus
we simulated 100 million parametric bootstraps to com-
pare with the original statistic. Only one TC locus remained
significant, leaving four significant loci that interact with
APOE in African Americans (see Figure 2 and Table 3).

African American p=6.94x107°

for European-American (EA) and African-
American (AA) populations in the ARIC
study. The P-values are for the APOE*trigly-
ceride interaction in the full model. (Bottom)
Within each APOE genotype, a Cox propor-
tional hazards model for incident CHD was
performed with age, sex, BMI, and second-
ary cholesterol medication as covariates and
total cholesterol for African Americans and
triglycerides for European Americans. The
hazard ratio is plotted where values >1 sug-
gest risk and values <1 suggest a protective
effect. The dotted line is at 1. The P-values
are for the APOE*triglyceride and APOE*total
cholesterol interaction in the full model. Here
we report TG but results for In TG are
comparable.

Af. Am. Total Cholesterol p=0.0164

Plots and descriptions of the other loci just under signifi-
cance can be seen in Table S1, Figure S1, and Figure S2.

Stratification could be a source of confounding for
analyses in the African-American population. Principal
components were available for a subset of the individuals
with APOE and GWAS data (1986 AA). Because of the loss of
individuals (368), we decided to do the analyses with all of
the available data (without the principal components) and
for each genome-wide significant locus we used the smaller
data set and the first two principal components as covariates
to test for consistency. Using the smaller data set and in-
cluding the principal components, each of the loci found
in African Americans showed the same effects and remained
highly significant. The original rQTL models with APOE in
African Americans were also tested using the smaller data
set and each retained significance.

There is no obvious functional information about the
region around rs16828155 that connect to CHD risk but
a study (Lunetta et al. 2007) using the Framingham Heart
Study found a GWAS hit (rs1412337) 166 kb upstream
for morbidity-free survival at age 65. rs16828155 has
a strong additive relationship with CHD risk among
African-American individuals that carry at least one
APOE e2 allele and none for those without an e2 allele
(see Figure 2).
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The HDL hit, rs912618, is found in protein kinase C, eta
(PRKCH, 605437). A nonsynonymous variant in exon 9
(rs2230500) of PRKCH was shown to be associated with
cerebral infarction in a Japanese case/control study, specif-
ically lacunar infarction (Kubo et al. 2007). It is also associ-
ated with ischemic stroke (Li et al. 2012), LDL, and coronary
heart disease (Zhu et al. 2012). According to the HapMap
database, this SNP is of appreciable frequency only in Asian
populations. Kubo et al. (2007) found that it was expressed
in vascular endothelial cells and foamy macrophages in hu-
man atherosclerotic lesions and PKC-eta expression in-
creased as the lesion type progressed. Using an analogous
Cox proportional hazards model with incident CHD, the
APOE*rs912618 interaction term was not significant (P =
0.11); however, the direction of effects was as expected. In
particular, individuals with e4e4 genotypes had the strongest
negative relationship (correlation = —0.49, P = 2.47 X
1077; see Figure 2) between rs912618 and HDL and the
expected positive association with CHD (hazard ratio =
2.19, P = 0.09) within the e4e4 genotype. 1s912618 was
not associated with ischemic stroke directly or through in-
teraction with APOE by use of a Cox proportional hazards
model.

The TC hit, rs5758267, resides in an intron of L3MBTL2
(611865) and according to the ENCODE project using the
RegulomeDB tool (Boyle et al. 2012), it has a score of 1f,
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rs12076864 p=2.5x10""

which means it is an eQTL for the PHF5A and a transcription
factor binding site/DNase peak. None of these are obvious
clues to the biological nature of the interaction. However, as
stated above rs5758267 also shows mild evidence for an
interaction with APOE for TC in the European-American
population. Unsurprisingly, it also shows strong evidence
for an interaction with APOE for LDL (P = 1 X 107°) in AA.

For comparison and possible replication of the interacting
loci in African Americans, only rs5758267 had an appreciable
minor allele frequency (MAF) in European Americans (AA =
0.27, EA = 0.28) and it also shows evidence for an interaction
with APOE in EA (P = 0.035). For the other three, rs912618,
the MAF in EA is 0.01 and the other two are <0.01, giving little
or no power for replication. However, the remaining three
interacting SNPs all had at least one nominally significant
SNP interacting with APOE for their respective trait within
a 40-kb region.

