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Abstract

Reconstruction of host-pathogen protein interaction networks is of great significance to reveal the underlying microbic
pathogenesis. However, the current experimentally-derived networks are generally small and should be augmented by
computational methods for less-biased biological inference. From the point of view of computational modelling, data
scarcity, data unavailability and negative data sampling are the three major problems for host-pathogen protein interaction
networks reconstruction. In this work, we are motivated to address the three concerns and propose a probability weighted
ensemble transfer learning model for HIV-human protein interaction prediction (PWEN-TLM), where support vector machine
(SVM) is adopted as the individual classifier of the ensemble model. In the model, data scarcity and data unavailability are
tackled by homolog knowledge transfer. The importance of homolog knowledge is measured by the ROC-AUC metric of the
individual classifiers, whose outputs are probability weighted to yield the final decision. In addition, we further validate the
assumption that only the homolog knowledge is sufficient to train a satisfactory model for host-pathogen protein
interaction prediction. Thus the model is more robust against data unavailability with less demanding data constraint. As
regards with negative data construction, experiments show that exclusiveness of subcellular co-localized proteins is unbiased
and more reliable than random sampling. Last, we conduct analysis of overlapped predictions between our model and the
existing models, and apply the model to novel host-pathogen PPIs recognition for further biological research.
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Introduction

Accurate mapping of protein interactome is essential to reveal

protein functions, biological processes, signal transduction path-

ways. In recent years, although high throughput experimental

techniques have drastically accumulated much knowledge about

protein-protein interactions (PPI), the derived PPI networks are far

incomplete and noisy [1,2]. As a good complement to the labour-

intensive biological experiments, computational methods can

accelerate the reconstruction of PPI networks at low cost [3].

At present most of the existing computational methods are

developed for intra-species PPI networks reconstruction, e.g. yeast

PPI network [3], Arabidopsis thaliana PPI network [4], human PPI

network [5], etc. As compared to intra-species PPI networks

reconstruction, inter-species host-pathogen PPI networks (the

interacting partners are from two different species) reconstruction

is faced up with more challenges in that the scale of the host-

pathogen PPI networks is generally rather small. Small PPI

network results in data scarcity that would easily lead to poor

generalization ability of computational model. Data integration is an

effective method to compensate for data scarcity. By simultaneously

leveraging a catalog of biological feature information, data

integration can greatly increase the information abundance for

sufficient model training. Tastan et al. [6] applied Random Forest to

integrate the feature information of binding motif, gene expression

profile, gene ontology, sequence similarity, post-translational modification,

tissue distribution and PPI network topology for HIV-human protein

interaction prediction. Based on the work, Qi et al. [7] further

proposed a semi-supervised multi-task learning method to exploit

the weakly labelled data. Dyer et al. [8] combined protein domain

profile, sequence k-mer and PPI network properties for HIV-human

protein interaction prediction. For another pathogenetic microbe

Plasmodium falciparum, Dyer et al. [9] combined protein domain profile,

gene expression, gene ontology and gene co-expression to predict and

validate the host-pathogen protein interactions. Wuchty S [10]

combined sequence k-mer, interlog, gene ontology and signal transduction

pathways to predict and validate the protein interactions between

Plasmodium falciparum and Homo sapiens. In the latter two models, the

validation information (gene co-expression, signal transduction pathways,

gene ontology) was used to manually filter the predicted PPIs. It has

been claimed that gene ontology (GO) is one of the strongest indicators

for host-pathogen PPI prediction [6] and intra-species PPI

prediction [3,4,11,12,13,14,15,16,17] among the catalog of feature

information. The work [14] explained the reasons why GO feature

outperformed the other feature information based on the

observations: (1) proteins localized in identical cellular compartments

are more likely to interact than are proteins that reside in spatially

distant compartments; (2) proteins that participate in similar

biological processes or perform similar molecular functions are likely to

interact. Hence the three aspects of gene ontology (cellular compartments,
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biological processes and molecular functions) are informative to indicate

PPI.

Although data integration can simultaneously exploit multiple

aspects of biological knowledge, the difficulty in availability of

some feature information such as gene co-expression poses a great

challenge on host-pathogen PPI networks reconstruction [9]. Once

the feature information is unavailable for the proteins to be

predicted, the data integration methods [4,6,7,11,16] would fail to

work. Even for those methods that exploit only one type of non-

sequence feature information (e.g. gene ontology) [14], data integration

would also fail to work because the information required for

prediction (e.g. GO annotations) may be potentially not available.

For the reasons, data integration model should deliberately take into

account the case of data unavailability and provide effective solutions

to information substitution. Less demanding data constraint

helps the model gain wide applicability. Like the other feature

information, structural similarity, is also a strong indicator of protein-

protein interaction. Doolittle et al. [18] exploited the information

of protein structural similarity to predict host-pathogen PPI.

However, the potential unavailability of the spatial structural

information would likewise restrict the model application. As

compared to the costly feature information such as structural

information, gene ontology, gene co-expression and metabolic pathways, etc.,

obtaining protein sequence information is less expensive, thus the

computational model based on protein sequence only has the least

data constraint nearly without the problem of data unavailability.

Unfortunately, the work [19] argued that protein sequence alone

was not sufficient to train a satisfactory model for PPI prediction.

HIV-human PPI prediction can be viewed as a problem of 2-

class classification that needs both positive data and negative data to

define the decision function. Positive data contains the information

of interaction and negative data contains the information of non-

interaction. Unfortunately, there are far few experimentally

derived negative data available to computational modelling for

host-pathogen PPI networks reconstruction. At present negative

data construction is a hard-tackling problem and the common

method is random sampling. Random sampling is simple but has the

demerits of model uncertainty and potential inclusion of interact-

ing protein pairs. The work [20] proposed one-class Biclustering

method to mine association rules from the positive data for HIV-

human PPI prediction. Biclustering need not construct the negative

data, so that the computational modelling is much simplified.

However, the model that does not learn the non-interacting patterns

would run the risk of high rate of false positive.

In this work, we are motivated to address the concerns of data

scarcity, data unavailability and negative data sampling for HIV-human

PPI prediction. To reduce data dependency, we choose gene ontology

as the only feature information for host-pathogen PPI prediction.

