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SUMMARY
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases,
but effect sizes are typically small and information on the underlying biological processes is often
lacking. Associations with metabolic traits as functional intermediates can overcome these
problems and potentially inform individualized therapy. Here we report a comprehensive analysis
of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We
identified 37 genetic loci associated with blood metabolite concentrations, of which 25 exhibit
effect sizes that are unusually high for GWAS and account for 10-60% of metabolite levels per
allele copy. Our associations provide new functional insights for many disease-related associations
that have been reported in previous studies, including cardiovascular and kidney disorders, type 2
diabetes, cancer, gout, venous thromboembolism, and Crohn’s disease. Taken together our study
advances our knowledge of the genetic basis of metabolic individuality in humans and generates
many new hypotheses for biomedical and pharmaceutical research.

Understanding the role of genetic predispositions and their interaction with environmental
factors in complex chronic diseases is key in the development of safe and efficient therapies,
diagnosis and prevention. Genome-wide association studies (GWAS) have identified
hundreds of disease risk loci 1. However, functional information on the underlying
biological processes is often lacking 2. Previously, we have shown the promise of using
associations with blood metabolites as functional intermediate phenotypes, the so-called
genetically determined metabotypes (GDMs), to understand the potential relevance of these
genetic variants for biomedical and pharmaceutical research 3,4. Building on this early work,
we present here the most comprehensive evaluation of genetic variance in human
metabolism to date, combining genetics and metabolomics for hypothesis generation in a
GWAS. We used an extensive, non-targeted and metabolome-wide panel of small
molecules, analyzing >250 metabolites from 60 biochemical pathways in serum samples of
2,820 individuals from two large population-based European cohorts. We identified 37
genetic loci significant at a stringent genome-wide threshold. In contrast to most GWAS,
these loci exhibited exceptionally large effect sizes of 10-60% per allele copy in 25 loci. In
the majority of cases a protein biochemically related to the associated metabolic traits is
encoded at these loci. As a proof of principle validation of new discoveries, we
experimentally validated the predicted function of SLC16A9 as a carnitine efflux
transporter. We further cross-referenced these loci with databases of disease-related and
pharmaceutically-relevant genetic associations, uncovering hitherto unknown links and
providing new hypotheses into the function of these loci. Finally, we made publically
available a knowledge-base resource via a web-server to aid future functional studies and
biological as well as clinical interpretation of GWAS findings. In summary, this study
provides compelling evidence for novel associations of metabolic traits at a wide range of
loci of biomedical and pharmaceutical interest, and suggests a powerful new paradigm for
dissecting human metabolic and disease pathways.

METHODS
Metabolic profiling was done on fasting serum from participants of the German KORA F4
study (n=1,768) and the British TwinsUK study (n=1,052) using ultrahigh performance
liquid-phase chromatography and gas chromatography separation coupled with tandem mass
spectrometry 5-7. We achieved highly efficient profiling (24 minutes/sample) with low
median process variability (<12%) of more than 250 metabolites, covering over 60
biochemical pathways of human metabolism (Supplemental Table 1). Based on our
previous observation that ratios between metabolite concentrations can strengthen the
association signal and provide new information about possible metabolic pathways 4,8, we
included all pairs of ratios between these metabolites in the genome-wide statistical analysis.
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To reduce the computational and data storage burden associated with meta-analyzing over
37,000 metabolites and ratios, we applied a staged approach for selection of promising
association signals (Supplemental Figure 1). In the initial screening stage we assessed
associations of approximately 600,000 genotyped SNPs with over 37,000 metabolic traits
(concentrations and their ratios) by fitting linear models separately in both cohorts to log-
transformed metabolic traits, adjusting for age, gender and family structure (Supplemental
Figure 2 & Supplemental Table 2). Next, we selected all association signals having
suggestive evidence for association with a metabolic trait in both cohorts (p<10−6 in both
cohorts or p<10−3 in one and p<10−9 in the other). For each of these loci, we then re-
assessed the amount of association signals through fixed-effects inverse variance meta-
analysis of the two cohorts for all 37,000 available traits using imputed SNPs relative to
HapMap2 data (see Online Methods for details). The SNP/trait combination yielding the
smallest P-value in this meta-analysis was finally selected for each locus. To account for
multiple testing we applied conservative Bonferroni correction leading to an adjusted
threshold for genome-wide significance of p < 2.0×10−12.

RESULTS
We identified a total of 37 independent loci that reached genome-wide significance in the
meta-analysis (Table 1, Supplemental Tables 3&4). 23 of these loci describe new genetic
associations with metabolic traits, and 14 replicate and extend our knowledge of known
GDMs, including 10 from our own studies 3,4. We used information on SNP location within
genes, known gene function and regional association plots (Supplemental Figure 2) to
prioritize plausible candidate genes within associated loci. In most cases our annotation was
further supported by a statistical analysis of association of gene relationships in published
literature 9 (Supplemental Table 5). Associations with additional metabolic traits at the 37
loci presented in Table 1 may capture further biochemical information and are provided as
Supplemental Table 6. At 30 loci the sentinel SNP mapped to a protein that was
biochemically linked to the associating metabolites, for instance because responsible for
their synthesis, degradation or metabolism. We next extensively searched literature and
databases (see web-links) to identify which of these 37 loci were previously reported as
associated with a clinical endpoint, a medically relevant intermediate phenotype, or a
pharmacogenetic effect. Associations of metabolites at disease loci can be used to gain novel
information on possible metabolic changes associated with biological processes underlying
that association (Figure 1, Table 1, Supplemental Table 7). In 15 cases such a relationship
could be identified based on the association of the lead SNP or a proxy (r2≥0.8) with the
disease-associated SNPs, including cardiovascular disease, kidney disease, Crohn’s disease,
gout, cancer, pharmacogenomics, and predisposing risk factors for diabetes and
cardiovascular disease. Except for three loci, all SNPs are common with minor allele
frequencies over 10%. In 25 cases the effect size per allele copy is larger than 10%, and up
to 60% in the case of the ACADS locus.