Differential epistasis can cause the pattern observed in an
rQTL (Pavlicev et al. 2011b). The CHD and TC loci found to
interact with APOE exhibit differential epistasis by interact-
ing differently among the pairs of traits (TC/In TG and
CHD/TC), which in turn create different relationships be-
tween the traits across APOE genotypes (i.e., the APOE rQTL
pattern). Within APOE genotypes where the trait relation-
ships are positively correlated, the interacting locus has the
same direction of effects on the two traits, leading to



Table 3 The most significant SNP from each of the four genome-wide significant locations that interact with APOE in African Americans

Trait CHD TC HDL HDL

SNP rs16828155 rs5758267 rs12076864 rs912618
Chromosome 1 22 1 14
Location (build 36.3) 167051924 39949296 110968915 61003344
Maj/Min (MAF) T/C (0.475) T/A (0.271) C/T (0.216) A/G (0.378)
P-value 6.51E-08 1.6-E-07° 2.54E-07 9.62E-09
Gene L3MBTL2 (intron) PRKCH (intron)
Left gene DPT C22:RP1-85F18.2 KCNA2 TMEM30B
Right gene SUMO1P2 CHADL KCNA3 LOC729637

? P-value estimated with 100 million parametric bootstrap replicates and also. Significant in EA (P = 0.03).

a stronger correlation between the two traits within that
genotype. Within APOE genotypes where the relationship
between the traits is nonexistent (i.e., e2e4 and e4e4), the
interacting loci have either opposing effects on the two traits
or only an effect on one trait, which breaks up the correla-
tion between the traits.

While the other 12 loci did not meet significance (Table
S1, Figure S1, and Figure S2), they had patterns similar to
that of the significant loci. Lumping all 16 loci together, for
those loci with sufficient counts for e2e4, we found oppos-
ing effects for CHD and In TG in EA (5 of 6) and CHD and
TC in AA (4 of 7). All but one (12 of 13) found opposing
direction of effects for TC and In TG in e4e4 while most
showed opposing direction of effects for TC and CHD in EA
(5 of 6) and In TG and CHD in AA (5 of 7). It is not
expected that all loci that interact with APOE will contrib-
ute to this specific rQTL, but these loci appear to contribute
to the bivariate relationship differences among APOE gen-
otypes (see Figure 1).

In addition to APOE itself, none of the other interacting
loci have even a nominal association directly with the trait
itself such that none of these loci would be found by a stan-
dard single-locus GWAS. This is consistent with other rQTL
studies (Pavlicev et al. 2011b). APOE is the only locus to
have a direct association with any of the traits (TC, LDL,
In TG, and HDL), which is already well established in the
literature (Templeton et al. 2005). All of the observed inter-
actions involve sign epistasis where the allelic effect changes
directions across genetic backgrounds. (See Figure 2, Figure
S1 and, Figure S2.)

Discussion

We were able to replicate the work of Boerwinkle et al.
(1987) and establish that APOE acts as an rQTL between
TC and In TG in both EA and AA populations. This led to
significant a priori tests establishing that APOE modulates
the relationship between CHD and In TG in European
Americans and CHD and TC in African Americans. The
a priori tests allow for multiple testing to be done only
within each genome scan analogous to work on control-
ling false positives for epistatic QTL done by Wei et al.
(2010).

The rQTL approach, as demonstrated here, is a powerful
way to identify loci that effect relationships between
important biological risk factors and the relationship be-
tween these factors and disease. In our case, the rQTL
(APOE) was already known; however, the same model used
to validate APOE as an rQTL can be used in a genome-wide
scan to identify other previously unknown rQTL for a given
pair of traits. These loci would typically be undetected in
a normal GWAS analysis and even if “seen,” their role in
pleiotropic variation and gene-by-gene interactions would
not be evident. It is also a unique, efficient, and powerful
approach to identifying gene-by-gene interactions. It enhan-
ces statistical power by defining a priori loci (rQTL) that are
likely to be involved in an interaction and reducing the
number of tests to the order of a GWAS instead of all pair-
wise tests.

Biologically, it provides a framework to link multiple
traits together and with the rQTL and other interacting loci.
In the context of human medicine, these loci can lead to
further insights about conditions where the magnitude of
risk for a known risk factor changes. In the case of
triglycerides in European Americans and total cholesterol
(and LDL) in African Americans, their importance to CHD
risk depends on what APOE genotype an individual has. This
raises issues of importance for treatments targeting risk fac-
tor levels. If treatments for TC and In TG are based on their
association with CHD, then lipid-lowering drugs may be
necessary or useful only for individuals with APOE geno-
types where the CHD risk is strong for TC or In TG. In
particular, the level of triglycerides matters, in terms of
CHD risk, for an EA carrying the e2e2 genotype while it does
not for those carrying an e2e4 or e4e4 genotype. The level of
cholesterol matters for an AA carrying an e2e3 or e2e2 ge-
notype while it does not for those carrying an e2e4 or e4e4
genotype.

It is well established that both TC and In TG have positive
CHD risk in the general population. The three APOE alleles
(e2, e3, e4) are associated with low, medium, and high TC
and In TG levels. These same alleles are associated with low,
medium, and high CHD risk. It is tempting to think that the
relationship between APOE and CHD is strictly through its
linear influence on lipid levels. Our results suggest that this
explanation is too simple and masks important relationships
between APOE and CHD independent of or at least not
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linearly related to lipid levels. Here we suggest that APOE
genotypes influence the relationship between lipid levels
and CHD, not just the actual lipid level itself.