Unlike the existing GO-based PPI prediction models [3,4,6,7,

11,12,13,14,15,16,17], we attempt to exploit the homolog GO

information (GO annotations from the homologs) to compensate

for data scarcity and data unavailability. We deliberately investigate

the assumption that only the homolog GO information is sufficient

to train a satisfactory model for HIV-human PPI prediction. If the

assumption is validated, effective information substitution could

make the model more robust against data unavailability with less

demanding data constraint. To validate the assumption, we

conduct three experimental settings, namely the Optimistic case, the

Moderate case and the Pessimistic case. The Optimistic case assumes that

both the target GO information (GO annotations from the protein

itself) and the homolog GO information are available for model

training and model evaluation. Good performance can indicate

that data scarcity is properly tackled to a certain degree. The

Moderate case assumes that the target GO information of the test

data is not available and the Pessimistic case assumes that the target

GO information of the training data and the test data is not

available. If any of the two cases achieves good performance, it can

be convincingly concluded that data unavailability is well tackled. As

regards with negative data sampling, we further conduct two

experimental settings for each case, one is random sampling and

the other is exclusiveness of subcellular co-localized proteins. All the tasks

are implemented by our proposed probability weighted ensemble

transfer learning model (PWEN-TLM). The target GO information

and the homolog GO information are used to train individual

support vector machine (SVM) and are assigned different weights

according to their contributions to the model performance. The

merit is that the weights could depress the potential noise from the

homolog GO information. To investigate the importance of

molecular functions, cellular compartments and biological processes (three

aspects of gene ontology) to HIV-human PPI prediction, the three

aspects of the target GO information and the homolog GO

information are used to train three individual classifiers respec-

tively, thus there are totally 6 individual classifiers. The ensemble

classifier yields the final decision in the form of probability by

linearly weighting the probability outputs of the individual

classifiers. For critical model performance estimation, we conduct

cross validation, independent test and novel PPI detection on the

benchmark HIV-human PPI dataset [21].

Methods

Transfer Learning
Transfer learning is a hot research topic in machine learning

community. As compared to traditional supervised learning,

transfer learning aims at leveraging useful information from

auxiliary data. In most cases, the auxiliary data and the target data

show different distributions or heterogeneous representations [22].

Especially in bioinformatics field, the biological data from different

laboratories are usually subjected to different distributions,

heterogeneous representations and noise levels [23]. Thus it is

necessary for us to develop sophisticated transfer learning models

to exploit useful information from the auxiliary data for the target

domain learning. The work [24,25,26] proposed several non-

parametric multiple kernel learning based transfer learning models

(GO-TLM, MK-TLM and MLMK-TLM) to reduce the risk of

negative knowledge transfer. In this work, we propose a probability

weighted ensemble learning model (PWEN-TLM) to transfer the

homolog GO information to enrich or substitute for the target GO

information. As compared to multiple kernel learning based

transfer learning models, the ensemble based transfer learning

method can take full advantages of SVM (support vector machine)

sparseness to reduce the computational complexity. The details are

described in the section Probability weighted ensemble learning.

GO Feature Construction
The homologs are extracted from SwissProt 57.3 database [27]

using PSI-BLast [28]. Here we adopt the default parameters setting

(e.g. default E-value = 10) to enlarge the GO term coverage. The GO

terms are extracted from the latest GOA database [29] (114

Release, as of 28 November, 2012). For each protein i, we separate

the target set of GO terms (denoted as Si
T
) from the homolog set of

GO terms (denoted as Si
H

), and further divide Si
T
,Si

H
into three

subsets corresponding to the three aspects of gene ontology, denoted

as Si
T ,F

,Si
T ,C

,Si
T ,P

; Si
H,F

,Si
H,C

,Si
H,P

, respectively. Here T denotes the

target protein, H denotes the homolog protein, F denotes molecular

functions, C denotes cellular components and P denotes biological

processes. It is noted that the term target here is used to denote the
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protein itself (comparative to homolog), it does not refer to the virus-

targeted protein. Let capital I denote the set of proteins, then the

total set of GO terms can be defined as follows:

SI
u,v~|

i[I
Si

u,v
,u[fT ,Hg,v[fF ,C,Pg ð1Þ

Based on the denotations, we can formally define the feature

vector for each PPI pair (i1,i2) as follows:

Bu,v½g�~
0,g=[S

i1
u,v ^ g=[S

i2
u,v

2,g[S
i1
u,v ^ g[S

i2
u,v

1,otherwise

8><
>: g[SI

u,v,u[fT ,Hg,v[fF ,C,Pg ð2Þ

where Bu,v½g� denotes the component g of PPI feature vector Bu,v

(each PPI pair follows the same feature representation, so we use

Bu,v instead of B(i1,i2)
u,v

as the general definition). Formula (2) means

that if the interacting protein pair shares the same GO term g, then

the corresponding component in the feature vector B is set 2; if

neither protein in the protein pair (i1,i2) possesses GO term g, then

the value is set 0; otherwise the value is set 1. From the formula, we

can see that the above definition is symmetrical, i.e., (i1,i2) and

(i2,i1) have identical feature representation, thus the order of the

proteins in each protein pair does not change the feature

representation.

Probability Weighted Ensemble Learning
Sparseness is one of the graceful characteristics of SVM, which

means that the parameters are optimized on a small working set

instead of the whole training set [30]. Kuhn-Tucker Theorem states

that only the training examples that lie on the surface of the

optimal hypersphere have their corresponding Lagrange parameters

non-zero, and the corresponding Lagrange parameters are all zero

Figure 1. ROC curve on S1 dataset. The negative data is constructed by the negative data sampling method of exclusiveness of subcellular co-
localized proteins. The ROC curves in red, blue and green indicate the performance for the Optimistic case, the Moderate case and the Pessimistic case,
respectively.
doi:10.1371/journal.pone.0079606.g001

Figure 2. Precision-Recall (PR) curve on S1 dataset. The negative data is constructed by the negative data sampling method of exclusiveness of
subcellular co-localized proteins. The PR curves in red, blue and green indicate the performance for the Optimistic case, the Moderate case and the
Pessimistic case, respectively.
doi:10.1371/journal.pone.0079606.g002
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for the remaining examples. The training examples with non-zero

Lagrange parameters are referred to as support vectors. Only the

support vectors are informative to support the optimal hypersphere

and the other data can be discarded. Assuming there are ‘ training

data, the working set that helps define the final decision function

generally contains rather small number of data points d, d%‘,
that’s, we only need to compute the kernel matrix on the working set

(O(d2)) instead of the whole training dataset (O(‘2)), thus the

runtime complexity and the space complexity are greatly reduced.

In our method, the six independent individual SVMs (denoted as

SVMu,v,u[fT ,Hg,v[fF ,C,Pg) trained by the six feature vectors

(Bu,v,u[fT ,Hg,v[fF ,C,Pg) have time complexity O(6d2), much

smaller than the multiple kernel learning method O(6‘2).

Traditional two-class labels {21, +1} are not convenient to

reveal the confidence level of the prediction. Probability output is a

good alternative to the classical 2-class output and is especially

applicable to vote-weighted ensemble learning for the final

decisions combination. Platt [31] proposed a method to yield

posterior class probability output for binary SVM as defined below:

hy(x)~p(yDx)~1=(1zeAf (x)zB) ð3Þ

where the coefficient A and B can be derived from data by cross

validation, and f(x) is the decision value of binary SVM. The final

decision function of the ensemble classifier is defined as follows:

l(x)~ max argj(
X

u[fT ,Hg

X
v[fF ,C,Pg

wu,v|p(u,v),j),j~{1,z1 ð4Þ

where x denotes the test protein, wu,v,u[fT ,Hg,v[fF ,C,Pg
denotes the weight of the individual classifier SVMu,v,u[fT ,Hg,
v[fF ,C,Pg and p(u,v),j denotes the probability that the individual

classifier SVMu,v,u[fT ,Hg,v[fF ,C,Pg assigns protein x to the jth

class. ROC curve [32] is a frequently-used statistical tool to

illustrate the predictive performance of 2-class classification. In this

work, we use AUC score (area under the ROC curve) to measure

the individual SVM weight wu,v,u[fT ,Hg,v[fF ,C,Pg:

wu,v~AUCu,v

,P
u

P
v

AUCu,v
,u[fT ,Hg,v[fF ,C,Pg ð5Þ

where AUCu,v,u[fT ,Hg,v[fF ,C,Pg can be derived by 2-fold

cross validation on the training set. The individual

SVMu,v,u[fT ,Hg,v[fF ,C,Pg adopts Gaussian kernel defined as

follows:

K(x,y)~ exp ({cDDx{yDD2) ð6Þ

where DDDDdenotes 2-norm of a vector, and the hyperparameter c
controls the flexibility of the kernel.

