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We describe a new global multiple-alignment program capable of aligning a large number of genomic regions. Our
progressive-alignment approach incorporates the following ideas: maximum-likelihood inference of ancestral
sequences, automatic guide-tree construction, protein-based anchoring of ab-initio gene predictions, and constraints
derived from a global homology map of the sequences. We have implemented these ideas in the MAVID program,
which is able to accurately align multiple genomic regions up to megabases long. MAVID is able to effectively align
divergent sequences, as well as incomplete unfinished sequences. We demonstrate the capabilities of the program on
the benchmark CFTR region, which consists of 1.8 Mb of human sequence and 20 orthologous regions in marsupials,
birds, fish, and mammals. Finally, we describe two large MAVID alignments, an alignment of all the available HIV
genomes and a multiple alignment of the entire human, mouse, and rat genomes.

[Supplemental material is available online at http://baboon.math.berkeley.edu/mavid/data.]

The multiple-alignment problem is difficult for many reasons
(for example, see Notredame 2002), and thus remains unsolved
despite much progress over the past two decades. To appreciate
the complexity of the problem, it is instructive to observe that
five DNA sequences of length five have ∼1.05 · 1018 alignments!
(Slowinski 1998). Even three sequences of length five have >14
billion alignments, and thus, it is clear that an alignment of the
human, mouse, and rat genomes must be based on a relatively
simple optimization criteria, and even then, must involve heu-
ristics to reduce the complexity of the problem.

Despite the overwhelming complexity of the problem, it is
important to observe that the multiple alignment problem for
genomic sequences is not equivalent to the mathematical prob-
lem of producing an optimal alignment maximizing some score
function (Gusfield 1997). The biological problem consists of cor-
rectly aligning homologous bases to each other, thus correctly
identifying conserved noncoding regions in introns and inter-
genic regions, exons in orthologous genes, and groups of or-
thologous genes that form larger blocks of homology.

In this study, we propose a method capable of rapidly align-
ing multiple large genomic regions by incorporating biologically
meaningful heuristics with theoretically sound alignment strat-
egies. The core of our approach is a probabilistic ancestral align-
ment scheme (Feng and Doolittle 1987; Gonnet and Benner
1996; Hein 2001; Holmes and Bruno 2001; Löytynoja and Mi-
linkovitch 2003). This involves the progressive alignment of an-
cestor sequences (inferred using maximum-likelihood estimation
within a probabilistic evolutionary model [Felsenstein 1981])
along a phylogenetic guide tree. Although a comprehensive re-
view of progressive alignment is beyond the scope of this work,
it is important to point out that probabilistic approaches have
been proposed and implemented (e.g., Hein 2001; Holmes and
Bruno 2001; Holmes 2003), although existing methods are not
scalable to very large problems.

To incorporate biological information into the alignment
procedure, the progressive alignment is constrained by gene-
based anchors. These anchors are precomputed on the basis of

ab-initio gene predictions and their protein alignments and form
part of the input to the program. In addition, nontrivial posi-
tional constraints (Hardison et al. 1993; Myers et al. 1997) are
precomputed and ensure that the progressive alignment steps
respect a precomputed homology map for the sequences.

The alignment of the ancestor sequences is based on the
AVID (Bray et al. 2003) alignment method, thus allowing for the
rapid alignment of very large genomic sequences even in be-
tween gene anchors that may be far apart. This fast alignment,
along with the speedup obtained by using constraints, allows for
an iterative alignment approach alternating between the progres-
sive alignment step and phylogenetic tree construction (based on
the alignment). In fact, as we show, it is possible to start with a
random initial tree and converge to the correct guide tree, thus
eliminating the need for an expensive pairwise alignment step
(quadratic in the number of sequences) at the beginning of the
progressive alignment (Thompson et al. 1994).