Overlap with chronic disease loci
Many genetic risk loci for heart disease, kidney failure, diabetes and other complex
disorders have been identified by GWAS. However, the etiology of these common diseases
is complex and testable hypotheses are needed in order to develop new avenues for
diagnosis and therapy. Associations of known disease risk loci with metabolic traits allow
identifying new and potentially relevant biological processes and pathways. Below we
report some examples from our study that illustrate this idea, with the full association dataset
being freely available for further analysis and reference at http://www.gwas.eu.
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Detoxification and kidney failure
N-acetylation is an important mechanism to detoxify numerous nephrotoxic medications and
environmental toxins. A reduced ability to detoxify such substances could lead to impaired
kidney function. A key GDM is the N-acetylase NAT8 locus, which was reported to
associate with kidney function 10,11. Here we found a highly-significant association of
variation at the NAT8 locus with N-acetylornithine. Using this information we then asked
whether N-acetylornithine concentrations were associated with kidney function. We found a
clear association in both our studies with estimated glomerular filtration rate (eGFR),
whereby higher levels of N-acetylornithine were correlated with lower eGFR
(pKORA=7.6×10−4, pTwinsUK=3.6×10−8 after adjusting for age and gender). In accord with
the genetic effect of the NAT8 polymorphism in the chronic kidney disease (CKD)
association, the risk allele associated here with higher N-acetylornithine concentrations.
Although causality cannot be inferred from this kind of association studies, the role of
ornithine acetylation in the etiology of CKD warrants further exploration.

Diabetes
GCKR is a major pleiotropic risk locus associated with diabetes- and cardiometabolic-
related traits, such as fasting glucose and insulin 12, triglyceride levels 13, and CKD 11. Here
we identified a highly significant association of this locus with mannose to glucose ratios.
Fasting mannose is lower in carriers of the risk allele, as opposed to glucose. Interestingly,
we also observed a 3.3% increase in lactate concentrations per copy of the risk allele at the
same locus. Little is known about the physiological role of mannose other than its use in
protein glycosylation. Mannose enters the cell via a specific transporter that is insensitive to
glucose 14, and hepatic glycogen breakdown is implicated in the maintenance of plasma
mannose concentrations 15. These observations and the association with GCKR observed
here, which is even stronger than that of glucose with GCKR, suggest the need for further
investigations on the role of mannose as a differential biomarker or even as a point of
intervention in diabetes care.

Venous thromboembolism
With the mass-spectrometry method used here, different forms of the abundant fibrinogen
A-alpha peptides can be detected. Fibrinogen plays a role in blood clot formation. Its active
form, the fibrinogen A-alpha chain ADSGEGDFXAEGGGVR can be phosphorylated at
Serine-3 to ADpSGEGDFXAEGGGVR 16. The ratio between the concentrations of these
fibrinogen A-alpha peptides provides a measure for fibrinogen A-alpha phosphorylation
(FAaP). Increased levels of FAaP have been observed under different physiological and
pathophysiological conditions 17. Here, three loci (ABO, ALPL, FUT2) associated with
FAaP. Intriguingly, these three genes are functionally linked: ABO and FUT2 are involved
in determining the blood group, and the ABO locus is associated with blood levels of the
phosphatase ALPL 18. The association of ALPL with FAaP may be explained by either a
genotype-dependent dephosphorylation of fibrinogen by ALPL, or a genotype-dependent
change in the phosphorus pool available for FAaP. Variants in the ABO gene are associated
with many different outcomes, including venous thromboembolism (VTE) 19. The
association of ABO with FAaP, and thus modified blood coagulation properties, provides a
functional explanation for the reported association of ABO with VTE risk. Moreover, if
FAaP is at the basis of VTE, then FUT2 and ALPL should also be investigated as VTE risk
genes, which is a hypothesis that may now be tested in the respective patient groups.

Coronary artery disease
We have shown previously 4 that strong associations with metabolic traits can point to
interesting associations in GWAS with clinical endpoints that otherwise would not be

Suhre et al. Page 5

Nature. Author manuscript; available in PMC 2013 November 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



considered as relevant. A recent meta-analysis with lipid traits 20 identified several genetic
loci also affecting risk of CAD in the CARDIoGRAM study 21 using a similar strategy. Six
of such loci are also reported here (ABO, NAT2, CPS1, NAT8, ALPL, KLKB1), albeit
some of them showed only weak evidence for association (p < 0.01) with CAD in the
CARDIoGRAM study (Supplemental Table 8). Although not statistically strong, the
biochemical function of the associated metabolic traits identified here may support a
possible role in heart disease. For instance, NAT8 may be linked to CKD via ornithine
acetylation (see above). KLKB1 controls blood pressure via the bradykinin pathway. In this
study a genetic variant in KLKB1 associated with bradykinin concentrations and we also
confirmed the expected directional association of bradykinin with hypertension in both our
studies (pKORA=1.7×10−9, pTwinsUK=0.0495, with covariates age and gender). ABO and
ALPL associated with FAaP, and it may therefore be speculated that genetically determined
differences in FAaP and resulting blood coagulation properties may be at the basis of these
associations with CAD. Furthermore, our associations suggest that the role of FAaP as a
biomarker for acute myocardial infarction, and the combined additive genetic effect of
ABO, ALPL, and FUT2 loci (Supplemental Figure 4) on CAD risk, should be investigated
in greater detail.