Model Evaluation and Model Selection
We design three experimental settings, namely the Optimistic case,

the Moderate case and the Pessimistic case, to validate the assumptions

that the homolog GO information is useful to tackle the problems

of data scarcity and data unavailability. To formally define the three

cases, we first define the following sets:

Table 1. Cross validation performance estimation on dataset S1.

PWEN-TLM-I (Optimistic) PWEN-TLM-II (Moderate) PWEN-TLM-III (Pessimistic)

SP SE MCC SP SE MCC SP SE MCC

Positive (interacting) 0.8774 0.8282 0.7439 0.6015 0.9612 0.5733 0.8160 0.7804 0.6589

Negative (non-interacting) 0.8373 0.8843 0.7471 0.9036 0.3631 0.4604 0.7896 0.8241 0.6631

[AUC;Acc;MCC] [0.9326; 85.62%; 0.7446] [0.8155; 66.22%; 0.4606] [0.8735;80.22%;0.6605]

doi:10.1371/journal.pone.0079606.t001

Figure 3. Individual SVM weight distribution on S1 dataset. The negative data is constructed by the negative data sampling method of
exclusiveness of subcellular co-localized proteins. The horizontal axis is the combination of two sets {T, H} and {F,C, P}. T denotes the target protein, H
denotes the homolog protein; F denotes molecular function, C denotes cellular component and P denotes biological process.
doi:10.1371/journal.pone.0079606.g003
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Strain
u ~ |

i[I1

|
v[fF ,C,Pg

Si
u,v

u[fT ,Hg

Stest
u ~ |

i[I2

|
v[fF ,C,Pg

Si
u,v

u[fT ,Hg
ð7Þ

where I1,I2 denote the training set and the test set, Strain
u u[fT ,Hg

denotes the target GO term set and the homolog GO term set of the

training data, Stest
u u[fT ,Hg denotes the target GO term set and

the homolog GO term set of the test data. Based on the notations,

we can formally define the three cases as follows:

1:PWEN{TLM{I(Optimistic) :

(Strain

T
=w ^ Stest

T
=w) ^ (Strain

H
=w ^ Stest

H
=w)

2:PWEN{TLM{II(Moderate) :

(Strain

T
=w ^ Stest

T
~w) ^ (Strain

H
=w ^ Stest

H
=w)

3:PWEN{TLM{III(Pessimistic) :

(Strain

T
~w ^ Stest

T
~w) ^ (Strain

H
=w ^ Stest

H
=w)

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

From the formula, we can see that both the training set and the

test set abound in target GO information in the Optimistic case, the

Figure 4. ROC curve on S2 dataset. The negative data is constructed by by the negative data sampling method of random sampling. The ROC
curves in red, blue and green indicate the performance for the Optimistic case, the Moderate case and the Pessimistic case, respectively.
doi:10.1371/journal.pone.0079606.g004

Figure 5. Precision-Recall (PR) curve on S2 dataset. The negative data is constructed by by the negative data sampling method of random
sampling. The PR curves in red, blue and green indicate the performance for the Optimistic case, the Moderate case and the Pessimistic case,
respectively.
doi:10.1371/journal.pone.0079606.g005
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test set contains no target GO information in the Moderate case, and

neither the training set nor the test set contains target GO

information in the Pessimistic case. In the Moderate case, we substitute

the homolog GO information Stest
H

for the missing target GO

information Stest
T

. In the Pessimistic case, we use the homolog GO

information (Strain
H

,Stest
H

) alone.

We conduct model estimation and mode selection by two-level

cross validation. The outer 3-fold cross validation is conducted for

model estimation and the inner 2-fold cross validation is

conducted to derive the weights of individual SVM classifiers.

For the outer 3-fold cross validation, the dataset is randomly

divided into three nearly-even disjoint subsets that have the same

distributions as the original dataset (stratified cross validation). For

each outer fold, one subset is used as test set and the other two

subsets are merged as training set, which repeat three times until

all data are estimated. Within each outer fold, 2-fold inner cross

validation is further conducted for weight derivation on the

training set.

HIV-1 protein can be catalogued as Env, Gag, Nef, Pol, Rev,

Tat, Vif, Vpr and Vpu [21]. For the sake of critical assessment of

model performance, we also conduct several independent tests by

treating one catalogue of HIV-1 proteins (e.g. Env) as independent

test set and the other catalogues of HIV-1 proteins (e.g. Gag, Nef,

Pol, Rev, Tat, Vif, Vpr, Vpu) are merged as training set. In such a

way, the independent test is more challenging because the test data

(e.g. Env) have no corresponding training data in the training set

(e.g. Gag, Nef, Pol, Rev, Tat, Vif, Vpr, Vpu). Wide variance

between the test set and the training set helps conduct more

critical performance estimation on the proposed model.

The model performance is measured by Receiver Operating

Characteristic (ROC) AUC (Area Under Curve) (ROC-AUC), Precision

recall curve AUC (PR-AUC), Specificity (SP), Sensitivity (SE) and MCC

(Matthews correlation coefficient). The performance metrics SP, SE and

MCC can be calculated through confusion matrix M. By means of

the intermediate variables defined as formula (9), we can calculate

SP, SE and MCC for each label (SPl, SEl and MCCl) by formula

(10), and further calculate the overall accuracy (Acc) and the overall

MCC (MCC) by formula (11).

pl~Ml,l ,ql~
XL

i~1,i=l

XL

j~1,j=l

Mi,j ,rl~
XL

i~1,i=l

Mi,l ,sl

~
XL

j~1,j=l

Ml,j

p~
XL

l~1

pl ,q~
XL

l~1

ql ,r~
XL

l~1

rl ,s~
XL

l~1

sl

ð9Þ

SPl~pl=plzrl
,l~1,2:::,L

SEl~pl=plzsl
,l~1,2:::,L

MCCl~(plql{rlsl)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(plzrl)(plzsl)(qlzrl)(qlzsl)
p

,l

~1,2:::,L

ð10Þ

Acc~
XL

l~1
Ml,l

.XL

i~1

XL

j~1
Mi,j

MCC~(pq{rs)
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(pzr)(pzs)(qzr)(qzs)
p ð11Þ

Table 2. Cross validation performance estimation on dataset S2.

