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Pash is a computer program for efficient, parallel, all-against-all comparison of very long DNA sequences. Pash
implements Positional Hashing, a novel parallelizable method for sequence comparison based on k-mer representation
of sequences. The Positional Hashing method breaks the comparison problem in a unique way that avoids the
quadratic penalty encountered with other sensitive methods and confers inherent low-level parallelism. Furthermore,
Positional Hashing allows one to readily and predictably trade between sensitivity and speed. In a simulated
comparison task, anchoring computationally mutated reads onto a genome, the sensitivity of Pash was equal to or
greater than that of BLAST and BLAT, with Pash outperforming these programs as the reads became shorter and less
similar to the genome. Using modest computing resources, we employed Pash for two large-scale sequence
comparison tasks: comparison of three mammalian genomes, and anchoring millions of chimpanzee whole-genome
shotgun sequencing reads onto the human genome. The results of these comparisons by Pash agree with those
computed by other methods that use more than an order of magnitude more computing resources. These results

confirm the sensitivity of Positional Hashing.

One expected benefit of genome sequencing is the identification
of functional DNA elements through comparative methods. For
example, comparison of the sequenced genome of Saccharomyces
cerevisiae to the genomes of three related yeast species resulted in
substantial revision to the catalog of open reading frames (ORFs)
and noncoding conserved sequence motifs that had been discov-
ered by examining the sequence of S. cerevisiae alone (Kellis et al.
2003). Strikingly, comparison of the mouse and human genomes
revealed that approximately 5% of these genomes are under pu-
rifying selection (Waterston et al. 2002). Rat/human or rat/
mouse genome comparisons yield similar statistics (Rat Genome
Sequencing Consortium 2004), yet only about a third of this
conserved sequence is accounted for by known genes, indicating
that a large set of functional elements remain uncharacterized.

Identification of functional elements by genome compari-
son depends heavily on the quality of sequence alignments.
Standard Dynamic Programming algorithms (Needleman and
Wunsch 1970; Smith and Waterman 1981) are highly sensitive
DNA comparison methods but are too computationally expen-
sive to directly apply on the scale of multiple mammalian ge-
nomes. Even recent faster implementations of dynamic program-
ming such as LAGAN (Brudno et al. 2003) that perform well on a
megabase scale are not applicable on a genome scale without
prior information (“anchors”) that direct comparison to ortholo-
gous regions.

Faster comparison is achieved by “seed-and-extend” meth-
ods such as BLAST, BLAT, BLASTZ, SSAHA, PatternHunter, and
FASTA (Pearson and Lipman 1988; Altschul et al. 1997; Ning et al.
2001; Kent 2002; Ma et al. 2002; Schwartz et al. 2003). In a seed-
and-extend method, one or more exactly matching k-mers
(“seeds” or “hot-spots”) provide initial evidence of possible simi-
larity. The seeds are then extended into sequence alignments.
The extension step is more accurate than the seeding step, but it
is computationally expensive, so these methods quickly abandon
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most candidate similarities because they do not immediately
yield alignments that are likely to be statistically significant.

Seed-and-extend methods work well when a relatively short
query is used to search a large database, but they were not ini-
tially designed for genome-scale comparison. Sensitive genome-
scale comparison is achieved by dividing the sequence databases
into hundreds or thousands of multimegabase subsets and per-
forming all possible pairwise comparisons between them
(Altschul et al. 1997; Ning et al. 2001; Ma et al. 2002; Schwartz
et al. 2003). This contributes to the quadratic running time of
these comparison methods, because the number of such com-
parison jobs is proportional to the square of the number of sub-
sets. This makes large-scale comparisons computationally expen-
sive, practically restricting them to labs that have access to large
computing clusters. A further limitation of current implementa-
tions of seed-and-extend methods is that they provide few op-
tions to trade sensitivity for speed.

To address the limitations of seed-and-extend methods, we
developed the Positional Hashing method and implemented it in
the Pash (Positional Hashing) program. Although other sensitive
comparison methods ultimately perform nucleotide alignments,
the Positional Hashing method represents sequences as collec-
tions of short k-mers rather than as individual bases, throughout
the comparison process. Local clusters of matching k-mers are
collated together to identify sequence similarity. Whereas other
methods achieve parallelism by requiring users to divide the se-
quences into many subsequences and perform all pairwise com-
parisons between them (thus incurring a quadratic penalty), Po-
sitional Hashing achieves seamless parallelism in linear time by
assigning computing nodes to compare subsets of diagonals.