New biological and functional insights derived from this study
Genome-wide association studies uncover merely statistically significant associations and
thereby are only able to generate biological hypotheses. While it is clear that providing
experimental validation of all associations is beyond what can be achieved in a single study,
we nevertheless attempted to show that in principle this is possible. The association of SNP
rs7094971 in SLC16A9 (MCT9) with carnitine suggested that this metabolite is the
substrate of this hitherto uncharacterized monocarboxylic acid transporter. We therefore
tested [3H]-carnitine uptake by SLC16A9-expressing Xenopus oocytes. As shown in Figure
2, our data shows that SLC16A9 is a sodium- and pH-independent carnitine efflux
transporter, possibly responsible for carnitine efflux from absorptive epithelia into the blood.
Another prominent example is the highly significant association of increased urate levels
and their clinical complication of gout with variants in the SLC2A9 gene 22, the former of
which we also observe here. Although previously annotated as a glucose transporter,
SLC2A9 was later shown 23 to encode a high-capacity urate transporter. Similar
characterization experiments by specialists in the related fields shall be motivated and
guided by our association data. Among the 37 GDMs reported here, we suggest that the
associations with coarsely-characterized enzyme and transporter genes that are known
disease risk loci may warrant further experimental investigation, for instance in experiments
using isotope-labeled derivates of the associated metabolites reported here as putative target
substrates. For the reasons detailed above we deem NAT8 to be a prime candidate for such a
study.

Pharmacogenomics
Using the Pharmacogenomics Knowledge Base 24 we identified six GDMs as previously
associated with toxicity or adverse reactions to medication. Noteworthy are polymorphisms
in the NAT2 and in CYP4A loci that associated with toxicities to docetaxel and thalidomide
treatment 25, the UGT1A locus with irinotecan toxicity 26, SLC2A9 with etoposide IC50

27,
SLC22A1 with metformin pharmacokinetics 28,29, and SLCO1B1 with statin-induced
myopathy 30. In all cases our associations with metabolic traits at these loci provide a
possible novel biochemical basis for the genotype-dependant reaction to drug treatment,
such as the association of SLCO1B1 with a series of fatty acids, including tetradecanedioate
and hexadecanedioate. This information can be used to support redesign of the respective
drug molecules to avoid adverse reactions. Moreover, systematic inclusion of biochemically
relevant GDMs as candidate SNPs during drug trials may permit early identification of
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potentially adverse pharmacogenetic effects. Concretely this applies to AKR1C, which is a
novel target of jasmonates in cancer cells 31. We reported a GDM associated with AKR1C
with a large effect size on androgen metabolism. Influence of SNP rs2518049 in AKR1C on
the drug’s efficiency and potential side effects should therefore be assessed in upcoming
clinical trials.

DISCUSSION
Due to their large effect size and high explained variance, the 37 genetically determined
metabotypes (GDMs) reported in this study indicate key genetic loci underpinning
differences in human metabolism. Inclusion of these genetic variants in the statistical
analysis of pre-clinical and clinical studies may facilitate identification of genotype-
dependent outcomes, such as disease complications and adverse drug reactions. In two cases
we could establish a direct functional link, supported by both our studies, between a genetic
variant, an intermediate metabolic trait, and a disease relevant endpoint: KLKB1-
bradykinin-hypertension and NAT8-N-acetylornithine-eGFR. We note that by discussing
only associations that are supported by two independent studies at genome-wide significance
we have chosen to take a very conservative approach. Based on QQ-plots and coarse
assumptions, we estimate that over 500 loci with signals of association below that
conservative threshold may be confirmed as GDMs in future, more highly powered studies.
On a more technical note it is worthwhile mentioning that by using a single study to
metabolically profile 2,820 individuals, based on only 100 micro-liters of blood serum, we
replicated in this study a wide series of findings from previous large GWAS with
quantitative traits, including serum fasting glucose 12, bilirubin 32,33, urate 34, and
dehydroisoandrosterone sulfate 35 levels. Taken together, our study shows how GWAS with
intermediate traits that are close to the underlying biological processes provide significant
new functional insights into associations from GWAS with complex chronic disease
endpoints and drug toxicity. Future GWAS that combine multiple Omics-technologies in a
single study, including transcriptomics, proteomics, metabolomics and recent technologies
for determining epigenetic modifications on a genome-wide scale are likely the next big step
towards a full understanding of the interaction of genetic predispositions with environmental
factors in complex chronic diseases and safe and efficient therapies, diagnosis and
prevention.

ONLINE METHODS
1. STUDY DESIGN

Study populations—The KORA S4 survey, an independent population-based sample
from the general population living in the region of Augsburg, Southern Germany, was
conducted in 1999–2001. The study design and standardized examinations of the survey
(4,261 participants, response 67%) have been described in detail (ref. 39 and the references
therein). A total of 3,080 subjects participated in a follow-up examination KORA F4 in
2006–2008 comprising individuals who, at that time, were aged 32–81 years. The TwinsUK
cohort is an adult twin British registry in the age range 8-102 years and 84% are female. The
samples used in this study are aged 23-85 (mean 48 years) and 97% female. These
unselected twins were recruited from the general population through national media
campaigns in the United Kingdom and were shown to be comparable to age-matched
population singletons in terms of disease-related and lifestyle characteristics 40. In both
studies written informed consent has been given by all participants and the studies have been
approved by the local ethics committees (Bayerische Landesärztekammer for KORA and
Guy’s and St. Thomas’ Hospital Ethics Committee for TwinsUK).
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Blood sampling—Blood samples for metabolic analysis and DNA extraction from KORA
were collected between 2006 and 2008 as part of the KORA F4 follow-up. To avoid
variation due to circadian rhythm, blood was drawn in the morning between 8:00 a.m. and
10:30 a.m. after a period of at least 10 hours overnight fasting. Material was drawn into
serum gel tubes, gently inverted two times and then allowed to rest for 30 min at room
temperature (18–25 °C) to obtain complete coagulation. The material was then centrifuged
for 10 min (2,750g at 15 °C). Serum was divided into aliquots and kept for a maximum of 6
h at 4 °C, after which it was deep frozen to −80 °C until analysis. For the TwinsUK study,
blood samples were taken after at least 6 h of fasting. The samples were immediately
inverted three times, followed by 40 min resting at 4 °C to obtain complete coagulation. The
samples were then centrifuged for 10 min at 2,000g. Serum was removed from the
centrifuged brown-topped tubes as the top, yellow, translucent layer of liquid. Four aliquots
of 1.5 ml were placed into skirted microcentrifuge tubes and then stored in a −45 °C freezer
until sampling.

