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Abstract

Learning- and memory-related processes are thought to result from dynamic interactions in large-scale brain networks that
include lateral and mesial structures of the temporal lobes. We investigate the impact of incidental and intentional learning
of verbal episodic material on functional brain networks that we derive from scalp-EEG recorded continuously from 33
subjects during a neuropsychological test schedule. Analyzing the networks’ global statistical properties we observe that
intentional but not incidental learning leads to a significantly increased clustering coefficient, and the average shortest path
length remains unaffected. Moreover, network modifications correlate with subsequent recall performance: the more
pronounced the modifications of the clustering coefficient, the higher the recall performance. Our findings provide novel
insights into the relationship between topological aspects of functional brain networks and higher cognitive functions.
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Introduction

During the last years evidence has accumulated suggesting that

an improved characterization of time-variant interactions between

different regions within the complex network brain can be

achieved with graph-theoretical approaches (see [1–6] for an

overview). Within this framework a network (or graph) is

considered as a set of nodes (or vertices) and a set of links (or

edges) connecting the nodes. Functional brain networks can be

derived from direct or indirect measurements of neural activity

(e.g., electroencephalogram (EEG), magnetoencephalogram

(MEG), or functional magnetic resonance imaging (fMRI) data).

The sampled brain regions are usually considered as network

nodes, and network links represent interactions between pairs of

brain regions that can be assessed by evaluating interdependencies

(see [7–11] for an overview) between their neural activities. The

resulting connection schemes can then be characterized by

network metrics [12] such as the average shortest path length or

the clustering coefficient. The average shortest path length L is the

mean number of steps along the shortest paths for all possible pairs

of nodes. The clustering coefficient C is the mean of the local

clustering coefficients of all nodes and quantifies the tendency of

nodes to form local clusters. The local clustering coefficient of a

node is the fraction of triangles among all connected triples with

the node as their center. Large values of both L and C are

characteristic for an ordered, lattice-like structure; low values of L

and C are typically observed for random networks. When

analyzing functional brain networks, the clustering coefficient is

often interpreted as a measure of the local efficiency of information

transfer, and/or of the robustness of the network to deletion of

individual nodes. Similarly, the average shortest path length is

often interpreted as a measure of the global efficiency of a network

to transfer information between nodes [2,5].

Higher cognitive functions are thought to result from dynamic

interactions of distributed brain areas operating in large-scale

networks [13–18]. Using graph-theoretical approaches, previous

studies provided evidence that cognitive tasks–such as motor

learning or (n-back) working memory–specifically modify func-

tional brain networks derived from recordings of neural activities

(EEG, MEG, fMRI) acquired during the tasks [19–35] and that

these modifications appear to be associated with task performance

[19,24,29,35]. Other studies reported on associations between

properties of functional brain networks recorded during a resting

state condition and cognitive performance metrics assessed

independently during neuropsychological evaluation [36–39].

Most of the aforementioned studies investigated cognitive

functions that mainly involve prefrontal areas [40] and primary

association cortices but only rarely temporolateral neocortex as

well as important structures of the mediotemporal lobe, namely

hippocampus and surrounding perirhinal cortex and parahippo-

campal gyri. The lateral and mesial temporal lobe structures are

known to be involved in learning- and memory-related processes
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[41–49], and their functionality has frequently been investigated

with fMRI [50–53], intracranial electrophysiological techniques

[54–59], or via non-invasively recorded event-related electric

potentials or magnetic fields [60].

Here we investigate whether incidental and intentional learning

of verbal episodic material differentially modifies functional brain

networks and whether modifications are related to subsequent

recall performance. To this end, we assess–in a time-resolved

manner–global statistical characteristics (L and C) of functional

brain networks that we derive from ongoing multichannel EEG

data recorded non-invasively from healthy subjects and from

epilepsy patients during a neuropsychological test schedule.

Chronic epilepsy and its treatment is known to impair cognitive

processes and to induce functional reorganization and behavioral

compensation [61–63]. Investigating both healthy subjects and

epilepsy patients thus provides a spectrum of recall performances

that is required to study possible relationships between learning-

induced network modifications and memory.