We compared the speed and sensitivity of Pash to BLAST
and BLAT in sequence-anchoring tasks. The tasks included simu-
lated anchoring of sequence fragments of various lengths across
various evolutionary distances onto a genome of a related spe-
cies, and the anchoring of chimpanzee reads onto the human
genome. Pash was also applied to detect orthologous regions be-
tween the genomes of human, mouse, and rat. Our tests con-
firmed that this novel parallelizable method of comparing se-
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quences on the basis of their k-mer representation is as sensitive
as methods that perform nucleotide alignments, although per-
forming much faster and conferring superior ability to trade sen-
sitivity for speed.

METHODS

Dividing the Comparison Problem Across Diagonals

Any sequence similarity occurs along a particular diagonal of the
comparison matrix (Fig. 1A, diagonal lines). In contrast to other
sensitive comparison methods, Positional Hashing divides the
comparison problem into the subproblems of finding similarities
within subsets of diagonals, each subset consisting of diagonals L
basepairs apart (Fig. 1B). These subproblems are each indepen-
dently solvable on a separate node of a computer cluster. To
further localize detection of similarities, diagonals are divided
into diagonal segments, also of length L (Fig. 1C, dashed lines).

The alignment diagonals that start at the same position
modulo a fixed distance L (typically around 500 bp) are jointly
referred to as a “diagonal” and are denoted by D, d=0, ...,
L — 1. The two compared sequences, S and T, are conceptually
divided into the following nonoverlapping subsequences
of length L: S;=S[i *L+1, ..., (i+ 1)*L] wherei=0, ...,|S|/L — 1
and T, =T[i' *L+1, ..., (i’ + 1) * L], where i’ =0, ..., [T|/L — 1.
Positional hash tables H() 4, where j =0, ..., L — k, which corre-
spond to the diagonal D contain the indices i and i’ of k-mers

Genome |

>
Genome 2

Genome 1 / l \ —>| L |<—

SH+1, ..., j+kland Ty[d+ j+1, ..., d+ j+Kk] foralliandi'.
Identical k-mers are translated into the same hash key, and their
corresponding indices are consequently collected in the same
hash table bin. The k-mers hashed in an individual table are
illustrated in Figure 1C (short bold line segments).

Positional hash tables are created in the first step of the Pash
algorithm (Fig. 2, step 1). In the subsequent inversion step (Fig. 2,
step 2), pairs of matching k-mers in S and T are detected. Specifi-
cally, a k-mer match along diagonal D“ between subsequences S;
and T; in position j is detected whenever indices i and i’ co-occur
in the same bin of hash table H{J) ;.

In the collation step (Fig. 2, step 3), the lists of matching
k-mers are grouped by subsequence pair (S;, T;). Subsequence
pairs with one or more k-mer matches are assigned a significance
score (see Significance of Similarities).

The hash tables H{{),, where j=0 ... L — k, corresponding
to diagonal D, are processed on the same node of a computer
cluster. Each of the L diagonals DY, d=0, ..., L — 1 may be
processed independently and in parallel across up to L comput-
ing nodes. If only one computer is available, the diagonals may
be processed sequentially.

Analysis of Running Time

In the worst case, an all-against-all comparison of two sequences
of length M and N requires time proportional to M * N because
the size of the output can be proportional to M * N. The worst
case may occur, for example, when sequences are made up en-
tirely of the same kind of repetitive element.
In many practical applications, such as de-
tection of orthologous anchors between two
mammalian genomes, the size of the output
is roughly linearly proportional to M + N. In
the following text, we show that under rea-
sonable assumptions, Pash runs in O(M + N)
wall time on a cluster consisting of L nodes,
for inputs that result in outputs of size
OM +N).

Each of approximately L? positional
hash tables is populated (Fig. 2, step 1) with
M + N)/L sampled k-mers (e.g., Fig. 1C,
short, bold, line segments). To avoid the
need for subsequent sorting, k-mers are in-
serted into the hash table in the order of

o]
Genome 2

their position in the input sequences. The
hash bin occupied by each k-mer is recorded
in a list to preserve this ordering informa-
tion. In the subsequent inversion step (Fig.
2, step 2), matching k-mers are detected by
visiting the hash table bins in the same or-
der and recording the positions of matching
k-mers. The list of matching k-mers is thus

Genome |

produced in order, sorted by position in the
input sequences.