We have combined all of these ideas into a new program
called MAVID, which we used to align the human, mouse, and
rat genomes. We also show that MAVID is suitable for aligning
very large numbers of sequences, and is therefore practical for the
alignment of multiple HIV genomes (Korber et al. 2001) or hun-
dreds of mitochondrial sequences (Hernnstadt et al. 2002). Fi-
nally, we demonstrate the accuracy of MAVID on the benchmark
cystic fibrosis (CFTR) gene region (Thomas et al. 2003), and show
that it compares favorably with existing alignment methods.

METHODS
Our method consists of a core progressive ancestral alignment
step, which can incorporate preprocessed constraints (see Fig. 1).

To clarify the presentation of the method, we begin by de-
fining some terminology. A match is any identified similar re-
gion between two sequences. A match does not have to be exact
at the sequence level; for example, we could declare a match
between two orthologous gene regions, even if the sequence
does not match exactly. A maximal exact match is a match
that is exact at the sequence level, and is maximal (i.e., cannot
be extended on either side without creating a mismatch). An
anchor is a match that is used in the alignment. A constraint
ai � bj in a multiple alignment means that position i in sequence
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a must appear before position j in sequence b in the multiple
alignment.

Progressive Alignment
Let T be a phylogenetic tree, that is, a binary tree with branch
lengths from an evolutionary model. To build progressive align-
ments, we need a root for T. Sometimes the root is known be-
cause of the availability of an outlier. In the case in which the tree
T is unrooted, we use the midpoint method, select the root to be
halfway in between the two leaves of T, which are farthest apart.
This method produces the correct root if the molecular clock
assumption holds, and a good approximation otherwise.

We associate multiple alignments to the vertices of T recur-
sively, starting from the leaves. For a vertex x in T, let Tx be the
subtree consisting of x and all of the vertices beneath x. If x is a
leaf, then Tx is a trivial tree (i.e., a tree consisting of only one
vertex), and we will label x with the sequence corresponding to x
in the phylogenetic tree. This sequence can be considered a
trivial multiple alignment (i.e., an alignment of only one se-
quence). If x is an internal node, then it has two children, u and
v, which are labeled with the multiple alignments Au and Av,
respectively. We then construct an alignment of all the se-
quences in Tx by aligning the two alignments Au and Av. This
procedure is applied recursively, so the program works its way
from the leaves of the phylogenetic tree to the root, at which
point it will have constructed an alignment for all of the se-
quences in T.

The key difference between our progressive alignment
schema and more standard methods is that instead of aligning Au

and Av directly, we first infer ancestral sequences su and sv using
standard phylogenetic models for inference of the common an-
cestor (Felsenstein 1981). We used the general reversible model,
with rate matrices from Yap and Pachter (2004).

The discussion above ignores the issue of gaps. Gaps can be
modeled as a fifth symbol, which is equivalent to assigning a
linear gap penalty. We have implemented the procedure in this
form, but affine gap penalties are preferable. Furthermore, it is

desirable to infer the deletion or inser-
tion of bases in the ancestor, and models
for this already exist (e.g., TKF; Thorne et
al. 1992). For the human–mouse–rat
alignment, the issue of properly scoring
gaps while inferring the ancestral se-
quence was not critical, and so we did
not score with a sophisticated model;
however, future work will build on
probabilistic insertion/deletion models
developed in Thorne et al. (1991, 1992),
and which have already been used to de-
velop multiple alignment algorithms
(Holmes and Bruno 2001). It is impor-
tant to note that in the MAVID align-
ment, scheme gaps also play a role in
Smith-Waterman alignments of the an-
cestral sequences (see below).

After the ancestral sequence calcu-
lation, su and sv are aligned with AVID
(Bray et al. 2003). AVID is a hierarchical
global pairwise alignment program that
iteratively anchors maximal exact
matches and wobble matches (i.e.,
matches which are exact, except for pos-
sible mismatches every third base) until
a final Smith-Waterman alignment step
of remaining regions. In the Smith-

Waterman phase of AVID, the match and mismatch scores are
again assigned according to a substitution matrix corresponding
to the branch length between u and v (using the same rate matrix
as for the ancestral inference). Gap scores were assigned using the
AVID protocol; however, both the gap-open and gap-extension
scores were scaled according to the evolutionary distance.