Materials and Methods

Ethics statement
The study was approved by the local Ethical Committees, and

all subjects gave written informed consent.

Subjects
Thirteen patients (age mean of 36+11 years; 8 females; mean

duration of epilepsy 19+9 years) with pharmacoresistant epilep-

sies of suspected temporal or extratemporal neocortical origin as

well as twenty healthy controls (age mean of 32+8 years; 10

females) were included in the study. All patients had been

submitted for pre-surgical evaluation at the University of Bonn

Epilepsy Program [64]. Seven patients were diagnosed as having a

unilateral temporal lobe epilepsy (mesial seizure-onset zone in four

patients and lateral seizure-onset zone in three patients). In five

patients the seizure-onset zone was located in neocortical

structures (central, parietal, parieto-central, parieto-occipital),

and one patient was diagnosed as having multiple seizure-onset

zones. Surgery was performed in eleven patients (selective

amygdalohippocampectomy; extended lesionectomy) and led to

complete seizure control in six patients.

Neuropsychological test schedule and EEG recordings
Before participating in the neuropsychological test schedule,

subjects were informed about its general outline. They will be

asked to learn a set of words (learning task) and later on, to

remember the learned words (retrieval task). They will also be

asked to perform an extra control task during which they just have

to listen to words, however they were not informed about a

subsequent retrieval task. The test schedule thus consisted of two

blocks of tasks which involved incidental (block 1) or intentional

(block 2) learning and retrieval of verbal material (cf. Figure 1):

N Block 1: during a learning task (Tl
1) subjects were orally

presented 15 highly frequent German nouns (cf. [65]) five

times in randomized order. During the retrieval task (Tr
1)

subjects were asked to freely recall words they listened to

during Tl
1.

N Block 2: during a learning task (Tl
2) subjects were required to

learn 15 highly frequent German nouns (different from those

presented duringTl
1) that were orally presented five times in

randomized order. During the retrieval task (Tr
2) subjects were

asked to freely recall words memorized during Tl
2.

Learning and retrieval tasks lasted 3 minutes each and were

separated by a figural fluency task (to minimize recency effects, to

discourage verbal rehearsal, and to avoid interference of any

verbal information with the learned verbal material) of 1 minute

duration followed by a rest phase of 3 minutes duration. Blocks

were separated by a rest phase (with eyes open) of 5 minutes

duration, and a baseline recording (Tb) of 5 minutes was

performed with eyes open preceding the experiment. In order to

minimize possible order effects, we balanced the sequence of the

blocks over subjects.

The number of correctly retrieved words (N1 and N2; excluding

perseverations) during the retrieval tasks served as measure of

verbal memory (recall performance). Control subjects recalled

9.163.5 (range: 3–14) words (N1) during Tr
1, and 11.562.8 (range:

6–15) words (N2) during Tr
2. Epilepsy patients recalled 5.663.6

(range: 0–11) words (N1) during Tr
1, and 7.763.5 (range: 3–13)

words (N2) during Tr
2. The correlation between N1 and N2

(Pearson’s correlation coefficient; control subjects:

r~0:6,pv0:01; epilepsy patients: r~0:63,pv0:05) as well as

the difference between the distributions of performance measures

(t-tests; both groups: pv0:05) proved significant. Control subjects

performed significantly better than epilepsy patients (t-tests; both

tasks: pv0:02), and both groups showed a significantly increased

recall performance during Tr
2 (t-tests; both groups: pv0:05).

During the whole examination procedure EEG data were

acquired continuously at a sampling rate of 254.31 Hz (16 bit A/

D conversion) within a bandwidth of 0–50 Hz from 29 electrodes,

and right mastoid served as physical reference. Locations and

nomenclature of these electrodes are standardized by the

American Electroencephalographic Society [66]. In addition, we

recorded right horizontal and vertical electrooculogram. In order

to minimize the influence of technical (e.g., amplifier resets) and

physiologic artifacts (e.g., eye movements/blinks or head move-

ments) we applied a wavelet-based correction scheme as described

in detail elsewhere [67].