2. GENETIC AND METABOLOMICS DATA COLLECTION
Metabolomics measurements—Metabolon, an US- based commercial supplier of
metabolic analyses, developed a platform that integrates the chemical analysis, including
identification and relative quantification, data reduction, and quality assurance components
of the process. The analytical platform incorporates two separate ultrahigh performance
liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS2) injections and one
GC/MS injection per sample. The UHPLC injections are optimized for basic and acidic
species. A total of 295 metabolites were measured, spanning several relevant classes (amino
acids, acylcarnitines, sphingomyelins, glycerophospholipids, carbohydrates, vitamins, lipids,
nucleotides, peptide, xenobiotics and steroids; a full list of metabolites is given in
Supplemental Table 1). The detection of the entire panel was carried out with 24 min
instrument analysis time (two injections at 12 min each), while maintaining low median
process variability (<12% across all compounds). The resulting MS/MS2 data were searched
against a standard library generated by Metabolon that included retention time, molecular
weight (m/z), preferred adducts, and in-source fragments as well as their associated MS/MS
spectra for all molecules in the library. The library allowed for the identification of the
experimentally detected molecules based on a multiparameter match without need for
additional analyses. Metabolon has shown in a recent publication that their integrated
platform enabled the high-throughput collection and relative quantitative analysis of
analytical data and identified a large number and broad spectrum of molecules with a high
degree of confidence 5. The Metabolon platform has, among other studies, been successfully
applied in the analysis of the adult human plasma metabolome 41 and the identification of
sarcosine as a biomarker for prostate cancer 42.

Metabolomics data QC—For this study we measured the Metabolon panel in human
blood from 1,768 individuals of the KORA cohort and in 1,052 individuals of the TwinsUK
cohort. Quality control data (%RSD, upper and lower 95% confidence interval, minimum
and maximum observed values in QC samples) are reported in Supplemental Table 1. In
order to avoid spurious false positive associations due to small sample sizes, only metabolic
traits with at least 300 non-missing values were included and data-points of metabolic traits
that lay more than 3 standard deviations off the mean were excluded by setting them to
missing in the analysis. 276 of 295 available metabolites and 37,179 metabolite ratios
satisfied this criterion in KORA, resulting in a total of 37,455 metabolic traits. For the
TwinsUK study, identical selection criteria for metabolic traits were used, resulting in 258
metabolites and 32,499 metabolite ratios, and a total of 32,757 metabolic traits.
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Genotyping and imputation
KORA: For all individuals profiled in this study, genome-wide SNP data were already
available. GWAS data of KORA and TwinsUK have been used and described extensively in
the past in the context of numerous genome-wide association studies and meta-
analyses 3,34,43. We therefore only summarize the essential details here. Genotyping of the
KORA F4 population was carried out using the Affymetrix GeneChip array 6.0. Genotypes
were determined using Birdseed2 clustering algorithm. For quality assurance we applied as
filters for SNP quality: call rate > 95% and p(HWE) > 10−6. 655,658 autosomal SNPs
satisfied these criteria. These genotyped SNPs were used for genome-wide analysis of the
metabolic traits. For selection of the best associated SNP in a meta-analysis of KORA and
TwinsUK within a region we used genotyped as well dosages of imputed SNPs. In KORA
F4 imputation was done using IMPUTE v0.4.2 44 based on HapMap2 (see below).

TwinsUK: Genotyping of the TwinsUK dataset was done with a combination of Illumina
arrays (HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M) 45,46. We pooled the
normalised intensity data for each of the three arrays separately (with 1M-Duo and
1.2MDuo 1M pooled together). For each dataset we used the Illluminus calling algorithm 47

to assign genotypes in the pooled data. No calls were assigned if an individual’s most likely
genotyped was called with less than a posterior probability threshold of 0.95. Validation of
pooling was achieved via a visual inspection of 100 random, shared SNPs for overt batch
effects. Finally, intensity cluster plots of significant SNPs were visually inspected for over-
dispersion biased no calling, and/or erroneous genotype assignment. SNPs exhibiting any of
these characteristics were discarded. We applied similar exclusion criteria to each of the
three dataset separately. Samples: Exclusion criteria were: (i) sample call rate <98%, (ii)
heterozygosity across all SNPs ≥2 s.d. from the sample mean; (iii) evidence of non-
European ancestry as assessed by PCA comparison with HapMap3 populations; (iv)
observed pairwise IBD probabilities suggestive of sample identity errors; (v). We corrected
misclassified monozygotic and dizygotic twins based on IBD probabilities. SNPs. Exclusion
criteria were (i) Hardy-Weinberg p-value<10−6, assessed in a set of unrelated samples; (ii)
MAF<1%, assessed in a set of unrelated samples; (iii) SNP call rate <97% (SNPs with
MAF≥5%) or < 99% (for 1% ≤MAF < 5%). Alleles of all three datasets were aligned to
HapMap2 or HapMap3 fwd strand alleles. Prior to merging, we performed pairwise
comparison among the three datasets and further excluded SNPs and samples to avoid
spurious genotyping effects, indentified as follows: (i) concordance at duplicate samples
<1%; (ii) concordance at duplicate SNPs <1%; (iii) visual inspection of QQ plots for logistic
regression applied to all pairwise dataset comparisons; (iv) Hardy-Weinberg p-value<10−6,
assessed in a set of unrelated samples; (v) observed pairwise IBD probabilities suggestive of
sample identity errors. We then merged the three datasets, keeping individuals typed at the
largest number of SNPs when an individual was typed at two different arrays. The merged
dataset consists of 5,654 individuals (2,040 from the HumanHap300, 3,461 from the
HumanHap610Q and 153 from the HumanHap1M and 1.M arrays) and up to 874,733 SNPs
depending on the dataset (HumanHap300: 303,940, HumanHap610Q: 553,487,
HumanHap1M and 1.M: 874,733). Imputation was performed using the IMPUTE software
package (v2) 44 using two reference panels, P0 (HapMap2, rel 22, combined CEU+YRI
+ASN panels) and P1 (610k+, including the combined HumanHap610k and 1M reduced to
610k SNP content). 534,665 autosomal SNPs were used for the analysis of this study
(basically 610K SNPs extracted from the final merged data set).