The alignment of the ancestral sequences is then used to
glue together Au and Av to produce a new multiple alignment,
which is assigned to the vertex x. In particular, if position i in su

matches position j in sv, then column i in the multiple alignment
assigned to u is aligned with column j in the multiple alignment
assigned to v. Gaps in the ancestral sequence alignments lead to
gaps in the multiple alignment in the obvious way. The proce-
dure terminates with a final pairwise alignment at the root node
of the tree.

Exon Anchoring and Constraints
Our gene matches and constraints are based on a homology map
for the sequences; this is a map that identifies the order and
orientation of matching gene runs between the sequences (C.
Dewey, in prep.). First, pairwise gene matches are computed be-
tween all of the sequences. Gene predictions are generated using
GENSCAN (Burge and Karlin 1997), and every pair of predicted
genes from every pair of sequences is aligned using the translated
BLAT tool (Kent 2002). GENSCAN was selected because it is sen-
sitive, and BLAT provides a fast way of obtaining protein align-
ments between large numbers of sequences. It should be noted
that these programs can easily be replaced for different types of
organisms, for example a viral gene-finding program is more suit-
able for virus alignments.

Genes are considered to match if they form a reciprocal best
hit. The gene matches are assembled into runs, which then form
the basis of the homology map. Genome sequence coordinates
for exon matches are inferred from the protein alignments, thus
producing a set of pairwise matches between all of the sequences.
These matches are used in the obvious way when aligning Au and
Av at node x; all matches that are between a sequence in u and a

Figure 1 MAVID architecture overview. (A) Sequences are aligned upward along a guide tree and (B)
alignments of alignments are performed at internal nodes. To align two alignments (C), maximum
likelihood ancestor sequences are inferred from each of the separate alignments, and (D) the ancestor
sequences are aligned with MAVID. The resulting multiple alignment (E) (corresponding to a subset of
leaves of the tree) is then recorded at the internal node.
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sequence in v are collected. Every such match can be converted
into a match between the ancestral sequences su and sv, which is
then used in the AVID alignment.

In addition to anchoring the alignment of the ancestral se-
quences, the exon matches can be used in more subtle ways to
shape the final multiple alignment. It is illustrative to consider
1-bp anchors, that is, single matches between the sequences. Sup-
pose we have sequences a, b, and c, and that ai is anchored to cx,
and bj is anchored to cy. If we are aligning sequences a and b, then
the given anchors to c do not allow us to anchor the alignment,
but they do allow us to constrain it. If x is less than (resp. greater
than) y, we must have that ai comes before (resp. after) bj in the
alignment of a and b if we are to produce an alignment of a, b,
and c, which is consistent with both of the anchors. In the lan-
guage of Myers et al. (1997), the two anchors provide explicit
constraints on the alignment (namely, that ai � cx,ai � cx,bj � cy,
and bj � cy), but they also provide implicit constraints that are
implied by transitivity; if x � y, then we have ai � cx � cy � bj,
and so ai � bj. This information can be used in the alignment of
the ancestral sequences by requiring potential anchors between
the sequences to satisfy the constraints.