Patients were investigated, on average, seven days prior to pre-

surgical evaluation with blood levels of the anticonvulsant

medication within the therapeutic range.

Construction of functional networks
To construct functional networks from EEG data we associated

network nodes with EEG electrodes (K~29) and inferred network

links by estimating interdependencies between EEG time series

from pairs of brain regions, regardless of their anatomical

connectivity. For this purpose, and motivated by an increasing

evidence for (phase) synchronization between distant brain areas

to play an important role in learning- and memory-related

processes [49,68,69], we employed the concept of time-variant

phase coherence [70] which is an established method for studying

time-variant changes in phase synchronization. The mean phase

coherence [71]

rmn~
1

N

XN{1

j~0

exp i Wm(j){Wn(j)ð Þ
�����

�����: ð1Þ

is the temporal average of the differences of the instantaneous

phases W of time series from nodes m and n, and N denotes the

number of data points. By definition, rmn is confined to the interval

[0,1] where rmn~1 indicates fully phase-synchronized systems. We

used the analytic signal approach [72,73] with which instanta-

neous phases are obtained from the Hilbert transform of a time

series. An important property of the analytic signal approach is

that the the instantaneous frequency–in case of two or more
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superimposed oscillatory components–relates to the predominant

frequency in the Fourier spectrum [74,75] which may be subject to

fluctuations in the time series. In such a case the instantaneous

frequency varies rhythmically around the predominant frequency

resulting in spurious estimates of the instantaneous phase.

However, such effects can be reduced by taking the temporal

average (cf. Eq. 1) or by applying adaptive approximation methods

proposed recently [76]. From an electrophysiological point of

view, we consider it more reasonable to look adaptively (via the

Hilbert transform) at synchronization between predominant

rhythms in the EEG than to look at synchronization in some a

priori fixed frequency bands (e.g., via wavelet) for which there is no

power in the time series (cf. Refs. [75,77,78]).

For further analyses and to allow an interval-based estimation of

the mean phase coherence, we split the EEG time series into

consecutive time intervals of 16.1 s duration each (corresponding

to N~4096 data points) and estimated, for each time interval, the

elements rmn of the phase synchronization matrix R. From this

matrix we constructed binary networks using a thresholding

approach, and set the non-diagonal elements of the adjacency

matrix A to amn~1 if the corresponding entry rmn of R exceeded a

threshold h, and to amn~0 otherwise (amm~0 Vm). The choice

of a threshold is not trivial, and there is currently no commonly

accepted method to infer links from estimators of signal

interdependence. However, since the number of nodes and the

link density can affect network characteristics [79–85] precautions

must be taken to minimize such influences when comparing

between different networks. In order to determine h we requested

that the networks are sparse (k%K ) and that they do not

disintegrate into unconnected network components as this leads to

infinite values for the average shortest path length. Connectedness

is guaranteed for mean degrees kw ln (K), at least for random

networks [86], and with the fixed number of nodes K~29 we

obtained a mean degree k~4, such that ln (K)vk%K holds.

Computation of statistical network characteristics
Here we considered the average shortest path length L and the

clustering coefficient C as global statistical characteristics of a

functional brain network. We used an algorithm proposed in Ref.

[87] to determine the shortest paths between all pairs of nodes

from the adjacency matrix A. The length of the shortest path Lmn

between two nodes m and n is the minimum number of links to

traverse in order to get from m to n (or vice versa). With this

definition we derived the average shortest path length L of the

network by taking the average of all Lmn (m=n) with Lmnv?.

The clustering coefficient Cm for node m can be defined as (see,

e.g., [1]):

Cm~

1

km(km{1)

X
j,l

amlaljajm, kmw1

0, km[f0,1g

0
@ ð2Þ

where km denotes the degree, i.e., the number of in- or out-going

connections of node m. We averaged Cm over all nodes to obtain

the clustering coefficient C of a network.