3. DATA ANALYSIS
Statistical analyses—The primary association testing was carried out using linear
regressions on all metabolite concentrations and all possible ratios of metabolite
concentrations. This was motivated by our previous observation 4,8 that the use of ratios may
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lead to a strong reduction in the overall trait variance. A test of normality showed that in
29,338 cases the log-transformed ratio distribution was significantly better represented by a
normal distribution than when untransformed ratios were used. In 5,145 cases untransformed
distribution was closer to a normal distribution. For concentrations 149 were closer to a
lognormal distribution while 124 were better represented by a normal distribution. Based on
this observation, and also for sake of simplicity, we decided to log-transform all metabolites
and their ratios. We used the p-gain statistics 4,8 to quantify the decrease in p-value for the
association with the ratio compared to the p-values of the two corresponding concentrations.
A high p-gain (above 250) indicates that two metabolites are more likely to be functionally
linked in a metabolic pathway that is impacted the associating genotype. KORA and
TwinsUK are population-based studies. They comprise only individuals who are not
displaying any severe clinical symptoms at the time of sampling. Therefore, disease state has
not considered as a confounding factor in the statistical analysis. In KORA, the software
PLINK (version 1.06)48 and SNPTEST was used with age and gender as covariates. In order
to account for the family structure in the TwinsUK study, we used variance components
applied to a score test implemented in the software Merlin 49.

Correction for multiple testing—We applied a conservative Bonferroni correction to
control for false positive error rates deriving from multiple testing. Using the KORA study
as reference, we corrected for tests on 655,658 SNPs and 37,455 metabolic traits, thus
obtaining a Bonferroni-adjusted p-value of p = 2.04×10−12. For ratios we required in
addition that the increase in the strength of association, expressed as the change in p-value
when using ratios compared to the larger of the two p-values when using two metabolite
concentrations individually (p-gain), be larger than the number of tested metabolic traits (p-
gain>250) 4,8. This limit is considered as a Bonferroni-type conservative cut-off for
identifying those metabolite concentration pairs for which the use of ratios strongly
improves the strength of association. Others than the strongest associating metabolic trait
often provide additional insight into the underlying biochemical processes. In such cases we
consider a p-value of p = 1.33×10−6 to represent a conservative level of significance
(Bonferroni correction for 37,455 tests at a nominal significance level of 5%).

Inflation—In most cases the assumption of a linear additive model was valid (see box plots
in Supplemental Figure 3) and there was no inflation of summary statistics which could be
indicative of population stratification (see QQ-plots in Supplemental Figure 3). Lambda
values ranged from 0.965 to 1.024 (median=1.006) in KORA and from 0.940 to 1.013
(median=0.985) in TwinsUK.

Candidate gene selection and overlap with disease loci—Regional association
plots (Supplemental Figure 3) were created using imputed and meta-analyzed data. Within
this region the SNP with the strongest signal of association in the meta-analysis was retained
as the final SNP to be reported. Association data for all metabolic traits at the 37 SNPs
reported in Table 1 (for KORA, TwinsUK and meta-analysis), limited to associations with
p<1.33×10−6 (Bonferroni correction for multiple testing of metabolic traits at a single locus)
and p-gain>250 (for ratios) in the meta-analysis are reported in Supplemental Table 4. For
the strongest associating trait box plots were plotted to visualize the actual quantitative
dependence of the trait on genotype (Supplemental Figure 3). Based on association data
alone, it is in most cases not possible to identify the implicated gene within a locus that
causes the association. However, using knowledge on the function of genes within linkage
disequilibrium of the reported SNP as well as the biochemical characteristic of the
associating metabolite, it is in many cases possible to identify a single most likely candidate
gene. These cases are tagged as ‘match between gene function and metabolic trait’ and are
supported by arguments provided as supplemental text (e.g. association of a SNP in LD with
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OPLAH (oxoprolinase) and oxoproline concentrations). At two loci (CYP4A and UGT1A)
variants with alternative splice variants exist. We named these loci without attempting to
specify the exact variant.

GWAS catalog—Using the catalogue of published genome-wide association studies
(accessed 10 October 2010) 1 we identified for each entry the SNPs in the KORA and
TwinsUK studies that correlate most strongly (r2 ≥ 0.5) and that was present in our
association database (p<10−3, p-gain>10). The resulting associations are available online on
our GWAS server. New associations shall be included as the database of published GWAS
is updated.

Enrichment analysis—We downloaded the actual version of the GWAS catalogue from
NHGRI and deleted all records that correspond to our previous studies. As a sampling
dataset, we chose the 655,658 SNP from the Affymetrix 6.0 array, which have been tested in
the KORA part of this study. The 37 SNPs that we report are from this array and can thus be
considered as representing one draw out of this set. We then drew 1,000,000 sets of 37 SNPs
at random (with replacement) from this sampling dataset. To account for comparable MAF
distributions between the reference and the random set we then rejected all draws where the
mean or the variance of the MAF distributions were significantly different (p<0.05) between
the random and the reference set. 330,775 random sets were hence retained. Using an LD
criterion of r2>0.8 (based on HapMap2 release #27, NCBI B36, CEU population), we then
counted for every random set the overlap with the GWAS catalogue. The reference set was
included as a technical positive control in the computations. For the 330,775 tested random
sets, at most six overlapping SNPs were found (8 times), and in over half of the cases no
overlapping SNPs were present in the sampled dataset (see Table below).

number of SNPs
overlapping with

the NHGRI GWAS
catalogue

number of random
occurrences

0 182,924

1 109,288

2 31,744

3 5,931

4 778

5 102

6 8

total 330,775

For our reported 37 metabolomics SNPs, we identified 14 overlapping SNPs (note that we
report 15 overlapping loci Figure 1; the ENPEP locus was not yet included in the GWAS
catalogue and was not used in this analysis). As we never found 14 overlapping loci by
chance, the p-value of our observations being due to chance is below p = 1/330,775 =
3×10−6.