Thus, when constructing the multiple alignment at node x,
every triplet of sequences (a,b,c) with a in u, b in v, and c not in
x provides a potential constraint for the alignment. This can lead
to a combinatorial explosion of constraints. If there are n se-
quences in the alignment, then there are O(n3) such triplets, each
of which may imply many constraints. Fortunately, we do not
need to find the set of all possible constraints, many of which
will be redundant. Instead, we wish to find a set of prime con-
straints (i.e., a set such that no constraint is implied by the oth-
ers) that is equivalent to, but potentially much smaller than the
set of all constraints implied by the gene matches. Such a set can
be inferred from the homology map. If there are m sets of or-
thologous exons (not all of which will be in every sequence),
then at node x there can be at most O(m) prime constraints, and
a prime set that is equivalent to all possible constraints can easily
be found in O(mk) time, where k is the number of leaves below x.
Thus, the sets of all prime constraints can be found in O(mk2)
time with a small constant factor. Matches between the ancestral
sequences that are inconsistent with this set of constraints can
then be filtered out in time O(Nlogm), where N is the total num-
ber of matches. For typical values of m and k, the time taken
computing and utilizing the constraints is negligible.

Figure 2 shows an example of a constraint, and how it is
enforced in the AVID alignment of the ancestral sequences.

The preprocessing step of finding all exon matches is qua-
dratic in the number of sequences; however, as the protein align-
ments are gene based, they are typically computed on <5% of the
sequence. Thus, the gene matching is actually significantly faster
than translated match finding, which requires searching the en-
tire sequence in all three frames and on both strands. Further-
more, by comparing only the proteins produced by a gene-
prediction program, the program implicitly takes into account
splice sites and other gene features in building gene anchors. It is
also important to note that this approach is completely ab initio,
even though a gene-finding step is necessary; no information
beyond the sequences is used. For this study, we performed align-
ments using this strategy in order to demonstrate the perfor-
mance of an ab initio approach. However, it is possible to make
use of mRNA and EST data, thus incorporating known biological
annotation about the sequences into the alignment.

Tree Building
Most multiple alignment programs require pairwise alignments
of all of the sequences to build an initial guide tree. This step

requires a quadratic number of sequence alignments and is in-
feasible for large numbers of sequences. We utilize an iterative
method to obtain a guide tree using only a linear number of
alignments.

The initial guide tree is selected randomly from the set of
complete binary trees (or almost complete binary trees in the case
in which the number of sequences is not a power of 2). For a
given number of nodes, these are the binary trees with minimal
depth, and thus, initial errors in pairwise alignments have less
opportunity to propagate through the tree. The sequences are
aligned using this random tree, and then a phylogenetic tree is
inferred from the resulting multiple alignment. The likelihood of
the tree given the alignment can be used as a quantitative mea-
sure of the quality of the tree and the process is iterated until the
alignment and tree are satisfactory.

For small numbers of sequences, the inference of the tree
from the multiple alignment can be done using maximum-
likelihood methods and accounts for only a small percentage of
the running time. However, as the number of sequences in-
creases, we have found that ML reconstruction becomes im-
practical and neighbor joining must be used. Because pairwise
alignments are easy to infer from a multiple alignment, we can
perform neighbor-joining reconstruction rapidly, even with
large numbers of sequences. We have tested MAVID with the
fastDNAml (Olsen et al. 1994) program for smaller data sets and
the CLUSTALW implementation of neighbor joining for larger
problems.

Instead of computing all pairwise alignments, only O (nk)
alignments are necessary to perform n iterations with k se-
quences. We found that for typical alignment problems, only a
small number of iterations were necessary (see results on the HIV
sequences below). It is important to note that our iterative
method (multiple alignment alternating with neighbor joining)
is considerably less sophisticated than ML methods such as
SEMPHY (Friedman et al. 2002), or MCMC sampling methods that

Figure 2 The top half of the figure shows two exon matches deter-
mined from the homology map. In particular, exon r in sequence 1 is
aligned to an exon in sequence 3, and exon s in sequence 2 is aligned to
another exon in sequence 3 (double arrows). At this stage, none of the
sequences have been aligned – the matches are based on the pairwise
protein alignments of the predicted genes. During a MAVID alignment of
ancestral sequences in the progressive multiple alignment, position r
from sequence 1 maps to position u in the ancestral sequence A, and
position s maps to position v in the ancestral sequence B (solid lines).
Even though sequence 3 is not in the multiple alignment yet, the con-
straint forces position u to be aligned before position v in the final mul-
tiple alignment (broken line). The constraint is enforced by removing all
the matches violating the constraint from consideration during the an-
choring of the alignment.