In the following, we consider the baseline recording (Tb) and the

learning tasks (Tl
1 and Tl

2) only. We omitted the retrieval tasks (Tr
1

and Tr
2) and the figural fluency task in order to avoid the influence

of movement-related artifacts. With the interval-based estimation

of interdependencies we obtained for each subject 11 intervals for

Tl
1 and for Tl

2 and 18 intervals for Tb. Averaging over intervals

resulted in mean network characteristics which we denote as Lt

and Ct (the suffix t denotes task).

Results

Task-related modifications of functional brain networks
In Figure 2 we show, for an exemplary epilepsy patient and an

exemplary control subject, temporal evolutions of the network

characteristics during different neuropsychological tasks. Indepen-

dent of tasks, both characteristics exhibited considerable fluctua-

tions over time, and the patient’s fluctuations were more

pronounced. In both subjects, the learning tasks (Tl
1 and Tl

2) did

not appear to modify the average shortest path length of the

functional brain networks, as we could not observe clear-cut

differences in L between any tasks. The same holds true for the

clustering coefficient of the patient’s functional brain network. For

the control subject however, the intentional learning task (Tl
2) led

to a significant increase of the clustering coefficient C (when

compared to both Tb and Tl
1; t-tests; pv0:05). Both network

characteristics attained slightly higher values in the control subject

during all tasks. When comparing the characteristics’ distributions

from the patient group and the control group however, we could

not observe any significant differences between the groups despite

their significantly different recall performances. For the binary

networks considered here, this observation is in line with our

previous results [67]. In the following, we present our findings

obtained from merged groups.

In order to investigate whether the aforementioned influences of

neuropsychological tasks on network characteristics extend beyond

exemplary data, we estimated–for all subjects and each task–

statistical properties of the distributions of L and C and evaluated

possible differences between tasks (ANOVA with Greenhouse-

Geisser and Huynh-Feldt corrections for departure from spheric-

ity; pv0:05). The distributions differed between tasks for the

clustering coefficient but not for the average shortest path length.

Figure 1. Neuropsychological test schedule. The schedule consists of two blocks of tasks which involve incidental (block 1) or intentional (block
2) learning and retrieval of verbal material. Each block is preceded by a rest phase of 5 minutes duration. Learning tasks (Tl

1 and Tl
2 , 3 minutes

duration) are followed by a figural fluency task (FF, 1 minutes duration) and a rest phase of 3 minutes duration. Retrieval tasks (Tr
1 and Tr

2 , 3 minutes
duration) consist of a free recall of words listened to/memorized during the respective learning task.
doi:10.1371/journal.pone.0080273.g001
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From the box-plots shown in Figure 3 it can be deduced that both

learning tasks did not significantly modify the average shortest

path length L of the functional networks. The intentional learning

task Tl
2, however, led to a small but significant increase of the

networks’ clustering coefficient (CTl
2
wCTl

1
and CTl

2
wCTb

; t-tests;

pv0:05).

Relationship between network modifications and recall
performance

We investigated whether network modifications induced during

the learning tasks (Tl
1 and Tl

2) are related to the number of words

(N1 and N2) subjects recalled during the subsequent retrieval tasks

(Tr
1 and Tr

2). Given the high interindividual variability (cf. Figure 3)

we focused on the relative deviation of the average shortest path

length and of the clustering coefficient during the learning tasks

from the respective values during the baseline recording Tb, i.e.

L�t ~ Lt{LTb

� �
=LTb

and C�t ~ Ct{CTb

� �
=CTb

, where t denotes

Tl
1 and Tl

2, respectively.

For the whole group of subjects, both characteristics deviated up

to 20% from the baseline (cf. Figure 4). On average, however,

deviations of the average shortest path length were close to zero

(0.3% for Tl
1; 0.2% for Tl

2; no significant difference), while those of

the clustering coefficient amounted to 2.9% for Tl
2, being

significantly higher than the deviation for Tl
1 (0.2%; t-test;

pv0:05). Interestingly, only for the intentional learning task–for

which subjects were explicitly instructed to learn the presented

material–could we observe a significant positive correlation

(Pearson’s correlation coefficient r~0:40; p~0:03; cf. Figure 5)

between the relative clustering coefficient C�
Tl

2

and the number N2

of subsequently retrieved words. Due to the aforementioned

significant correlation between the recall performances, C�
Tl

2

was

also positively correlated to the number of words N1 acquired

during Tl
1 (Pearson’s correlation coefficient r~0:37; p~0:05). Of

note, there were no significant correlations between the recall

performances and the characteristics L and C of the networks

from the baseline recording Tb.

