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Abstract
Reports from nutritional epidemiology studies lack reliability if based solely on self-reported
dietary consumption estimates. Consumption biomarkers are available for some components of
diet. These can be collected in subsets of study cohorts, along with corresponding self-report
assessments. Linear regression of (log-transformed) biomarker values on corresponding self-report
values and other pertinent study subject characteristics yields calibration equations for dietary
consumption, from which calibrated consumption estimates can be calculated throughout study
cohorts. Nutritional epidemiology disease association studies of enhanced reliability can be
expected from analyses that relate disease risk to calibrated consumption estimates. Applications
to the study of energy and protein consumption in relation to cardiovascular diseases, type 2
diabetes, and cancer in the Women’s Health Initiative will be briefly summarized. Also,
challenges related to variables that may either mediate or confound associations of interest will be
described, along with the need for longitudinal biomarker and self-report data, and the need for
additional nutritional biomarkers development.
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Introduction
In spite of substantial public interest, and great public health importance, there are few
convincing or consistent disease association results from several decades of intensive
nutritional epidemiology research. Positive associations between obesity and the risk of
prominent cardiovascular diseases and cancers, among other chronic diseases, are well-
established, but reviews of the world literature find few dietary associations that are
regarded as convincing or probable [1–3].
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Most nutritional epidemiology studies are observational, with cohort studies providing the
context for most reports in recent years. As such, these studies need to contend with the
usual observational study challenges of confounding and unbiased outcome ascertainment.
Additionally, they need to address the thorny and potentially dominating issue of dietary
assessment measurement error.

Dietary assessment in epidemiologic cohort study contexts has relied mainly on a food
frequency questionnaire (FFQ) assessment procedure, which is quite practical for use in
large cohorts due to its usual self-administered and economical machine-readable features.
Nutritional epidemiology reports that attempt to address the measurement issue have
sometimes included a second dietary assessment procedure, such as one or more 24-hour
dietary recalls (24HRs) or multi-day food records, from which (log-transformed) nutrient or
food consumption estimates are assumed to adhere to a classical measurement model. The
classical model assumes additive error that is unrelated to the targeted consumption,
unrelated to other study subject characteristics, and independent of the corresponding FFQ
measurement error. Although this approach may frequently lead to some reduction in bias
due to measurement error [4], the assumptions just listed for a second dietary assessment
approach do not appear to hold, even approximately, for available self-report procedures for
energy and protein assessment [5].

On the other hand, for some dietary factors, there are established consumption biomarkers
for which these measurement modeling assumptions are quite plausible, at least for short-
term consumption. This paper summarizes some experiences to date in the use of total
energy and protein consumption biomarkers in Women’s Health Initiative (WHI) cohorts,
and sets out some study design, data collection, and biomarker development needs to
support the use of a biomarker calibration approach more generally in nutritional
epidemiology research.

Before doing so, it may be useful to comment briefly on the role and potential of
randomized trial designs in nutritional epidemiology. Randomized, controlled intervention
trials have the considerable advantage of avoiding confounding by all pre-randomization
factors, whether recognized as such or not. Such trials typically also provide a context for
unbiased outcome ascertainment. Importantly, the validity of intention-to-treat comparisons
in randomized trials does not depend on dietary assessment, though some form of dietary
assessment for the randomized groups as a whole is needed to document that a comparison
of acceptable statistical power has taken place. However, full-scale randomized controlled
intervention trials, such as the Dietary Modification (DM) Trial among 48,835
postmenopausal women in the WHI [6] are logistically difficult and expensive, and may
require a lengthy follow-up period for the hypothesized intervention effects on disease risk
to have time to emerge. Hence, only a few full-scale intervention trials can be afforded, and
any such trial requires a careful developmental process. On the other hand, clear results from
randomized intervention trials, such as the major reduction in diabetes incidence among
persons assigned to the diet and physical activity intervention in the Diabetes Prevention
Program [7], can have a profound effect on nutritional epidemiology research and
knowledge. Also, results from intermediate outcome randomized controlled trials of
practical size, duration and cost may be able to be combined with observational data relating
intermediate outcomes to disease risk to provide a novel strategy within an overall
nutritional epidemiology research agenda. For example, heart disease related intermediate
outcomes trials could include blood pressure, serum lipids, coagulation factors,
inflammatory factors , and even high dimension data such as metabolomic profiles.
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Biomarker Calibration Approach to Nutritional Epidemiology
The biomarker calibration approach to nutritional epidemiology research relies on the
availability of objective markers that plausibly adhere to a classical measurement model for
the dietary variables under study. Objective measures of this type mostly arise from urinary
recovery as nutrients are metabolized and excreted [8], but could also arise from measures in
blood or other body fluids or tissues. Prominent examples include a doubly-labeled water
(DLW) biomarker of total energy expenditure [9] and a urinary nitrogen (UN) biomarker of
protein intake [10]. These recovered nutrients reflect short-term consumption among weight
stable persons. Other biomarkers include urinary potassium and sodium which, like protein,
can be estimated from 24-hour urine collections. The energy biomarker is more specialized
and expensive, involving the consumption of a few ounces of DLW that includes enriched
doses of the naturally occurring (safe to consume) stable isotopes O18 and deuterium, with
recovery of metabolites reflecting oxygen and carbon dioxide expenditure over the ensuing
two weeks [9].