Functional characterization of SLC16A9—The SLC16A9 (MCT9) clone (IMAGE ID
40146598) was purchased from Autogen Bioclear (Wiltshire, UK). Plasmid was linearised
with SpeI restriction enzyme (New englan Biolabs, UK) and cRNA synthesised in vitro
using the T7 mMachine in vitro transcription system (Ambion, Applied Biosystems,
Warrington, UK). MCT9 was expressed in Xenopus laevis oocytes as described previously
(Meredith 2004). Briefly, stage V-VI oocytes were injected with 10ng of MCT9 cRNA and
incubated in modified Barth’s solution for 3-4 days at 18°C with the medium changed daily.
Control oocytes had either no injection (NI) or an injection of an equal volume (50nl) of
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distilled H2O (WI) and were incubated for the same length of time. Uptake and efflux
experiments were performed similarly to those described previously 50 except the substrate
was [3H]-carnitine (specific activity 81Ci/mmol, GE Healthcare, UK).

Data access—This study generated millions of individual data points through the
profiling of n metabolites and n*(n-1)/2 ratios in ~3,000 individuals, and the subsequent
associations with millions of genetic variants from GWAS. We created a web-based
interface and visualization tools for the dissemination of results to the scientific community,
with the aims of allowing rapid storage and retrieval of data as well as managing the
integration of metabolomics summary statistics vis-a-vis published GWAS studies. The
association data is freely available at through the server http://metabolomics.helmholtz-
muenchen.de/gwa/ and mirror sites located at the Wellcome Trust Sanger Institute and
King’s College London sites.
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Figure 1. Genetic basis of human metabolic individuality and its overlap with loci of biomedical
and pharmaceutical interest
Over 100 years ago Archibald Garrod realized that inborn errors in human metabolism were
‘merely extreme examples of variations of chemical behaviour which are probably
everywhere present in minor degrees’ and that this ‘chemical individuality [confers]
predisposition to and immunities from the various mishaps which are spoken of as
diseases’ 36. The 37 genetically determined metabotypes (GDMs) we reported here explain a
highly relevant amount of the total variation in the studied population and therefore
contribute substantially to the genetic part of human metabolic individuality. GDMs are
presented here color-coded (a) by general metabolic pathways together with selected

Suhre et al. Page 16

Nature. Author manuscript; available in PMC 2013 November 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



associated metabolic traits, highlighting the relationship between gene function and the
associated metabolic trait (see column 4 in Table 1), and (b) by overlap with associations in
previous GWAS with disease [red], intermediate disease risk factors [yellow], and other
traits [green]. Locus overlap is defined here by the lead SNP reported in the NHGRI GWAS
catalogue being highly correlated (R2>=0.8) with the most associated SNP in the
metabolomics scan (see column 5 in Table 1 and Suppl. Table 7). Note that the overlap
between the metabolomics loci and the loci reported by the NHGRI GWAS catalogue is
highly significant when compared to a draw of 37 randomly selected SNPs with similar
properties (p<3×10−6, see Methods).
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Figure 2. Experimental evidence for SLC16A9 (MCT9) as a carnitine efflux transporter
When incubated in uptake medium containing [3H]-carnitine (4μCi/ml) there was no
significant uptake indicating that MCT9 does not mediate carnitine uptake. As some of the
previously characterised MCTs are proton-coupled 37, uptake was measured at both pHout
7.4 and 5.5, but no significant difference was observed (data not shown). However, when
4.6nl of [3H]-carnitine was injected into the oocyte followed by incubation in medium for 90
minutes, efflux was significantly higher in oocytes expressing MCT9 than in the non-
injected (NI, Figure a) or water-injected (WI, Figure b) controls, while again changing the
pHout had no effect (Figure a). In agreement with the lack of uptake of [3H]-carnitine,
external unlabelled carnitine was unable to trans-stimulate [3H]-carnitine efflux with no
significant difference in efflux between MCT9-expressing oocytes in the absence or
presence of 5mM carnitine (MCT9 vs. MCT9+carn, respectively, Figure b). Data are means
± SEM of 6-10 oocytes per data point from 2 oocyte preparations. Y-axis on plots represents
remaining [3H]-Carnitine (cpm/oocytes). Statistical significance was determined by the
Student’s t test. Taken together, these results are consistent with MCT9 acting as a
unidirectional carnitine efflux system when expressed in Xenopus oocytes. Note that
additional experiments are required to establish the full substrate specificity of MCT9. If
future studies show an appropriate cellular distribution, MCT9 could be responsible for
carnitine efflux across the basolateral membrane of absorptive epithelial cells following
absorption via the well-characterized apical epithelial proton-coupled carnitine transporters
OCTNs / SLC22 family 38.
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Table 1
37 loci that displayed genome-wide significance in the meta-analysis

The metabolic trait with the strongest association at the discovery stage in both studies is reported together
with the SNP identifier and the p-value of association from the meta-analysis. Full association data are
available in Supplemental Tables 3 & 5 and via a web-server (http://www.gwas.eu). The loci are labeled by
the gene that is considered most likely to carry the causative SNP. Overlap with associations from other
GWAS studies are highlighted in bold (R2>0.8, details are in Supplemental Table 6). Where the metabolic
trait is consistent with a nearby gene’s function, details are provided in the column labeled ‘Relationship
between gene function and the associated metabolic traits’. Metabolic traits that are associated with the SNP at
the corresponding locus are marked with a superscript ‘+’. Further information and full bibliographic
references are presented in Supplemental Table 4.