PWEN-TLM-I (Optimistic) PWEN-TLM-II (Moderate) PWEN-TLM-III (Pessimistic)

SP SE MCC SP SE MCC SP SE MCC

Positive (interacting) 0.8413 0.7988 0.6926 0.5832 0.9560 0.5515 0.7811 0.7622 0.6175

Negative (non-interacting) 0.8085 0.8494 0.6966 0.8780 0.3167 0.4143 0.7678 0.7864 0.6204

[AUC;Acc;MCC] [0.9005;82.41%;0.6393] [0.7661;63.63%;0.4258] [0.8518;77.43%;0.6188]

doi:10.1371/journal.pone.0079606.t002

Figure 6. Individual SVM weight distribution on S2 dataset. The negative data is constructed by by the negative data sampling method of
random sampling. The horizontal axis is the combination of two sets {T, H} and {F,C, P}. T denotes the target protein, H denotes the homolog protein;
F denotes molecular function, C denotes cellular component and P denotes biological process.
doi:10.1371/journal.pone.0079606.g006
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where the confusion matrix Mi,j records the counts that class i are

classified to class j and L denotes the number of labels. AUC is

calculated based on the weighted SVM decision values.

Results

Data and Materials
The interactions between HIV-1 and human proteins are taken

from the database available at http://www.ncbi.nlm.nih.gov/

projects/RefSeq/HIVInteractions/[21]. In order to acquire

corresponding gene ontology annotations, we map the protein

accessions to Uniprot accessions via the id mapping file available

at ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/

knowledgebase/idmapping/idmapping.dat.gz. After removing du-

plicate PPIs and putative PPIs, we totally get 3,638 PPIs including

539 Env PPIs, 487 Gag PPIs, 349 Nef PPIs, 272 Pol PPIs, 278 Rev

PPIs, 1,101 Tat PPIs, 126 Vif PPIs, 338 Vpr PPIs and 148 Vpu

PPIs. All the PPIs are treated as positive data. As far, there is no

gold-standard negative data available for model training and model

assessment. How to construct negative data is still a challenging

problem for PPI prediction. At present, the common practice to

generate negative data is random sampling from the huge protein-

protein pair space exclusive of those experimentally derived PPIs.

Unbiased as it is, random sampling would probably introduce a

certain level of noise. For the reason, the work [33] proposed to

exclude those subcellular co-localized proteins out of the negative data

(hereinafter called exclusiveness of subcellular co-localized proteins), based

on the common sense that subcellular co-localization is the premise

of protein-protein physical interaction. But even so, the method

still received criticism that the information about protein

subcellular localization is likely to dominate the prediction and

thus yields bias. In this work, we will compare the two methods of

negative data sampling and investigate whether or not exclusiveness of

subcellular co-localized proteins yields model bias. For simplicity of

reference, we call S1 the dataset with negative data exclusive of

subcellular co-localized proteins, and S2 the dataset with randomly

sampled negative data. Dataset S1 and S2 both contain 3,638 positive

data and 3,638 negative data.

How to determine the ratio of positive data to negative data is a

second concern to be addressed. The work [7,8] solved the

problem by introducing different ratio of positive data to negative

data (e.g. 1:1, 1:100) to train the model. Actually, the true ratio is

hard to determine and pooling so large a negative data makes little

sense to computational modelling. Contrarily, the adverse effect is

that extremely unbalanced training data would yield a highly

biased model. For the reason, we construct a negative data with the

same size as the positive data. To randomly select a quality and

representative negative data is a hard and important problem to

computational biologists, though maybe not so appealing to

experimental biologists. For reliable computational modelling,

experimental evidences of negatome should be collected and made

available to academic use.

Model comparison is a third concern for the reasons: (1) there is

no standard benchmark data available for model evaluation and

comparison; (2) some positive data are outdated and some novel

positive data are included; (3) random sampling of negative data yields

different training data; (4) there are no identical data partition of

cross validation, etc. Hence, what we can do is to conduct critical

assessment on the proposed model and conduct a rough comparison

with other models for biologists’ reference.

Model Performance Evaluation
Cross validation performance evaluation. Dataset S1

totally contains 7,672 data including 3,638 positive data and

3,638 negative data. The ROC curve for 3-fold cross validation on

dataset S1 is shown in Figure 1, where the ROC curves are drawn for

the three cases. In the Optimistic case, PWEN-TLM achieves ROC-

AUC score 0.9326, a little better than SMLR (ROC-AUC score

0.919) [7] that combined 16 catalogs of feature information

including gene ontology. From Figure 1, we can see that PWEN-TLM

performs the best in the Optimistic case (AUC = 0.9326), the second

in the Pessimistic case (AUC = 0.8735) and the worst in the Moderate

Table 3. Independent test performance estimation.

env gag nef pol rev tat vif vpr vpu

539 487 349 272 278 1,101 126 338 148

PWEN-TLM-I (Optimistic) 68.46% 81.34% 88.54% 51.84% 64.75% 52.04% 88.89% 80.77% 66.89%

PWEN-TLM-III (Pessimistic) 67.53% 65.91% 77.36% 54.04% 52.88% 55.77% 87.30% 81.66% 66.89%

doi:10.1371/journal.pone.0079606.t003

Figure 7. Degree distribution of the HIV-targeted human proteins in human PPI network. The horizontal axis denotes protein degree and
the vertical axis denotes the number of proteins that possess that degree.
doi:10.1371/journal.pone.0079606.g007
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case (AUC = 0.8156). The relatively small performance difference

between the Optimistic case and the Pessimistic case (ROC-AUC score

difference = 0.0591) demonstrates that PWEN-TLM still works

soundly when the target GO information is not available, and thus

the homolog GO information can be treated as an effective

substitute for the potentially unavailable target GO information. If

the protein pair to be predicted contains novel protein, we can

choose the model that is trained for the Pessimistic case. The results

that PWEN-TLM performs the worst in the Moderate case can be

explained that the heterogeneous distribution between Stest
T

and

Stest
H

deteriorates the model performance. The performance

deterioration reveals that data unavailability is an important concern

to be addressed for computational modelling. The data integration

model SMLR [7] did not deliberately dwell on the problem of data

unavailability.

Dyer et al. [8] adopted PR-AUC (AUC of Precision-Recall Curve) as

the performance metric of HIV-human PPI prediction. In their

work, the best PR-AUC score among different ratios of positive data

to negative data is 0.707. As compared to ROC Curve, Precision-Recall

Curve is more suited to highly skewed (extremely unbalanced) data

[34]. For comparison, we also plot Precision-Recall Curve and

indicate the corresponding PR-AUC score in Figure 2. As shown in

Figure 2, PWEN-TLM achieves PR-AUC score 0.9361, 0.8172 and

0.8799 in the Optimistic case, the Moderate case and the Pessimistic

case, respectively. The PR-AUC scores demonstrate that PWEN-

TLM significantly outperforms the baseline model (PR-AUC score

0.707) [7]. By comparing Figure 1 and Figure 2, we can see that

there is little difference between ROC-AUC score and PR-AUC

score. The reason is that dataset S1 is not skewed but perfectly

balanced with 1:1 ratio of positive data to negative data. Skewed training

data is prone to yield a biased model.

ROC curve plots the true positive rate against the false positive rate

and Precision-Recall curve plots the precision against recall. Both the

curves focus on the reliability of positive predictions, but the negative

Table 4. Predicted interactions between env_gp160 and human proteins.