Two nutritional biomarker sub-studies have been conducted within WHI cohorts, and a third
that aims to develop novel biomarkers is nearing completion. The first, referred to as the
Nutrient Biomarker Study (NBS), included DLW and UN biomarkers and concurrent FFQs
among 544 women in the WHI DM trial, a trial that examined the effects of a low fat, diet
with increased vegetables, fruits and grains on cancer and cardiovascular disease (CVD)
outcomes, with 50% of women from the low-fat dietary pattern intervention group, and 50%
from the usual diet comparison group [11]. The NBS took place during 2004–2006 at 12 of
the 40 clinical centers that participated in the WHI. A 20% reliability subsample completed
the entire protocol about six months after the initial application.

The second biomarker study, conducted during 2007–2010 and termed the Nutrition and
Physical Activity Assessment Study (NPAAS), involved these same biomarkers, along with
concurrent FFQs, as well as 4-day food records (4DFRs) and three 24-hour dietary recalls,
among 450 women at nine WHI clinical centers who participated in the WHI Observational
Study (OS). The OS is a prospective cohort study among 93,676 postmenopausal women
drawn from essentially the same catchment area as the WHI clinical trials, with much
commonality in epidemiologic and clinical data collection [6]. The NPAAS protocol also
included indirect calorimetry for resting energy expenditure assessment, and physical
activity self-report data collection using a 7-day physical activity recall, the Arizona Activity
Frequency Questionnaire, and a WHI questionnaire-based physical activity assessment [5,
12]. As with the NBS, the entire protocol was repeated about six months after the initial
application by a 20% subsample of the participating women.

The biomarker calibration approach assumes a classical measurement model for the
objective measure, while allowing a more flexible model for the corresponding self-report.
For example, the biomarker assessment W may be the logarithm of DLW average daily total
energy consumption over the two-week period of a biomarker study, while the targeted
dietary consumption Z is the logarithm of total average daily energy consumption over a
longer time period (e.g., one-year period from three months before to nine months after the
biomarker study), and Q is the logarithm of self-reported average daily energy consumption
over a closely related time period.

Biomarker values are assumed to arise from a classical measurement model
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with error u that is independent of Z, and independent of all relevant study subject
characteristics V = (v1, v2, …). For example, V may include factors needed to avoid
confounding in studying the association between Z and a study disease, or factors related to
the magnitude of the self-report measurement error. The corresponding self-report Q is
allowed to have a biased ‘target’, Z*, where

so that

where the error term e is assumed to be independent of Z and u, given V.

A joint normality assumption for (Z, e, V) then gives expectation of the form

from which the biomarker model assumptions give

It follows that one can obtain estimates of the underlying dietary consumption Z given (Q,
V) under these modeling assumptions, by linear regression of the biomarker (W) on the
corresponding self-report (Q) and other pertinent study subject characteristics. The resulting
linear equation

can be used to generate ‘calibrated’ consumption estimates Ẑ from corresponding (Q, V)
values throughout the larger study cohort. This type of calibration equation can be expected
to correct systematic biases related to V in the self-report Q. Also, a good calibration
equation should be able to ‘recover’ a substantial fraction of the variation in Z in the study
population. For this latter purpose, V may include study subject characteristics that enhance
the percent of variation explained by the equation, even if not needed for avoidance of bias
due to the self-report measurement error properties or for avoidance of confounding bias.
Note that the above development can readily be relaxed to reduce the normality assumption
to that of a joint normal distribution for (Z, e) given V.