If k-mers of sufficient length are used,
the number of k-mer matches detected per

@
Genome 2

Figure 1 Division of the comparison problem along diagonals. (A) Sequence similarities are
contained within diagonals of the comparison matrix. (B) A subset of these diagonals, separated by
a fixed offset L, is simultaneously considered by each computing node and is referred to as
“diagonal” (modulo L). (C) The diagonals are conceptually divided into segments of length L,
delineated by broken horizontal lines. All k-mer matches in a specific sampled position (short, bold,
line segments) along each diagonal segment are simultaneously detected in a single positional
hash table. This is repeated for all sampled positions along diagonal segments. The k-mer matches
that occur within the same diagonal segment are collated together and assigned a significance

score.

single hash table is O((M + N)/L). For ex-

ample, the results in this paper were ob-
R2 tained with k = 13 and genome sizes of ap-

proximately 3 Gbp each. Each 13-mer is ex-
L pected to occur by chance approximately
45 times in genomes of this size, resulting in
about 2000 randomly occurring k-mer
matches. For genomes that are four times
larger (12 Gbp), for the time spent on de-
tecting random matches to increase only
linearly, one would need to use 14-mers. In
general, to keep the number of random
matches constant, the parameter k would
need to be logarithmically proportional to
genome size. Beause the lists of matching
k-mers are sorted, collation to find groups of
matching k-mers (Fig. 2, step 3) involves
single traversal of each list.
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Genomes 1 and 2

1. Populate positional hash tables with
k-mers from particular positions

v

2. Detect all k-mer matches by
inverting the positional hash tables

A 4

(O8]

. Collate groups of matching k-mers
within diagonal segments

\ 4

4. Apply reciprocal match filter to
remove false-positives

Orthologous Anchors

Figure 2 Flowchart of sequence comparison using Pash. Short, exactly
matching k-mers are detected during Hashing and Inversion. Lists of
proximal matching k-mers are collated to detect larger matches, which
are assigned a score. An optional reciprocal match filter is then employed
to increase specificity.

Thus, under the key assumptions of linear-sized output and
sufficient k-mer size, the time required to hash, invert, and col-
late is O((M + N)/L) per hash table. A total of approximately L?
hash tables are employed in a complete comparison, resulting in
the total running time of O((M + N) * L). In practice, even for
genomes of the largest complexity, L can be set to few hundred
basepairs. If computation is spread across as many nodes in the
computer cluster, one diagonal per node, the wall time reduces to
OM +N).

Sampling Patterns

For simplicity, our discussion above assumed that the positional
hash tables are populated with contiguous k-mers. In practice, to
increase sensitivity, k-mers are formed according to a discontigu-
ous sampling pattern that minimizes the number of overlapping
bases between k-mers in consecutive positions (Califano and Ri-
goutsos 1993; Buhler and Tompa 2001; Ma et al. 2002; Buhler et
al. 2003). This approach minimizes mutual dependence between
overlapping k-mers. For a given frequency of randomly distrib-
uted mismatches, this approach does not change the total ex-
pected number of k-mer matches, but it improves sensitivity by
achieving a more even spatial distribution.

The length of a k-mer and the sampling pattern used are
adjustable to fit the total size of the sequences under comparison
and the evolutionary distance between them. For comparison of
mammalian genomes, we used a sampling pattern of length 19
bases containing 13 sampled bases, as this represents a good
tradeoff between RAM usage (longer k-mers use a larger hash
table, requiring greater RAM), sensitivity (shorter k-mers increase
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mismatch tolerance), and coincidental matches (shorter k-mers
are more likely to match by chance, increasing the time spent on
isolated, insignificant matches).

Significance of Similarities

For each sequence match found, Pash reports both the number
of matching bases detected and a bit score that indicates signifi-
cance, calculated using the Algorithmic Significance method
(Milosavljevic and Jurka 1993; Milosavljevic 1995). In brief, we
measure sequence similarity as the number of bits saved in a
minimal encoding of the target sequence X =T, given that the
source (“query”) sequence S; is known. The Algorithmic Signifi-
cance method provides significance values for any sampling pat-
tern (see Sampling Patterns) and sampling density based on the
number of bits saved.