Locus &
SNP id Metabolic trait p-value

Relationship between gene function and the
associated

metabolic traits

Biomedical and
pharmaceutical interest

ACADS
rs2066938

butyrylcarnitine /
propionylcarnitine <4.4×10−305

Butyrylcarnitine+ and propionylcarnitine+ are
substrates/products

of ACADS

ACADS is a key enzyme in
the mitochondrial fatty acid

beta-oxidation

NAT8
rs13391552 N-acetylornithine 5.4×10−252

N-acetyltransferase function of NAT8
matches the associating

metabolite N-acetylornithine+

Association with glomerular
filtration and

CKD; association of N-
acetylornithine+ with eGFR

in this
study

FADS1
rs174547

1-arachidonoylglycero-
phosphoethanolamine/

1-linoleoylglycerophospho-
ethanolamine

8.5×10−116

FADS1 substrate/product pair ratio
arachidonate (20:4n6)+ /

dihomo-linolenate (20:3n3 or n6)+ is among
the top associations

Association with LDL
cholesterol, HDL

cholesterol &
triglycerides, fasting glucose

& HOMA-B, Crohn’s
disease, resting heart rate

UGT1A
rs887829 bilirubin (E,E) / oleoylcarnitine 2.9×10−74 Bilirubin+ is a substrate of UGT1A1

Association with
hyperbilirubinemia; low

serum
concentration of bilirubin

associate with increased risk
of

coronary artery disease; a
SNP in UGT1A1 is a

pharmacogenetic risk factor
for irinotecan toxicity

ACADM
rs211718

hexanoylcarnitine / oleate
(18:1n9) 2.2×10−71 Hexanoylcarnitine+ is a substrate of ACADM

ACADM is a key enzyme in
the mitochondrial fatty acid

beta-oxidation

OPLAH
rs6558295 5-oxoproline 1.5×10−59 5-oxoproline+ is a substrate of 5-oxoprolinase

OPLAH

SCD
rs603424

myristate (14:0) / myristoleate
(14:1n5) 2.9×10−57

SCD catalyzes the delta-9-desaturation of
fatty acids, such as

myristate (14:0)+ to myristoleate (14:1n5)+

and palmitate (16:0)+ to palmitoleate
(16:1n7)+

Palmitoleate (16:1n7) is a
lipokine linking adipose

tissue
to systemic metabolism

GCKR
rs780094 glucose / mannose 5.5×10−53

GCKR plays a role in glucose homeostasis,
strong association with

mannose+ to glucose+ ratios matches the
gene’s function

Association with type 2
diabetes, fasting glucose,

fasting
insulin; serum uric acid;
triglyceride levels; C-

reactive
protein; eGFRcrea; Crohn’s

disease;
hypertriglyceridemia
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Locus &
SNP id Metabolic trait p-value

Relationship between gene function and the
associated

metabolic traits

Biomedical and
pharmaceutical interest

NAT2
rs1495743

1-methylxanthine /
4-acetamidobutanoate 1.7×10−40

4-acetamidobutanoate+, 1-methylxanthine+,
and 1-methylurate+

are linked to NAT2 in the xenobiotics
pathways

Association with
triglyceride levels and CAD;

bladder
cancer; toxicities to

docetaxel and thalidomide
treatment

CYP3A4
rs17277546 androsterone sulfate 8.7×10−40

CYP3A cytochrome P450 proteins metabolize
androsterone

sulfate+

Genetic variance in
androsterone metabolism is

linked to
the incidence of prostate

cancer

ABO
rs612169

ADpSGEGDFXAEGGGVR /
ADSGEGDFXAEGGGVR 9.1×10−40

Polymorphisms in ABO determine the blood
group; association to

fibrinogen peptide phosphorylation+; additive
effect on fibrinogen

A-alpha phosphorylation together with FUT2
and ALPL

Association with blood ALP
level; pancreatic cancer;

venous thromboembolism;
phytosterol levels

SLC2A9
rs4481233 urate 5.5×10−34 SLC2A9 (GLUT9) transports uric acid+

Association with gout;
several SNPs in SLC2A9

associate
with etoposide IC50

CYP4A
rs9332998

10-nonadecenoate (19:1n9) /
10-undecenoate (11:1n1) 5.1×10−32

Cytochrome P450, family 4, subfamily A, are
fatty acid omega-

hydroxylases; 10-undecenoate (11:1n1)+ is
biochemically related

to omega-hydroxylated C10 fatty acids

Possible role in the etiology
of hepatic steatosis in
interaction with SCD

CPS1
rs2216405 glycine 1.6×10−27

Association with glycine+ and creatine+;
creatine is produced from

glycine; glycine is metabolically related to
carbamoyl phosphate,

which is the product of CPS1 and the entry
point of ammonia into

the urea cycle

Metabolomics data suggests
that this association is
related to a perturbed
ammonia metabolism

LACTB
rs2652822 succinylcarnitine 7.2×10−27

Association with succinylcarnitine+; perturbed
hepatic gene

expression in transgenic LACTB mice
suggests a role of LACTB in
butanoate/succinate+ pathway

LACTBtg mice are obese

SLC22A1
rs662138 isobutyrylcarnitine 7.3×10−25

SLC22A1 (OCT1) translocates a broad array
of organic cations,

possibly also isobutyrylcarnitine+ or related
metabolites

Genetic variation in
SLC22A1/SLC22A2 region

are
determinants of metformin

pharmacokinetics

SLCO1B1
rs4149081

eicosenoate (20:1n9 or 11) /
tetradecanedioate 2.8×10−22 SLCO1B1 (OATP2, OATP-C) is an organic

anion transporter

Common variants in
SLCO1B1 are strongly

associated
with an increased risk of
statin-induced myopathy

FUT2
rs503279

ADpSGEGDFXAEGGGVR /
ADSGEGDFXAEGGGVR 4.3×10−20

FUT2 is involved in the creation of a
precursor of a H antigen,

additive effect on fibrinogen A-alpha
phosphorylation together

with ABO and ALPL.