The biomarker W typically also incorporates measurement error (u), both technical error in
relation to consumption in the short time period targeted by the biomarker, and temporal
error relative to the larger time period used to define Z. Reliability subsample data can
provide a means for adjusting for temporal variation, at least over a moderate time period.
Note, however, if Z is defined in terms of consumption over the years or decades that may
be pertinent to disease risk, then longitudinal biomarkers and self-report data over a longer
time period will typically be needed for reliable disease association estimation.

The concept behind the use of calibrated consumption estimates derives from the so-called
regression calibration approach to hazard ratio parameter estimation [13–15] in disease
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association analyses. Specifically, a hazard ratio (Cox) model for a time-to-disease
occurrence outcome (T) may be written as

with α1 the hazard ratio parameter of interest, and V comprised of factors that may, if
omitted, confound the association between Z and disease risk. Since the self-report Q, rather
than Z, is observed, a hazard rate model is induced that, for a relatively rare disease is, to a
good approximation [13],

The calibrated values Ẑ then provide an estimator of the conditional expectation E (Z | Q,
V), leading to standard Cox regression estimates for α1 and α2 with modeled covariate Ẑ
and V. Because of uncertainty in the calibration equation coefficients, a non-standard
variance estimator of ‘sandwich’ [14] or bootstrap form, is advisable, though this will
typically differ little from the usual (partial likelihood) variance estimator from Cox
regression if the biomarker subsample is fairly large.

The above concept implies that factors that may confound the association between Z and
disease risk should be considered for inclusion in calibration equation development.
Decisions concerning which variables, V, are needed in the hazard ratio model λ (t; Z, V)
can be challenging, particularly if it is unclear whether a study subject characteristic should
be regarded as a confounder or a mediator of the diet and disease association, or both. This
challenge would exist even if Z could be accurately measured in all members of the study
cohort, and full resolution in an observation setting would require the collection of suitably
rich longitudinal data on Z and V to examine temporal relationships. These challenges are
exacerbated in the dietary measurement error context, particularly if the components of V
under consideration as potential confounders or mediators are also important elements of
consumption calibration. The example of average daily energy consumption in relation to
CVD, diabetes, or cancer risk, with body mass index (BMI) as potential confounder,
mediator, and calibrator will be considered in the next section to illustrate these issues.

Calibration Equations and Disease Associations in the Women’s Health
Initiative

Most applications of the biomarker calibration approach in WHI have involved energy and
protein consumption, and their protein density ratio. These include association analyses with
site-specific cancers [16], cardiovascular diseases [17], diabetes [18], frailty [19], and
kidney function [20]. Other potential applications involve calibration of sodium and
potassium consumption, and their ratio in relation to cardiovascular disease risk, and
respiratory quotient calibration in an attempt to distinguish fat from carbohydrate utilization
in relation to breast cancer or CVD risk.

To illustrate these approaches and analyses, Table 1, adapted from [5], shows a version of
calibration equations from NPAAS for total daily energy (kilocalories), protein (grams) and
protein density(percent energy from protein). Separate equations are shown when using
FFQ, 4DFR, and 24HRs as sources of the self-report data. Beyond the self-report (Q), these
equations include BMI and age at the time of the biomarker study, along with indicator
variables for race/ethnicity. Note that the (log-transformed) self-report provides an
explanation for only 3.8% (FFQ), 7.8% (4DFR), and 2.8% (24HR) of the log DLW
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biomarker variation for total energy, but that age and race/ethnicity, and especially BMI,
provide an explanation for considerably more of the biomarker variation, giving percent of
variation (R2) values in the 40–45% range with each of the self-reports. Our interest resides
in calibrated estimates that capture the variation in Z, which could, as noted above, be
defined as average daily energy consumption from three months before until nine months
after a woman’s beginning of NPAAS participation. Compared to this Z definition, the
DLW measure (W) will include temporal measurement error as well as some technical
measurement error. The 20% reliability subsample can be used to develop adjusted R2

values that aim to estimate the percent of variation in Z, rather than in W, explained by the
calibration equation. In fact, under the assumption that measurement errors at the two
biomarker assessment times are independent, as may be a reasonable assumption with this 1-
year Z definition, the adjusted R2 values are obtained simply by dividing the unadjusted R2

values by the sample correlation between the paired W values in the reliability subsample.
Adjusted R2 values in the 70–77% range suggest an excellent ability of the calibrated
estimates to recapitulate the population variations in total energy consumption.