Let d be the number of bits saved or the “bit score” of the
match. Then,

d=1,(X) = I(X),

where [,(X) denotes the minimal number of bits required to en-
code the target sequence by itself, and I(X) denotes the number
of bits required to encode the target using similarity to the
source.

Let Pybe the null hypothesis assigning probability p,(X) to
target sequence X. Then Iy(X) = —log,py(X). We make the sim-
plifying assumption that sequences are completely random;
thus, I,(X) =2 X n bits, where n is the length of the target se-
quence (i.e., each base is encoded using 2 bits).

We adapt standard encoding techniques to efficiently use
similarity between the source and target to compute I(X). We
choose one of two different encoding methods on a per case
basis, indicating which method was chosen with a 1-bit flag. The
two encoding methods, which we refer to as the k-mer method
and the Base method, record matching k-mer and base positions,
respectively.

For the k-mer encoding, let w be the number of matching
k-mers, and let W be the maximum possible number of k-mers
that can be contained in a match. W is dictated by the diagonal
segment length and is constant throughout a given comparison.
Following the aforementioned 1-bit flag, the k-mer encoding re-
cords the number of matching k-mers, which requires log, W bits.
For a given value of w, there are

w
w
possible lists of matching k-mers. The particular set of matching

k-mers is encoded as the set’s position in a lexicographically
sorted list of all possible sets of w-matching k-mers, which re-

quires
w
log, W

bits. The k-mer encoding I,,/(X) thus requires
w
In(X)=1+1log, W+ log, (W> bits.

The Base encoding is analogous to the k-mer encoding, but
it records the base positions rather than the k-mer positions. We
similarly define b to be the number of bases contained in a match
and B to be the maximum possible number of bases that can be
contained in a match. Analogous to the k-mer encoding, the Base
encoding requires

B
Iy(X) =1+ log,B + log, (b) bits.

The encoding chosen is then I n(X) = min(Iz(X), I;,(X)). In
general, matches that contain few k-mers are encoded most effi-
ciently by the k-mer method. When there are many matching
k-mers, the k-mers tend to overlap with one another extensively,
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and each additional k-mer contributes few additional bases; thus,
it becomes more efficient to use the Base method.

Whether the k-mer or Base encoding is chosen for a given
match, the bases not involved in the match must also be en-
coded. These remaining bases are encoded using the same model
that is used for the null hypothesis (see earlier). The number of
bits in the complete encoding is I(X) = Li;n(X) +2 X (n — b).
Combining and simplifying the above expressions, the bit score
of a match found by Pash is

d=2 X b-Lyn(X)

For a bit score d, the probability p of finding such a match by
chance alone is

N
PSE

where N = |T] |S|/L? is the total number of comparisons done.

Adjustable Speed/Sensitivity Tradeoff

One of the strengths of the Positional Hashing method is the
ability to readily and predictably trade sensitivity for speed. If the
sequences are known to be highly similar and few mismatches
are expected, the density of k-mers can be decreased so that each
base is sampled in fewer k-mers. For example, by halving the
number of k-mers, we can halve the time required for a compari-
son. Conversely, this approach permits dense sampling of each
base by a multitude of overlapping sampling patterns, further
increasing the ability to detect similarities at large evolutionary
distances.

In our current implementation, the parameter that con-
trols the trade-off between speed and sensitivity is the “k-mer
offset gap,” which is the number of bases between the start
of consecutive sampled positions along a diagonal segment (Fig.
1C). The anchoring simulation, genome comparison, and chimp
read-anchoring discussed below were conducted with high sen-
sitivity (k-mer offset gap = 2), medium sensitivity (k-mer off-
set gap = 6), and low sensitivity (k-mer offset gap = 18), respec-
tively.

Tolerance of Repetitive Sequences

Pash does not require the usual preprocessing step in which se-
quences are “masked” to remove repeat sequences from consid-
eration. Rather, Pash uses k-mer frequency information (mea-
sured by hash table bin size) to ignore k-mers that are overrep-
resented (above a user-specified threshold) because of their
presence in a repeated sequence. The k-mers that are shared
among repeat and nonrepeat sequences, however, are ignored in
both contexts. As a consequence, the use of unmasked, repeat-
containing sequences has some effect on sensitivity.