Association with vitamin
B12 levels,

total cholesterol, Crohn’s
disease; vitamin B12

deficiency is associated with
cognitive decline, cancer

and CAD

ACE
rs4329 aspartylphenylalanine 8.2×10−20

Angiotensin I converting enzyme (peptidyl-
dipeptidase A) 1 is

associated with the dipeptide
aspartylphenylalanine+

Association with
angiotensin-converting

enzyme
activity, potential genetic
interaction with KLKB1

locus

PHGDH
rs477992 serine 2.6×10−14 PHGDH catalyses the first and rate-limiting

step in the

Nature. Author manuscript; available in PMC 2013 November 19.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Suhre et al. Page 21

Locus &
SNP id Metabolic trait p-value

Relationship between gene function and the
associated

metabolic traits

Biomedical and
pharmaceutical interest

phosphorylated pathway of serine+

biosynthesis

ENPEP
rs2087160

ADpSGEGDFXAEGGGVR /
DSGEGDFXAEGGGVR 6.5×10−13

ENPEP (APA, Aminopeptidase A) is an N-
terminal amino peptidase;

association with ratios between fibrinogen A-
alpha peptide

ADSGEGDFXAEGGGVR+ and its N-
terminal cleaved form

DSGEGDFXAEGGGVR+ suggests that
fibrinogen is a substrate of

ENPEP

ENPEP plays a role in the
catabolic pathway of the

renin-
angiotensin system and

regulates blood pressure,
association with blood

pressure in Asian population

AKR1C
rs2518049

androsterone sulfate /
epiandrosterone sulfate 6.7×10−13 AKR1C isoforms play a role in androgen+

metabolism

AKR1C plays a role in the
etiology of different cancers,

including prostate, brain,
breast, bladder and

leukemia;
potential target of

jasmonates in cancer cells

NT5E
rs494562 inosine 7.4×10−13 Inosine+ is a substrate of the 5′-nucleotidase

NT5E
NT5E is involved in purine

salvage

PRODH
rs2023634 proline 2.0×10−22 PRODH catalyzes the first step in proline+

degradation

HPS5
rs2403254 alpha-hydroxyisovalerate 1.0×10−20

Alpha-hydroxyisovalerate+ is found in urine
of patients with

phenylketonuria, phenylalanine is required for
melatonin

biosynthesis

Melatonin homeostasis is
deranged in patients with

loss
of HPS genes (albinism)

ALPL
rs10799701

ADpSGEGDFXAEGGGVR /
DSGEGDFXAEGGGVR 2.9×10−20

ALPL is a phosphatase and associates with A-
alpha fibrinogen

phosphorylation+; additive effect on
fibrinogen A-alpha

phosphorylation together with ABO and of
FUT2.

SLC7A6
rs6499165 glutaroyl carnitine / lysine 9.8×10−19

Glutaryl-CoA+ is an intermediate in the
metabolism of lysine+ and

tryptophan;

Deficiencies in glutaryl-
CoA DH are linked to

metabolic
disorders

KLKB1
rs4253252 bradykinin, des-arg(9) 6.6×10−18

Kallikrein B, plasma (Fletcher factor) 1;
kallikrein-kininogen

complex binds to cell surface receptors
leading to the targeted
action of bradykinin+

Association of bradykinin+

with hypertension confirmed
in this study; potential

genetic interaction with
ACE locus

GLS2
rs2657879 glutamine 3.1×10−17 GLS2 catalyzes the hydrolysis of glutamine+

PDXDC1
rs7200543

1-eicosatrienoylglyceropho-
sphocholine /

1-linoleoylglycerophos-
phocholine

4.5×10−16

Association with 1-eicosadienoyl- to 1-
eicosatrienoyl-glycerophosphocholine+ ratio

suggests role of
PDXDC1 in the metabolism of C20:2 and

C20:3 fatty acids

Association with body
height

SLC22A4
rs272889 isovalerylcarnitine 7.4×10−16 SLC22A4 (OCTN1) transports

isovalerylcarnitine+
Association with body

height

AHR
rs12670403 caffeine / quinate 4.8×10−15

AHR is a transcription factor for CYP1A1,
which metabolizes

caffeine+

ETFDH
rs8396 decanoylcarnitine 5.5×10−15

Decanoylcarnitine+ used for energy
production via beta oxidation
to electron transfer complex

ETFDH is a key enzyme in
the mitochondrial fatty acid

beta-oxidation

ELOVL2
rs9393903

docosahexaenoate
(DHA; 22:6n3) /

eicosapentaenoate
1.7×10−14 EPA (20:5n3)+ is a substrate of ELOVL2,

DHA (22:6n3)+ is related to
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Locus &
SNP id Metabolic trait p-value

Relationship between gene function and the
associated

metabolic traits

Biomedical and
pharmaceutical interest

(EPA; 20:5n3) its product through by a single desaturation
reaction

SLC16A9
rs7094971 carnitine 3.4×10−14 SLC16A9 (MCT9) transports free carnitine+

(shown in this paper)

IVD
rs10518693

3-(4-hydroxyphenyl)lactate /
isovalerylcarnitine 1.1×10−13

Isovalerylcarnitine+ is a transport form of
isovalerate, which is the

substrate isovaleryl coenzyme A
dehydrogenase (IVD)

IVD is a key enzyme in the
mitochondrial fatty acid

beta-
oxidation

SLC16A10
rs7760535 isoleucine / tyrosine 1.4×10−12

SLC16A10 encodes the T-type amino acid
transporter-1 (TAT1);

this transporter transports tyrosine+ and
phenylalanine+
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