GO
category Predicted interacting human partners

GO term GO description Rate Main cluster of interacting human partners

Biological
process

GO:0044267 cellular protein
metabolic process

23% Q9NR34[0.91];Q5I7T1[0.67];Q9NYU2[0.92];Q8N3T1[0.71];
Q9NY97[0.86];O43173[0.70];Q13454[0.72];Q9BV94[0.81];
O60476[0.91];Q8IUC8[0.70]

GO:0043687 post-translational
protein
modification

23% Q9NR34[0.91];Q5I7T1[0.67];Q9NYU2[0.92];Q8N3T1[0.71];Q9NY97[0.86];O43173[0.70];Q13454[0.72];
Q9BV94[0.81];O60476[0.91];Q8IUC8[0.70]

GO:0006486 protein
glycosylation

18% Q9NR34[0.91];Q5I7T1[0.67];Q9NYU2[0.92];Q8N3T1[0.71];Q9NY97[0.86];O43173[0.70];O60476[0.91];
Q8IUC8[0.70]

GO:0006457 protein folding 16% Q9UDY4[0.79];Q9NYU2[0.92];O14967[0.87];O60884[0.79];P30414[0.78];Q14696[0.81];Q9BV94[0.81]

GO:0006810 transport 9% P13866[0.75];Q01650[0.86];Q13454[0.72];>O75947[0.73]

GO:0006954 inflammatory
response

9% O43916[0.87];Q96E93[0.78];Q9NYK1[0.62];Q9H293[0.62]

GO:0045087 innate immune
response

7% Q96E93[0.78];Q9NYK1[0.62];Q9NY25[0.61]

Cellular
component

GO:0016020 membrane 77% O43916[0.87];Q86Z14[0.72];Q9NR34[0.91];Q9UDY4[0.79];O75509[0.63];P13866[0.75];Q96E93[0.78];
Q8IXI1[0.82];Q5I7T1[0.67];O14967[0.87];Q8N3T1[0.71];Q01650[0.86];P41732[0.63];O75096[0.61];
O60884[0.79];Q9NY97[0.86];P30414[0.78];O43173[0.70];P06126[0.82];Q9NYK1[0.62];P04062[0.79];
Q13454[0.72];P43626[0.66];Q9P035[0.89];Q9NY25[0.61];O75947[0.73];Q9H293[0.62];Q6UW60[0.69];
P23435[0.65];Q9BV94[0.81];O14548[0.71];O60476[0.91]0.70];P09669[0.77]

GO:0016021 integral to
membrane

57% O43916[0.87];Q86Z14[0.72];Q9NR34[0.91];O75509[0.63];P13866[0.75];Q96E93[0.78];Q8IXI1[0.82];
Q5I7T1[0.67];O14967[0.87];Q8N3T1[0.71];Q01650[0.86];P41732[0.63];O75096[0.61];Q9NY97[0.86];
O43173[0.70];P06126[0.82];Q9NYK1[0.62];Q13454[0.72];P43626[0.66];Q9P035[0.89];Q9NY25[0.61];
Q6UW60[0.69];O60476[0.91];Q8IUC8[0.70];P09669[0.77]

GO:0005886 plasma membrane 32% Q86Z14[0.72];Q9UDY4[0.79];O75509[0.63];P13866[0.75];Q96E93[0.78];Q8IXI1[0.82];Q5I7T1[0.67];
Q01650[0.86];O75096[0.61];P06126[0.82];Q9NYK1[0.62];P43626[0.66];Q9NY25[0.61];Q14696[0.81]

GO:0000139 Golgi membrane 18% O43916[0.87];Q9NR34[0.91];Q8N3T1[0.71];Q9NY97[0.86];O43173[0.70];Q9NYK1[0.62];O60476[0.91];
Q8IUC8[0.70]

Molecular
function

GO:0016787 hydrolase activity 20% Q9NR34[0.91];Q8IXI1[0.82];O00754[0.85];P04062[0.79];P04746[0.63];Q9NTJ4[0.74];Q9NRW3[0.67];
Q6UW60[0.69];O60476[0.91]

GO:0016740 transferase activity 18% O43916[0.87];Q08188[0.81];Q5I7T1[0.67];Q9NYU2[0.92];Q8N3T1[0.71];Q9NY97[0.86];O43173[0.70];
Q8IUC8[0.70]

GO:0005515 protein binding 18% Q9UDY4[0.79];O75509[0.63];P13866[0.75];Q8IXI1[0.82];O75096[0.61];P13667[0.87];P06126[0.82];
P43626[0.66]

GO:0051082 unfolded protein
binding

11% Q9UDY4[0.79];Q9NYU2[0.92];O14967[0.87];O14657[0.61];O60884[0.79]

Illustrations:
[1] Rate denotes that the cluster of interacting human proteins possessing the same corresponding GO term accounts for the total predicted env_gp160-interacting
human proteins;
[2] Q9NR34[0.91] denotes that protein env_gp160 is predicted to interact with the human protein P01024 with 0.81 confidence;
doi:10.1371/journal.pone.0079606.t004
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class is largely ignored. For 2-class classification, predictive balance is

an important aspect of model performance. Highly biased

predictions are not reliable. From the point of view of biomedical

research, true protein-protein non-interaction (i.e. true negative) also

provides much insight into functional proteomics and drug

research. Hence we also report SP, SE, MCC and Accuracy for

comprehensive survey of model performance. As shown in Table 1,

PWEN-TLM achieves good predictive balance in the Optimistic case

(Acc = 85.62%, MCC = 0.7446) and in the Pessimistic case

(Acc = 80.22%, MCC = 0.6605). But PWEN-TLM shows bias

towards the positive class in the Moderate case (Acc = 66.22%,

MCC = 0.4606, positive SP = 0.6015, negative SE = 0.3631). Compar-

atively, AUC scores do not detect the bias (ROC-AUC

score = 0.8156, PR-AUC score = 0.8172), implying that the perfor-

mance metrics of SP, SE, MCC and Accuracy are important to

model estimation. Summarizing all the performance metrics, we

can see that PWEN-TLM performs well in the Optimistic case and in

the Pessimistic case. If the target GO information of the test data is

available, we choose the model trained in the Optimistic case;

otherwise, we choose the model trained in the Pessimistic case.

To attenuate the noise from the homolog GO information, we

explicitly investigate the importance of the three aspects of gene

ontology (molecular function, cellular component, biological process) to HIV-

human PPI prediction. As illustrated in Figure 3, the target GO

information and the homolog GO information contribute equiv-

alently to the model performance in the Optimistic case. In the

Moderate case, the target GO information unexpectedly makes less

contribution than the homolog GO information. The result is not

surprising, because we substitute the homolog GO information

Stest
H

for the missing target GO information Stest
T

to derive the

weights of the target GO information. The heterogeneous

distribution between Stest
H

and Stest
T

unjustly decreases the

importance of the target GO information. The three aspects of

gene ontology unexceptionally make equivalent contributions to the

model performance in all the three cases. The GO information

about cellular component does not predominate the contributions to

model performance, indicating that the negative data constructed by

exclusiveness of subcellular co-localized proteins does not yield predictive

bias as worried about.