Reciprocal Best Matches

To separate homologous sequences from true orthologous se-
quences, and to remove some residual repeat sequences that were
not excluded by ignoring overused k-mers, the similarities found
may be postprocessed by applying Pash’s “reciprocal best match”
filter. This filter ensures that for each pairwise similarity reported,
each of the two sequences must appear on the other’s list of top
matches. This filter implicitly uses the full set of sequences as
positive controls to increase the specificity of anchoring and to
reduce the number of false positive matches.

One specific application of Pash is the detection of ortholo-
gous anchors and blocks of conserved synteny between two ge-
nomes. In this case, anchors may be declared only when each
sequence is the other’s top match. This may not be appropriate
for other applications; for example, if one is interested in study-
ing lineage-specific duplications. For such applications, the re-
ciprocal match criterion is relaxed to allow up to a fixed number
of matches for every location in each sequence. Similarly, when
anchoring sequencing reads onto genomic sequence, the recip-

rocal match filter can be adjusted to keep the best match for each
read, but map multiple reads to the same genomic location.

Merging Collinear Anchors and Visualization

In the case of comparison of genome assemblies, reciprocal best
matches can further be merged into blocks of conserved synteny.
Blocks are inferred from the existence of multiple proximal or-
thologous anchors. A postprocessing script merges anchors that
are within a specified radius in both genomes. Depending on the
application, the user can specify whether to tolerate local rear-
rangements or to require that the anchors occur in the same
order and orientation in both genomes. This merging program is
part of the Virtual Genome Painting program package (http://
www.genboree.org), employed here for display of genome com-
parison results (Fig. 3).

BLAT and BLAST

For comparison experiments, we used BLAT Client/Server version
23 (http://www.soe.ucsc.edu/~kent/src/blatSrc23.zip) and Na-
tional Center for Biotechnology Information BLAST (Altschul
et al. 1997). BLAT comparison parameters were adjusted to allow
low-similarity matches that would be filtered by default, using
the options minScore = 20 and minldentity = O (A. Polakov, pers.
comm.). To reduce the number of heat-sensitive proteins
grouped together by BLAT, we set maxIntron to the length of the
sequences being mapped. For BLAST, we used an expectation
value of le-15 for the anchoring simulation and of 1e-50 for the
chimp read mapping. We used the default values for all other
BLAST and BLAT parameters.

The nodes in our computing cluster did not have sufficient
RAM to run BLAT with the entire human genome, so we divided
the human genome into two roughly equal halves and compared
each read against both halves on separate nodes. BLAST was run
using a different computing node for each chromosome.

Program Availability

Code and licenses for Pash, Positional Hashing, the Reciprocal
Match postprocessing filter, and the anchor-merging script are
available free of charge for academic use. Current access and li-
censing information is posted at http://www.brl.bcm.tmc.edu.

RESULTS

Genome Comparison

We compared the latest assembly of the rat genome (HGSC v3.1,
http://www.hgsc.bcm.tmc.edu/projects/rat/) to the genomes of
mouse and human (UCSC hgl5 and UCSC mma3, respectively,
http://genome.ucsc.edu/downloads.html), using Pash in medi-
um-sensitivity mode (see Adjustable Speed/Sensitivity Tradeoff).
Each pairwise comparison was completed in 4 days using six
CPUgs, for a total of 24 CPU days per comparison. The computers
used had 750 MHz Pentium III processors running Linux. Peak
RAM usage was less than 500 MB. We merged the Pash anchors
that were within a radius of up to 400 kb (the radius was adjusted
to fit the evolutionary distance between species) to facilitate dis-
play of the comparison results using the Virtual Genome Paint-
ing program (http://www.genboree.org).