Calibrated protein consumption exhibited rather similar patterns with a somewhat weaker
dependence on BMI. The adjusted R2 values are again quite impressive, especially when
4DFRs or 24HRs are used for dietary assessment. Adjusted R2 values are similarly large for
protein density calibration using any of the three dietary assessment procedures. It is not
clear that BMI is needed for protein density calibration.

Measurement error correlations were also estimated among the three dietary assessment
procedures. The estimated FFQ/4DFR, FFQ/24HR, and 4DFR/24HR measurement error
correlations based on logtransformed data were respectively 0.30, 0.30, and 0.50 for energy;
0.35, 0.35, and 0.27 for protein; and 0.38, 0.38, and 0.40 for protein density, with each much
greater than zero [5]. These correlations argue against the use of one self-report to calibrate
another, at least for a fully satisfactory approach to dietary measurement error correction.

More detailed calibration equations than are displayed in Table 1 may be needed in disease
association analyses, depending on whether modeled confounding factors also contribute to
calibration equations. For example, analyses of energy and protein in relation to
cardiovascular disease in WHI cohorts [17] included age, ethnicity, education, household
income, cigarette smoking status, and an estimate of recreational physical activity for
confounding control. Calibration equations from NBS [11, Table 4] considered each of these
listed variables, along with BMI and an indicator for intervention group randomization
assignment in the DM trial. Table 2, adapted from [17] and [21], shows estimated coronary
heart disease and stroke hazard ratios (HRs) and corresponding 95% confidence intervals
associated with a 20% increment in energy, protein, or protein density from a Cox model
analysis under which the logarithm of dietary consumption relates linearly to the log-hazard
ratio. Uncalibrated FFQ energy is not associated with CHD or stroke, whereas calibrated
energy is positively associated with CHD, and borderline inversely associated with stroke in
analyses that do not include BMI in the disease risk model. When BMI is added to the
disease risk model, the positive energy association with CHD disappears, whereas the
inverse association with stroke becomes more apparent. If BMI is not a confounder of the
energy and CHD risk association, as may be plausible if Z is defined as (log-transformed)
long-term average daily energy intake over preceding years or decades, then Table 2 implies
a positive association between total energy consumption and disease risk that appears to be
fully mediated by body fat deposition over time. On the other hand, if BMI is a pure
confounder, as may be plausible if Z is defined to reflect short-term energy consumption,
then the Table 2 analyses do not suggest any energy association with CHD risk.
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The right three columns in Table 2, from [21], provide further insight into these
interpretations by beginning with a Cox model that may include short-term or longer-term
average daily energy consumption and that also includes BMI, and then induces a hazard
rate model for calibrated energy by taking expectation over the BMI distribution, given the
other modeled variables. The HR estimate associated with average daily energy
consumption then turns out to depend rather crucially on the log (DLW) energy
measurement error correlations between the initial and reliability components in NBS. If
these correlations are large and positive (e.g., 0.5), as may be the case if Z represents long-
term energy consumption, then HR estimates like the previously described calibrated energy
HRs without adjusting for BMI are obtained, whereas if such correlations are small (e.g., 0),
as may be the case if Z represents short-term average energy consumption, then HRs like
these adjusted for BMI are obtained. It seems clear that biomarker and self-report data over
an extended time period are needed to accurately assess the energy consumption and CHD
risk association. Regardless of the magnitude of any such positive association, however,
these data suggest that any such association is rather fully mediated by body fat deposition
over time.

The inverse association between energy consumption and stroke in Table 2 is intriguing, and
is particularly evident when adjusting for BMI. The basis for this inverse association is
unclear but it could, for example, reflect low energy consumption as a result of comorbidity,
or high energy consumption due to relatively high physical activity. Similarly, total protein
consumption may be inversely associated with both CHD and stroke, among women of a
specified BMI, as may also be the case for protein density in relation to CHD. This later
inverse association is also suggested by uncalibrated FFQ protein density, but with HR that
is substantially attenuated toward the null. In summary, the use of biomarker calibrated
energy and protein consumption estimates reveals cardiovascular disease associations that
are mostly not evident without calibration, and suggests designs for future studies to
facilitate interpretation of such associations.