Dataset S2 similarly contains 7,672 data including 3,638 positive

data and 3,638 negative data, with the exception to dataset S1 that

the negative data are randomly sampled. The ROC curve and the PR

curve are plotted in Figure 4 and Figure 5. Comparing Figure 1

with Figure 4 and Figure 2 with Figure 5, we can see that dataset

S1 achieves higher ROC-AUC score and PR-AUC score than

dataset S2 for all the three cases. The highest difference of ROC-

AUC score is 0.0495 and the highest difference of PR-AUC score is

0.0692. Table 2 demonstrates the performance metrics of SP, SE,

MCC and Accuracy on dataset S2. Comparing Table 1 and Table 2,

we can see that dataset S1 demonstrates much better predictive

balance than dataset S2, with highest MCC difference 0.1053. The

results demonstrate that exclusiveness of subcellular co-localized proteins is

Table 5. Predicted interactions between Rev and human proteins.

GO
category Predicted interacting human partners

GO term GO description Rate Main cluster of interacting human partners

Biological
process

GO:0010467 gene expression 14% Q9P2I0[0.87];P46781[0.90];P62899[0.90];Q9Y3U8[0.86];P62280[0.82]

GO:0019083 viral transcription 11% P46781[0.90];P62899[0.90];Q9Y3U8[0.86];P62280[0.82]

GO:0016071 mRNA metabolic
process

11% P46781[0.90];P62899[0.90];Q9Y3U8[0.86];P62280[0.82]

GO:0016032 viral reproduction 11% P46781[0.90];P62899[0.90];Q9Y3U8[0.86];P62280[0.82]

GO:0006355 regulation of
transcription,
DNA-dependent

11% Q9NRC8[0.61];O00472[0.60];Q92925[0.64];Q13342[0.65]

GO:0006413 translational
initiation

11% P46781[0.90];P62899[0.90];Q9Y3U8[0.86];P62280[0.82]

GO:0006414 translational
elongation

11% P46781[0.90];P62899[0.90];Q9Y3U8[0.86];P62280[0.82]

Cellular
component

O:0005634 nucleus 41% Q9H1A4[0.69];Q9P2I0[0.87];Q99877[0.82];Q8IX01[0.62];Q8WWL7[0.70];
Q9NRC8[0.61];O00472[0.60];Q9NYP9[0.66];Q92925[0.64];Q9H668[0.66];
Q13342[0.65];Q15003[0.67];Q8NDV3[0.74];Q13601[0.76];O15523[0.63]

GO:0005737 cytoplasm 38% Q96C10[0.74];P09972[0.63];Q9UBB4[0.76];Q08188[0.68];P46781[0.90];
Q06210[0.70];Q01650[0.75];Q9NRC8[0.61];Q9NYP9[0.66];Q9Y3U8[0.86];
Q13342[0.65];Q15003[0.67];Q13601[0.76];O15523[0.63]

GO:0005829 cytosol 30% Q9H1A4[0.69];P09972[0.63];Q9UBB4[0.76];Q8IXI1[0.72];P46781[0.90];
Q06210[0.70];Q01650[0.75];P62899[0.90];Q9Y3U8[0.86];Q9BU89[0.66];
P62280[0.82]

GO:0005730 nucleolus 22% P46781[0.90];Q8WWL7[0.70];Q9NRC8[0.61];O00472[0.60];Q9H668[0.66];
Q9Y3U8[0.86];Q13342[0.65];Q13601[0.76]

Molecular
function

GO:0005515 protein binding 35% Q96C10[0.74];P09972[0.63];Q9UBB4[0.76];

P13866[0.64];Q9P2I0[0.87];Q8IXI1[0.72];P46781[0.90];Q8WWL7[0.70];Q9NRC8[0.61];P06126[0.70];Q9H668[0.66];Q15003[0.67];Q9BU89[0.66]GO:0003723RNA
binding24%Q96C10[0.74];Q9P2I0[0.87];Q9Y6V7[0.63];P46781[0.90];Q8IX01[0.62];P62899[0.90];Q13601[0.76];P62280[0.82];O15523[0.63]GO:0003677DNA
binding16%96C10[0.74];Q99877[0.82];Q9H668[0.66];Q13342[0.65];Q8NDV3[0.74];O15523[0.63]

doi:10.1371/journal.pone.0079606.t005
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more reliable to construct a reliable and unbiased classifier than

random sampling.

The weight distribution for the three aspects of gene ontology is

illustrated in Figure 6. Comparing Figure 3 with Figure 6, we can

see that there is little difference of weight distribution between

dataset S1 and dataset S2.

Independent test performance evaluation. The HIV-

human PPI database [18] is catalogued into 9 categories (539

Env PPIs, 487 Gag PPIs, 349 Nef PPIs, 272 Pol PPIs, 278 Rev

PPIs, 1,101 Tat PPIs, 126 Vif PPIs, 338 Vpr PPIs and 148 Vpu

PPIs). To evaluate the generalization ability, we simply use one

catalog of PPI (e.g. Env PPI) as independent test set and other

catalogs of PPIs (e.g. Gag, Nef, Pol, Rev, Tat, Vif, Vpr, Vpu) are

merged together as positive training set. The corresponding negative

training set is derived for each catalog of HIV protein with the

constraints: (1) the negative PPIs and the positive PPIs are of the same

size; (2) the human proteins that are subcellular co-localized with the

HIV proteins are excluded; (3) the human proteins are randomly

sampled. Constraint (2) is based on the above experimental

conclusion that exclusiveness of subcellular co-localized proteins yields

unbiased and better performance. We don’t conduct independent

test for the Moderate case because of its poor performance in the

cross validation performance evaluation.

The experimental results of the independent test are shown in

Table 3. We can see that PWEN-TLM can recognize most catalogs

of HIV-human PPIs with high recall rate except one small Pol PPIs

(272 PPIs, Optimistic 51.84%, Pessimistic 54.04%) and one large Tat

PPIs (1,101 PPIs, Optimistic 52.04%, Pessimistic 55.77%). As

compared to the generally small overlap between experimental

host-pathogen PPIs and predicted host-pathogen PPIs, e.g. 10%

overlap between siRNA screen and predictions [7] and 5.29%

recall rate (57 PPIs were computationally recognized out of the

1,078 experimental PPIs) [10], the results are considerably

promising. From the results, we also see that the Optimistic case

is unsurprisingly better than the Pessimistic case, because the target

GO information is available. Nevertheless, PWEN-TLM still works

well in the Pessimistic case. The independent test again validates the

assumption that the homolog GO information alone is sufficient to

train a satisfactory HIV-human PPI classifier.