MAVID Multiple Alignment Program

Genome Research 695
www.genome.org



search through combined alignment/tree space (Hein et al.
2000). However, our approach is scalable to large problems, and
as we have pointed out, appears to converge quickly in practice.

RESULTS

A Human, Mouse, and Rat Whole-Genome
Multiple Alignment
We aligned the human (April 2003), mouse (February 2003), and
rat (June 2003) genomes using MAVID. A homology map for the
genomes was built by C. Dewey (in prep.), and was used to gen-
erate gene anchors and constraints. Figure 3 summarizes the
exon coverage of the alignment on chromosome 20; it shows
how many of the RefSeq genes were covered by anchors (and,
therefore, automatically aligned correctly), and how many were
subsequently aligned by MAVID. Chromosome 20 was chosen
because it aligns almost completely with mouse chromosome 2,
and therefore, the quoted numbers should be useful for compar-
ing MAVID to other alignment approaches that do not explicitly
separate out orthologous from paralogous alignments.

The MAVID alignments have been used to estimate evolu-
tionary rates for the genomes and to identify evolutionary
hotspots in which one of the rodent genomes has been evolving
much more slowly than the other (these results are reported in
a companion paper by Yap and Pachter 2004). They are also used
to support the K-BROWSER (Chakrabarti and Pachter 2004;
http://hanuman.math.berkeley.edu/kbrowser/), which is a new
browser especially designed to view multiple genomes, their as-
sociated annotations, and alignments.

CFTR Region: 21 Organisms
We aligned 1.8 Mb of human sequence together with the ho-
mologous regions from 20 other organisms (baboon, cat,
chicken, chimp, cow, dog, dunnart, fugu, hedgehog, horse, le-

mur, macaque, mouse, opossum, pig, platypus, rabbit, rat, tetra-
odon, and zebrafish) for a total of 23 Mb of sequence. This se-
quence has been generated by NISC as part of a comprehensive
project to sequence a number of regions in the genome in mul-
tiple organisms for evolutionary and functional studies. How-
ever, it is important to note that some of the sequences remain
incomplete, contributing to the difficulty of the multiple-
alignment problem. A subset of this data set (13 organisms) has
been used recently (Brudno et al. 2003) as a benchmark to com-
pare pairwise and multiple alignment programs.

The map-building step takes ∼15 min on a 2.6 GhZ proces-
sor, with peak memory usage of roughly 700 Mb for GENSCAN.
The subsequent MAVID alignment takes another 24 min, for a
total of about 40 min. The tree reconstruction step takes less than
a minute using neighbor joining. Thus, an iterative approach to
building the tree is feasible, and a stable tree was constructed
after only two rounds of alignment.

It is difficult to assess the overall quality of the alignment,
but one feature that can be verified is the alignment of exons. To
do so, we projected the alignment onto the human sequence in
order to produce pairwise alignments between human and each
of the other 20 sequences. This analysis was complicated by the
fact that the sequencing is not complete, and so not every exon
has been sequenced in every organism. To address this shortcom-
ing, we calculated the fraction of human exons that were aligned
with each of the sequences. An exon was considered to be aligned
if at least 70% of it was covered by alignment, and at least 50% of
the bases were matching.

The MAVID alignments were compared with MLAGAN, ver-
sion 1.1 (Brudno et al. 2003). MLAGAN is the only other program
we know of that is able to align the 21 sequences in a reasonable
period of time (the running time of MLAGAN on the 21 se-
quences is roughly 6 h). DIALIGN (Morgenstern et al.1998), also
designed for large genomic regions, was too slow for processing
the sequences; even with the new CHAOS/DIALIGN program,

Figure 3 Coverage of human chromosome 20 RefSeq exons by the MAVID alignments. Of a total of 3927 exons, only six were not in the homology
map. A total of 53.5% of the exons were covered by precomputed exon anchors in either mouse or rat. The remaining exons are mostly aligned by
MAVID, resulting in 93.6% of the exons covered by alignment in either mouse or rat.
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aligning only four of the sequences took 14 h. The MGA program
(Höhl et al. 2002) is designed for very similar sequences only, and
so was not suitable for the diverse fish, bird, marsupial, and
mammal alignments.