Also, calibrated energy relates positively and strongly to type 2 diabetes risk in WHI
cohorts, with an HR (95% CI of 2.41( 2.06,2.82) for a 20% energy increment, that is
reduced to 1.30 (0.96, 1.76) after controlling for BMI in the disease risk model [18].

Similarly, calibrated energy is positively associated with the risks of several site-specific
(invasive) cancers in WHI cohorts [16]. Specifically, the HRs (95% CIs) for a 20%
increment in energy were 1.24 (1.11, 1.38) for breast cancer, 1.35 (1.06, 1.71) for colon
cancer, 1.83 (1.49, 2.25) for endometrium cancer, 1.47 (1.00, 2.16) for kidney cancer, and
1.18 (1.10, 1.27) for total invasive cancer , in analyses that do not adjust for BMI and
therefore can be thought of in terms of association with long-term energy consumption[16].
These associations too were not apparent at all without biomarker calibration, and they
largely disappeared upon controlling for BMI in the disease rate model.

Biomarker Development Needs
For the biomarker calibration approach to impact observational nutritional epidemiology in a
comprehensive fashion, it will be necessary to develop biomarkers that adhere to a classical
measurement model, with error terms that are independent of corresponding self-report error
terms, for many nutrients and dietary components. Biomarkers such as DLW for energy and
UN for protein have mostly been developed in small-scale studies with participants living
for some days in specialized metabolic facilities where pertinent consumptions were closely
controlled. A rather different study design is being employed in the third WHI nutritional
biomarker study. This ‘NPAAS feeding study’, being conducted among 150 WHI enrollees
in Seattle WA, is nearing completion. Participating women are provided food and drink that
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approximates their usual dietary patterns so that urine and blood measures can stabilize
quickly, by the end of a two-week feeding period, and so that most consumption variation in
the study population will be preserved. Only foods having well-characterized nutrient
composition are utilized. Linear regression of log-transformed provided nutrients/foods on
corresponding urine and/or blood measures, along with other measured study subject
characteristics, is the principal approach to biomarker development. Regressions that can
‘recover’ a substantial fraction (e.g., 50% or more) of the provided nutrient/food variation
will provide novel biomarker candidates. If warranted, such biomarkers will then be
determined using stored specimens from NBS and NPAAS for the calculation of
corresponding calibrated consumption estimates throughout WHI cohorts, for use in novel
disease association analyses. Feeding study investigators have several designated potential
biomarkers (e.g., for sugars, whole grains, and meats), and will also utilize some higher-
dimensional approaches using urine and blood metabolomic profiles.

Conclusions
Nutritional epidemiology is a most challenging research area, but also one of great public
health importance, especially as the obesity epidemic and ensuing chronic disease risk
continues to accelerate. A vigorous research program is needed that combines intervention
trials of novel design and practical size with observational studies of the greatest possible
reliability. Measurement error of a complex nature distinguishes nutritional epidemiology
from many other areas of observational epidemiologic enquiry. For example, overweight
and obese persons may underestimate their energy consumption by 30–50%, playing havoc
with disease rate association estimation, unless suitably corrected. The ubiquitous FFQ gives
energy consumption estimates that are essentially uncorrelated with BMI in WHI
populations, even though DLW energy consumption correlates strongly (correlation of 0.8)
with BMI.

A biomarker calibration approach offers potential for a fresh look at nutritional
epidemiology associations to the extent that biomarkers are available for dietary exposures
of interest. Biomarker studies of practical size and acceptable cost can be conducted within
study cohorts to support biomarker-calibrated dietary association studies. Such studies will
need to incorporate longitudinal biomarker and concurrent dietary self-report data collection
to sort out such challenging topics as the relative confounding and mediating roles for BMI,
in the context of total energy consumption and disease risk association analyses.

Many of these same comments apply to the assessment of activity-related energy
expenditure [12], and its components, with the likelihood that accelerometers or other
devices may prove valuable for objective assessments, either through cohort sub-studies in
conjunction with corresponding self-report assessments, or through application to entire
study cohorts.

In summary, the development of longitudinal biomarker and self-report data in cohort sub-
studies, and the development of a comprehensive set of nutritional and physical activity
biomarkers deserve a prominent place in the chronic disease population science, and the
disease prevention, research agenda in upcoming years.
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