Novel PPI Prediction
Overlap analysis of predicted interactions between

PWEN-TLM and the existing models. Overlap analysis of

predicted interactions between different computational models is

of significance to reveal the confidence and complementariness of

predictions. In this work, we investigate the overlap of predictions

between PWEN-TLM and the latest bi-clustering method [20], for

the reason that bi-clustering has found several supporting evidences

from the recent literature. In bi-clustering method, there are 180

predicted interactions, among which there are 80 interactions

overlapped with the work [6]. As pointed out in the work [20],

some predicted interactions have been validated by the recent

literatures, e.g. env_gp120:CASP8[83.33%] [35], env_gp120:

CD86[83.33%] [36], env_gp120: NOS3[74.67%] [37], env_

gp120:SOD2[88.89%] [38,], env_gp120:SRC[78%] [39], en-

v_gp41:MAPK1[77.78%] [40], Gag_Pr55:MAPK1[71.43%] [41],

Tat:TNFSF[86.30%]) [42]. The square bracketed percentage follow-

ing the protein pair denotes the confidence level of predictions.

We apply PWEN-TLM to validate the 180 predicted interac-

tions for overlap analysis. Among the HIV-1 proteins, the protein

env_gp120 (Envelope surface glycoprotein gp120, NP_579894.2) has no

reviewed entry in the UniprotKB database (http://www.uniprot.

Table 6. Predicted interactions between Vpr and human proteins.

GO
category Predicted interacting human partners

GO term GO description Rate Main cluster of interacting human partners

Biological
process

GO:0007049 cell cycle 22% Q9H1A4[0.63];Q8WWL7[0.72];Q15003[0.61];Q8NDV3[0.82]

GO:0051301 cell division 17% Q9H1A4[0.63];Q8WWL7[0.72];Q15003[0.61]

GO:0007067 mitosis 11% Q9H1A4[0.63];Q15003[0.61]

GO:0022904 respiratory electron
transport chain

17% O75947[0.64];O14548[0.74];P09669[0.77]

GO:0030261 chromosome
condensation

11% Q15003[0.61];Q8NDV3[0.82]

GO:0006355 regulation of
transcription,
DNA-dependent

11% P58012[0.61];Q13342[0.67]

GO:0007126 meiosis 11% Q8WWL7[0.72];Q8NDV3[0.82]

Cellular
component

GO:0005634 nucleus 50% Q9H1A4[0.63];Q9UDY4[0.62];Q99877[0.64];Q8WWL7[0.72];P58012[0.61];Q9H668[0.61];
Q13342[0.67];Q15003[0.61];Q8NDV3[0.82]

GO:0016020 membrane 44% Q9UDY4[0.62];Q96E93[0.61];Q8IXI1[0.64];P30414[0.69];P04062[0.64];O75947[0.64];O14548[0.74];
P09669[0.77]

GO:0005730 nucleolus 22% Q9UDY4[0.62];Q8WWL7[0.72];Q9H668[0.61];Q13342[0.67]

GO:0005737 cytoplasm 22% Q9UDY4[0.62];Q13342[0.67];Q15003[0.61];Q5SW79[0.68]

Molecular
function

GO:0005515 protein binding 39%

Q9UDY4[0.62];Q8IXI1[0.64];Q8WWL7[0.72];P58012[0.61];Q9H668[0.61];Q15003[0.61];Q5SW79[0.68]GO:0003677DNA
binding28%Q99877[0.64];P58012[0.61];Q9H668[0.61];Q13342[0.67];Q8NDV3[0.82]GO:0003700sequence-specific DNA
binding transcription
factor activity11%P58012[0.61];Q13342[0.67]

doi:10.1371/journal.pone.0079606.t006
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org/uniprot/). The target GO information of protein env_gp120

can not be retrieved from the database and thus is treated as novel

protein in our model. For reliable training, env_gp120 is not

included in the training data. Thus the training data is more stringent

than that of bi-clustering method, because it contains no interaction

patterns between env_gp120 and human proteins. The 180

interactions predicted by bi-clustering method are treated as test

data without overlap with the training data.

The experimental results show that PWEN-TLM predicts 132

interactions in the Optimistic case (File S1) and 165 interactions in

the Pessimistic case (File S2). Comparing the results of the two cases,

we find that PWEN-TLM can not recognize most env_gp120

interactions in the Optimistic case, but PWEN-TLM behaves

contrarily very well in the Pessimistic case. The results are not

surprising because the unreviewed env_gp120 is treated as novel

protein (the target GO information is treated as null and only the

homolog GO information takes effect). In the Pessimistic case,

PWEN-TLM correctly recognizes all the literature-validated inter-

actions (env_gp120:CASP8[81.63%];env_gp120:CD86[83.51%];

env_gp120:NOS3[84.34%];env_gp120:SOD2[70.78%];env_gp120:

SRC[79.54%];env_gp41:MAPK1[89.88%];Tat:TNFSF[90.90%]) ex-

cept Gag_Pr55:MAPK1 [20]. The results once again validate our

model assumption that the homolog GO information can be effectively

exploited to compensate for data scarcity and data unavailability. Especially,

we can safely draw the conclusion that the homolog GO information

alone is sufficient to train a satisfactory model for HIV-human PPI

prediction. We can see that PWEN-TLM has less demanding data

constraint and hardly fails to work even in the worst case (the Pessimistic

case). As long as GO annotated homologs can be retrieved, PWEN-

TLM can convincingly predict the protein pairs that contain novel

proteins. It is noted that although the model is trained without

env_gp120 interaction patterns, the env_gp120-related interactions are

still soundly recognized, which implies that PWEN-TLM has good

generalization ability.

Besides the validation of the 180 predicted interactions, we also

validate against PWEN-TLM the 80 overlapped interactions

between the two work [6,20]. The results show that PWEN-

TLM predicts 46 interactions in the Optimistic case (File S3) and 61

interactions in the Pessimistic case (File S4). From the results, we

can see that PWEN-TLM narrows down the predictions and thus is

relatively more conservative than the bi-clustering method [20].

Conservative prediction has the merit of low false positive rate but

meanwhile has the demerit of missing some true interactions (e.g.

Gag_Pr55:MAPK1). From the 8 literature-validated interactions,

only one unrecognized interaction is acceptable.

Predicted interactions with peripheral human proteins. In

addition to validating the interactions predicted by the existing

models, we also independently apply PWEN-TLM to detect novel

HIV-human PPIs for further biological research. To narrow down the

scope of potential HIV-targeted human proteins, we first statistically

investigate the way that HIV proteins attack the human PPI network.

Some diseases, like lung squamous cell carcinoma [43], are prone to

attack the densely-connected human proteins (hub proteins). Here we

attempt to acquire the knowledge about the behaviour that HIV-1

attacks the human PPI network. We can calculate the degree

distribution of the HIV-targeted human proteins from HPRD

database (http://hprd.org/) [44]. The degree distribution of the

HIV-targeted human proteins in human PPI network is plotted in

Figure 7, where the horizontal axis denotes the protein degree and the

vertical axis denotes the number of proteins possessing that degree.

From Figure 7, we can intuitively see that the number of HIV-targeted

human proteins exponentially decreases with protein degree. It can be

inferred from the figure that the HIV proteins are prone to target the

peripheral human proteins. For the sake, we choose the peripheral

human proteins as test candidates. For each type of HIV proteins, we

randomly choose 400 distinct human proteins with lowest degree (e.g.

degree = 1, 2, 3) that do not occur in dataset S1. The predicted results

are shown in File S5 (Optimistic case) and File S6 (Pessimistic case). Since

literature could offer very sparse direct information about the

interactions we are concerned about, we analyse the predicted

interactions based on the study of gene ontology.