Conclusions

We investigated whether functional brain networks are differ-

entially modified during incidental and intentional learning of

verbal episodic material and whether modifications are related to

subsequent recall performance. We assessed the two global

statistical characteristics–clustering coefficient and average shortest

Figure 2. Exemplary temporal evolutions of global statistical network characteristics during different neuropsychological tasks.
Time courses of average shortest path length L (left) and clustering coefficient C (right) from an epilepsy patient (red lines) and a control subject
(black lines). Baseline recording (Tb); incidental learning task (Tl

1); intentional learning task (Tl
2). Lines are for eye-guidance only.

doi:10.1371/journal.pone.0080273.g002

Figure 3. Comparison of the distributions of global statistical network characteristics from 33 subjects for different
neuropsychological tasks. Box-plots of the average shortest path length L (left) and the clustering coefficient C (right) for the baseline
recording (Tb) and for the incidental (Tl

1) and the intentional learning task (Tl
2). Bottom and top of a box are the first and third quartiles, and the band

inside a box is the median. The ends of the whiskers represent the minimum and maximum of the data.
doi:10.1371/journal.pone.0080273.g003
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path length–of functional brain networks that we derived from

ongoing multichannel EEG data recorded from 33 subjects during

a neuropsychological test schedule. Despite the fact that learning

and memory-related processes involve structures of the lateral and

mesial temporal lobes, whose dynamics may not be directly

accessible with non-invasive EEG recordings, we observed

differential learning-related modifications of the networks’ global

statistical properties. While there were no detectable modifications

of the average shortest path length, networks attained a

significantly higher clustering coefficient during intentional learn-

ing as compared to incidental learning and to the resting state.

Interestingly, modifications during intentional learning even

allowed us to predict the subsequent recall performance: the more

pronounced the modifications of the clustering coefficient the

Figure 4. Comparison of the distributions of task-induced modifications of global statistical network characteristics. Box-plots (see
Figure 3 for details) of the relative deviation of the average shortest path length L� (left) and of the clustering coefficient C� (right) during the

learning tasks (Tl
1 and Tl

2) from the respective values during the baseline recording Tb .
doi:10.1371/journal.pone.0080273.g004

Figure 5. Relationships between task-induced modifications of global statistical network characteristics and recall performances.
Scatterplots of relative deviations of the average shortest path length L� (top) and of the clustering coefficient C� (bottom) during incidental Tl

1 (left)
and intentional learning Tl

2 (right) from the respective values during the baseline recording and subsequent recall performances N1 and N2. A
significant correlation could only be observed between the relative clustering coefficient C�

Tl
2

and the number N2 of recalled words during Tr
2 (linear

regression is represented with a solid black line).
doi:10.1371/journal.pone.0080273.g005
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higher the recall performance. An elevated clustering coefficient

might be indicative of an increased occurrence of small but tightly

connected groups of network nodes. Identification of these groups

(or communities) using appropriate analysis techniques [88,89]

may aid in further exploration of the biological relevance of

communities [29] and may provide novel insights into the

relationship between the topology of functional brain networks

and cognitive functions.

Our findings are in line with some previous reports on task-

related modifications of global properties of functional brain

networks and their relationship to task performance (e.g.

[19,24,29,35]) and support the view that higher cognitive

functions–such as learning- and memory-related processes–result

from dynamic interactions of distributed brain areas operating in

large-scale networks. The differences seen for intentional and for

incidental learning, however, indicate that task-induced topolog-

ical changes of functional brain networks may not only reflect the

cognitive process per se but also attentional effects [90–92].

Exploring the interactions between attention-related networks and

those important for learning and memory remains a challenging

task.
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