At 1 Mbp resolution, the resulting picture of global similari-
ties (Fig. 3) is virtually identical to that found by the alignment
program BLASTZ, which requires 481 CPU-days to align two
mammalian genomes using similar machines (Schwartz et al.
2003). For the human-rat comparison, we examined the similar-
ity between the Pash anchors and the blocks of conserved syn-
teny defined by the BLASTZ alignments (“syntenyRat” data
tables, http://genome.ucsc.edu) in more detail. Consistent with
the high specificity of Pash anchoring, 83% of the Pash anchors
are contained within the blocks of conserved synteny found by
BLASTZ. We are currently investigating whether any of the re-
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Figure 3 Rat/Mouse/Human comparison. Pash was used for pairwise comparison of the genome of rat with those of mouse and human. Chromo-
somes are shown with p-arm down. Each chromosome of the rat genome is represented as a pane (identified along the x-axis) containing two columns
that have been “painted” using the Virtual Genome Painting method (http://www.genboree.org) according to similarity to chromosomes of mouse and
human. Position within the rat chromosomes is indicated along the y-axis in megabases (Mb). Columns are colored according to similarity to human
chromosomes (left columns, “H”), and mouse chromosomes (right columns, “M”). The same color code is used for similarity to both human and mouse,
as indicated by the legend. For example, the first 25 Mb of rat chromosome 1 is similar to sequences from human chromosome 6 (indicated by pink
coloring in the left column) and mouse chromosome 10 (indicated by yellow coloring in the right column). An interactive version of this figure is available

at the Genboree site (http://www.genboree.org).

maining 17% of Pash anchors indicate similarities that were not
found by BLASTZ. Similarly, we determined that over 99% of
bases within conserved syntenic regions defined by the BLASTZ
alignments contain multiple Pash anchors, indicating that Pash
correctly identified the vast majority of conserved synteny be-
tween human and rat genomes.

Anchoring Simulation

We evaluated the sensitivity and specificity of Pash relative to
BLAT and BLAST using a simulated anchoring task in which
“reads” containing computationally introduced mutations were
anchored onto a mammalian genome. For this test, we created a
library of sequences by mutating randomly chosen sequence
fragments from the finished human genome (UCSC hg135, http://
genome.ucsc.edu/downloads.html). The library of mutated frag-
ments contained all combinations of four different degrees of
sequence identity (95%, 85%, 75%, and 65%) and four different
lengths (1000, 500, 200, and 100 bp). Each of the 16 sets con-
tained 10,000 fragments, for a total of 160,000 fragments. Each
base had the indicated percent chance to be the site of a simu-
lated mutational event (e.g., “65% identity” implies that each
base had a 35% chance to either change to a new base or be the
site of a single base insertion or deletion event). Each base un-
derwent at most one mutational event; thus, reversion to the
original sequence was not possible. Most mutational events were
a change to a randomly chosen different base, but 1% of events
were indels (half of such events were deletions and half were
insertion of a random base). The same experiments were also
conducted using a 3% indel rate with very similar results (data
not shown). Successful mapping was counted if any of the 10
highest scoring matches returned by a program overlapped with
the original location.

We determined the frequency with which the fragments
could be mapped to their original location by Pash, BLAT, and
BLAST. As expected, all three programs were highly successful at
95% sequence identity (Fig. 4A). At lower sequence identity and
with shorter fragment lengths, Pash becomes increasingly more
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sensitive than BLAT and BLAST (Fig. 4B-D). We believe that the
lower-than-expected sensitivity of BLAST is the result of similar-
ity regions sometimes being broken into multiple individual
matches with relatively low scores that are not included in the set
of the top 10 hits, thus precluding correct anchoring. These re-
sults indicate that when the sequences are highly similar (>95%)
the choice of anchoring method should be dictated by whatever
is fastest and most convenient. When the sequences are less simi-
lar (<85%), Pash performs more accurate anchoring than BLAST
or BLAT.

Anchoring Chimpanzee Reads

The genome of the chimpanzee Pan troglodytes is estimated to be
over 95% identical to the human genome (Chen and Li 2001;
Britten 2002; Ebersberger et al. 2002) and is an attractive target
for comparative assembly (Milosavljevic 1999). Anchoring the
full set of chimpanzee sequencing reads onto the human genome
is the first step in this process. We used a set of approximately
2.7 million whole-genome shotgun reads from the chimpanzee
(http://www.ncbi.nih.gov) to determine whether Pash is suffi-
ciently fast and sensitive for this task. These reads were selected
from the set of reads of lengths between 860 and 999 bp in the
National Center for Biotechnology Information trace archive but
were not otherwise masked or filtered for quality.

Given the expected high similarity between the human and
chimpanzee genomes, we employed Pash in a high-speed/low-
sensitivity mode (see Adjustable Speed/Sensitivity Tradeoff). Be-
cause of a large CPU time requirement, we chose a random subset
of 225,000 and 15,000 of these reads to estimate the speed of
BLAT and BLAST, respectively. The rate of read mapping by Pash
was approximately six times higher than that of BLAT and over
400 times higher than the read mapping rate of BLAST (Table 1).