Interactions with env_gp160. Among the 400 human

proteins, PWEN-TLM predicts 64 interactions with env_gp160

(P04578) in the Optimistic case (File S5) and 66 interactions in the

Pessimistic case (File S6). After filtering the weak interactions

(probability within [0.5, 0.6]), there are 44 interactions in the

Pessimistic case and 45 interactions in the Optimistic case. Take the

Optimistic case for example, Table 4 clusters the interacting human

partners according to GO terms (see Table 4 Main cluster of interacting

human partners). From Table 4, we can see that env_gp160 mainly

interacts with the host membrane proteins (GO:0016020,

GO:0016021, GO:0005886), and the interacting human partners

are mainly involved in the biological processes of metabolic process

(GO:0044267), post-translational modification (GO:0043687,

GO:0006486), transport (GO:0006810), host immune response

(GO:0006954, GO:0045087), etc. From the aspect of molecular

functions, env_gp160 mainly affects host protein binding activity

(GO:0005515), transferase activity (GO:0016740), etc. From the

analysis of gene ontology, we can see that the interactions with

env_gp120 may affect the metabolic process, molecule transfer, binding

activity of the host proteins and may also activate the host immune

response.

Interactions with Rev. Among the 400 human proteins,

PWEN-TLM predicts 37 interactions with Rev (P04618) in the

Optimistic case and 54 interactions in the Pessimistic case (probabil-

ity.0.6). From Table 5, we can see that Rev mainly interacts with

the host nucleus proteins (GO:0005634) and cytoplasm proteins

(GO:0005737), and participates in the biological processes of viral

reproduction (GO:0010467, GO:0019083, GO:0016032, GO:0006355),

viral mRNA translation (GO:0016071, GO:0006413, GO:0006414),

etc. These predicted interactions indicate that Rev plays important

roles in viral mRNA transcription and mRNA translation into viral proteins.

Interactions with Vpr. Similarly, the predicted interactions

with Vpr (Q77YF9) are shown in Table 6 (18 predicted

interactions with probability greater than 0.6). From the results

we can see that Vpr mainly affects the host cell cycle (GO:0007049,

GO:0051301, GO:0007067, GO:0030261, GO:0007126) and the

regulation of DNA transcription (GO:0006355). The predicted interac-

tions are consistent with our prior knowledge about HIV-1 Vpr

proteins.

Interactions with other HIV-1 proteins. The predicted

interactions with other HIV-1 proteins (Gag, Pol, Tat, Vpu, Nef,

Vif) are shown in File S5 and File S6. The experimental results

show that Gag mainly interacts with the human proteins that

participate in the biological processes of signal transduction

(GO:0007165, the interacting partners include O75509[0.67];

Q9NYK1[0.69]; Q9NY25[0.63]; O60609[0.61]), innate immune re-

sponse (GO:0045087, Q96E93[0.64]; Q9NYK1[0.69]; Q9NY25

[0.63]), apoptotic process (GO:0006915, P09972[0.67];O75509[0.67];

Q8IXI1[0.81]), etc. Tat mainly affects the regulation of transcription

(GO:0006355, Q9NRC8[0.67]; O00472[0.74]; Q92925[0.72];

Q13342[0.80]), host cell defense response to virus (GO:0051607, Q96C10

[0.67]; Q9NYK1[0.70]; Q9NRW3[0.69]), etc. Vpu mainly interacts

with the human proteins of transport activity (GO:0006810, P13866

[0.62]; O75947[0.86]), receptor activity (GO:0004872, Q96E93[0.70];

P22897[0.61]), cell death (GO:0008219, Q9UBB4[0.82]; P04062

[0.78]), etc. Full interactions are shown in File S5 and File S6.
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Discussion

Data scarcity, data unavailability and negative data sampling are the

three major concerns to be addressed for the computational

reconstruction of HIV-human PPI networks. At present feature-

level data integration is still the major effective method to

compensate for data scarcity, but potential unavailability of some

feature information is likely to make the existing data integration

methods fail to work. In this work, we are motivated to develop a

less data-demanding computational model for HIV-human PPI

prediction that hardly fails to work in most cases. We investigate

the assumption that the homolog GO information is useful to well

tackle the problems of data scarcity and data unavailability. To fulfil

the motivation and assumption, we propose a probability weighted

ensemble transfer learning model for HIV-human PPI prediction

(PWEN-TLM). In this model, gene ontology is the only feature

information used for model training and model evaluation. The

target GO information and the homolog GO information are

separately extracted to cope with data unavailability, and the three

aspects of gene ontology are further separated to evaluate their

contributions to the model performance. The contributions are

measured in terms of weights by ROC-AUC performance metric of

the individual classifiers. The weights of the homolog GO

information play the role of enhancing positive knowledge transfer

and depressing negative knowledge transfer.

To validate the assumption that the homolog GO information is

effective to enrich or substitute for the target GO information, we

conduct three experimental settings, namely the Optimistic case, the

Moderate case and the Pessimistic case. The latter two cases take into

account the unavailability of the target GO information. 3-fold

cross validation and independent test are used to evaluate the

model performance. The performance measured by multiple

metrics (ROC-AUC, PR-AUC, MCC, SP, SE and Accuracy) show that

PWEN-TLM performs well in the Optimistic case and in the

Pessimistic case. The sound performance in the Optimistic case

demonstrates that the homolog GO information is useful to solve

the problem of data scarcity by enriching the target GO information.

The good performance in the Pessimistic case shows that the

homolog GO information is an effective substitute for the target GO

information to solve the problem of data unavailability.

Negative data sampling is another important concern to be

addressed for HIV-human PPI prediction. In this work, we have

compared exclusiveness of subcellular co-localization to random sampling.

We find that the GO information about cellular components makes

equivalent contributions to the model performance as the GO

information about biological processes and molecular functions does.

This result shows that exclusiveness of subcellular co-localized proteins

outperforms random sampling without introducing model bias.

Lastly, we apply PWEN-TLM to novel HIV-human PPIs

detection. The overlap analysis of the predictions between

PWEN-TLM and the existing models show that PWEN-TLM can

recognize most of the literature-validated interactions and is

relatively more conservative than the bi-clustering method. We also

report some novel interactions for further biological research. The

analysis based on gene ontology shows that the information revealed

by the predicted interactions is consistent with our prior

knowledge about the HIV-1 proteins.
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File S1 Text file contains the overlapped predictions
between PWEN-TLM and Bi-clustering [20] (Optimistic
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(TXT)

File S2 Text file contains the overlapped predictions
between PWEN-TLM and Bi-clustering [20] (Pessimistic
case).
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File S3 Text file contains the overlapped predictions
among PWEN-TLM, Bi-clustering [20] and the method [6]

(Optimistic case).
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File S4 Text file contains the overlapped predictions
among PWEN-TLM, Bi-clustering [20] and the method [6]

(Pessimistic case).
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File S5 Text file contains the predictions between HIV-1
and peripheral human proteins (Optimistic case).
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File S6 Text file contains the predictions between HIV-1
and peripheral human proteins (Pessimistic case).
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