Various studies have shown that APOE alleles respond
differently to different types of LDL-lowering treatments.
Response (reduction in LDL) to exercise is greater for those
with the e3 allele than the e4 allele. Statins produce a similar
pattern while Probucol, which has a different target and
mechanism for lowering LDL than statins, has the opposite
effect with a greater response for those carrying the e4 allele
(Hagberg et al. 2000). Gustavsson et al. (2012) found that
APOE genotypes interact with both smoking and physical
inactivity with respect to CHD. They determined that these
interactions were independent of LDL levels and concluded
that something other than a direct effect on lipid levels is
responsible for this relationship with CHD.

While APOE has a similar effect on the correlation be-
tween TC and In TG in both populations, it is surprising to
see that APOE affects the relationship between only TC and
CHD in African Americans and only In TG and CHD in Eu-
ropean Americans. This difference between African Ameri-
cans and European Americans may be another example of
observed yet not understood differences in the behavior of
lipids and CHD between the two populations (Haffner et al.
1999). In another study (T. J. Maxwell and C. M. Ballantyne,
unpublished results) the authors have observed that CETP
promoter variants associated with CETP protein concentra-
tion in European-Americans are strongly associated with
HDL levels, yet those same variants in African-Americans
are associated with only CETP protein concentration and
not HDL.

Relationship loci present a powerful approach to uncov-
ering the complex genetic architecture of common diseases.
They establish a foothold into the world of pleiotropy and
interactions, which are the basis for modularity and the
inherent organization of biological systems in pathways of
interacting factors. Because rQTL create variation in pleiot-
ropy, selection can act upon them to couple and uncouple
traits enabling evolution to change multiple traits jointly or
separately (Pavlicev et al. 2011a).
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Figure S1 A plot similar to Figure 2 in the main text for each of the SNPs in Table S1 that interact with APOE to affect TC and
LDL in African Americans. These tests were significant with the parametric test yet dropped below significance after calculating
empirical p-values with 100 million parametric bootstrap replicate for each SNP. Plots are based on within APOE genotype
models after adjusting for covariates while the p-values are based on the APOE*SNP interaction in the full model where the
APOE genotypes are treated as factors and the SNP is treated as a (0,1,2) additive variable. The beta coefficients from the
linear model provide the same story but the correlation coefficient is easier to visualize.
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Figure S2 A plot similar to Figure 2 in the main text for each of the SNPs in Table S1 that interact with APOE to affect TC in
European Americans. These tests were significant with the parametric test yet dropped below significance after calculating
empirical p-values with 100 million parametric bootstrap replicate for each SNP. Plots are based on within APOE genotype
models after adjusting for covariates while the p-values are based on the APOE*SNP interaction in the full model where the
APOE genotypes are treated as factors and the SNP is treated as a (0,1,2) additive variable. The beta coefficients from the
linear model provide the same story but the correlation coefficient is easier to visualize.
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Table S1 SNPs from the TC and LDL scans initially significant with the parametric test yet dropped below significance after

doing 100 million parametric bootstrap replicates.

Population AA AA AA AA
Trait TC TC TC TC
SNP rs7523846 rs4704260 rs1867446 rs10484488
Chromosome 1 5 5 6
Location (build 36.3) 230075483 75223049 179439720 136713787
Maj/Min (MAF) G/A (0.098) A/T (0.035) T/C (0.032) T/G (0.104)
Parametric p-val 1.47E-07 2.29E-07 1.66E-07 7.69E-08
Par Bootstrap p-val 1.05E-06 6.49E-06 8.99E-06 8.60E-07
Gene DISC1 (intron) MAP7 (intron)
Left Gene DIsc2 LOC391798 RNF130 BCLAF1
Right Gene SIPA1L2 LOC100132039 LOC646058 LOC100128745
Population AA AA EA EA
Trait TC LDL TC TC
SNP rs10901213 rs10927458 rs10924102 rs1346013
Chromosome 9 1 1 2
Location (build 36.3) 132237274 14731263 116832505 160021586
Maj/Min (MAF) A/C(0.122) C/A (0.185) C/T (0.302) G/A (0.486)
Parametric p-val 2.56E-07 7.50E-07 2.93E-08 1.45E-08
Par Bootstrap p-val 6.70E-072 1.20E-07 6.00E-07 8.00E-08
Gene HMCN2 (intron) BAZ2B (intron)
Left Gene LOC392395 PRDM2 LOC148766 LOC100127929
Right Gene ASS1 RP1-21018.1 CD58 LOC728059
Population EA EA EA EA
Trait TC TC TC TC
SNP rs6898102 rs12223762 rs12606223 rs17823542
Chromosome 5 11 18 20
Location (build 36.3) 49910087 43546197 75914383 24071100
Maj/Min (MAF) G/A (0.487) T/A (0.040) T/G (0.289) G/C (0.486)
Parametric p-val 2.12E-08 3.40E-08 2.44E-08 1.10E-08
Par Bootstrap p-val 1.30E-07 4.27E-06 7.90E-07 8.00E-08
Gene
Left Gene EMB LOC120449 C18orf22 POM121L3
Right Gene PARP8 LOC100131381 ADNP2 LOC100128232

anominally significant in EA (p=0.008)
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