To confirm agreement between these methods on this an-
choring task, we considered the subset of reads that were mapped
by BLAST with high confidence (expectation value more signifi-
cant than 1e-50, and at least 65% base identity between the read
and the mapped region) and low ambiguity (the second-best
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Figure 4 Simulated anchoring. Randomly selected sequence fragments
of varying lengths (1000, 500, 200, or 100 bp) from the human genome
were randomly mutated to be 95% (A), 85% (B), 75% (C), or 65% (D)
identical to their original sequence. The fraction of fragments that were
correctly mapped to their original location by Pash, BLAT, and BLAST
indicate the sensitivity of these methods at varying levels of sequence
identity.

Table 1. Read Anchoring Speed and Accuracy of Pash, BLAT,
and BLAST

Fraction in agreement

Program Reads mapped/minute with BLAST
Pash 235.5 99.2%
BLAT 39.6 99.8%
BLAST 0.6 N/A

Whole-genome shotgun sequencing reads from the chimpanzee ge-
nome-sequencing project were independently mapped onto the hu-
man genome by Pash, BLAT, and BLAST. BLAST mappings to a single
unambiguous location were used as a reference for comparison. Be-
cause chimpanzees are closely related to humans, Pash was employed
in a high-speed/low-sensitivity mode (see Adjustable Speed/Sensi-
tivity Tradeoff for details).

N/A means not applicable.

match having read identity not more than 85% of that of the best
match). Both Pash and BLAT agree with BLAST for over 99% of
these reads, defined by one of the 10 highest-scoring mappings
overlapping with the BLAST mapping (Table 1).

DISCUSSION

In contrast to seed-and-extend methods, which examine indi-
vidual basepairs in the extension step, the Positional Hashing
method collates together locally matching k-mers to identify se-
quence similarity. Throughout the comparison process, se-
quences are represented as short k-mers rather than individual
bases. The k-mer representation confers exceptional speed and
simplicity to the comparison algorithm. Moreover, both speed
and specificity are controllable through selection of k-mer length
and k-mer sampling density. In contrast to most other sensitive
comparison methods (Pearson and Lipman 1988; Altschul et al.
1997; Ning et al. 2001; Ma et al. 2002; Schwartz et al. 2003),
Positional Hashing achieves low-level parallelism without incur-
ring a quadratic time penalty. Computation can be efficiently
spread across hundreds of nodes in a computer cluster with an
approximately linear reduction in wall time.

Our current, incompletely optimized implementation of the
Pash program requires modest hardware resources to perform
sequence anchoring even on the scale of mammalian genomes.
Compared to seed-and-extend methods, Pash can achieve sub-
stantial time savings when creating orthologous maps between
genomes, anchoring expressed sequence tags (ESTs) onto ge-
nomic sequence, anchoring reads of one organism onto an as-
sembled genome of another for the purpose of comparative se-
quence assembly, or when constructing read overlap graphs for
sequence assembly.

For applications that require basepair-level alignments, Pash
may be used as an anchoring module whose results are postpro-
cessed by a program like LAGAN, AVID, or BLASTZ (Bray et al.
2003; Brudno et al. 2003; Schwartz et al. 2003). Because the use of
Pash anchors breaks the all-against-all comparison of entire ge-
nomes into much smaller pairwise comparisons of specific re-
gions that are all highly likely to yield significant alignments, the
use of Pash anchors saves significant computing time.

Pash was designed to address the problem of comparing very
long sequences or large collections of short sequence fragments.
Its linear running time is advantageous when the lengths of com-
pared sequences M and N are similar (e.g., when comparing two
mammalian genomes), but when one of them, say M, is much
larger than the other, N, the time required for comparison is
dictated by the size of M. This makes Pash ill-suited to the task of
comparing a single short query with a long target.
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Planned improvements to the Positional Hashing method
include simultaneously considering adjacent diagonals to im-
prove sensitivity in the presence of insertions and deletions, and
collation across diagonal segment boundaries to improve sensi-
tivity. The Positional Hashing method is applicable beyond simple
sequence comparison. Other possible applications include pat-
tern discovery through self-comparison, discovery of repeated
patterns, sequence assembly, and evolutionary reconstructions.
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