To better understand how alignment accuracy varies with
the number of sequences being aligned, we compared the
MAVID and MLAGAN alignments on 21 different data sets, be-
ginning with a pairwise alignment of the most distant organisms,
and adding in one (mutually most distant) organism at a time, all
the way up to a comparison on the 21 sequences. To do this, we
computed the human clamped k-MST trees (Boffelli et al. 2003),
that is, the subtrees on k leaves of maximum weight, with the
human sequence as one of the leaves. Thus, alignments were
computed first for human and zebrafish alone, then for human,
zebrafish, and dunnart, and eventually all of the 21 sequences.
The order in which they were added was as follows: human,
zebrafish, dunnart, platypus, hedgehog, chicken, rat, fugu, cow,
rabbit, dog, opossum, tetraodon, lemur, horse, pig, cat, mouse,
baboon, macaque, and chimp. Exon coverage was calculated by
first running TBLASTX to identify human exon homologs in the
other species using the same criteria as in Brudno et al. (2003),
and then computing coverage with respect to the identified exon
sets.

The results of the alignments show that both programs cor-
rectly aligned mammalian sequences. The alignment of distant
organisms shows much greater variability with respect to the
sequences included in the alignment problem. For example, add-
ing fugu to an alignment of human, zebrafish, and dunnart may
improve the alignment, but as Table 1 demonstrates, adding
platypus can degrade it. MAVID shows significant improvement
over MLAGAN in this respect.

HIV1/SIV: Complete Genomes From 242 Individuals
The HIV databases maintained at LANL contain a collection of
HIV-1, HIV-2, and SIV sequences, carefully linked with individu-
als and their histories. We extracted the complete genomic se-
quences of HIV1 and SIV from this database (currently totaling
242) and aligned them with MAVID. The alignment of the se-
quences takes 2.5 min. A phylogenetic tree was constructed with
neighbor joining taking an additional 30 sec. Again, it is difficult
to assess the quality of the alignment, but it is accurate enough
that the different strains cluster in the inferred tree (see Fig. 4). To
understand the stability of the tree building/alignment iteration,
we examined 100 alignment runs on a reduced sequence set with
the recombinant strains removed (because recombination is not

Table 1. Comparison of MLAGAN and MAVID Multiple Alignments on the 21 Organism CFTR Alignment

MAVID Zebrafish 96 96 68 68 64 72 96 96 96 96 96 96 96 96 96 96 96 96 96 96
MLAGAN Zebrafish 96 32 12 12 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12 12
MAVID Dunnart — 88 88 41 41 41 71 71 71 71 88 88 88 88 88 88 88 88 88 88
MLAGAN Dunnart — 88 88 59 0 0 0 0 0 0 88 88 88 88 88 88 88 88 88 88
MAVID Platypus — — 51 51 52 51 49 51 49 51 51 51 52 52 52 52 52 52 51 51
MLAGAN Platypus — — 40 40 25 34 34 34 36 37 51 51 51 51 51 51 51 51 51 36
MAVID Hedgehog — — — 46 46 46 56 57 57 57 67 67 64 66 66 66 66 67 60 60
MLAGAN Hedgehog — — — 74 74 74 74 74 73 76 66 64 63 63 63 63 63 63 63 69
MAVID Chicken — — — — 79 86 90 79 83 83 81 71 71 76 76 71 71 71 69 69
MLAGAN Chicken — — — — 38 69 67 67 69 74 74 74 74 74 74 74 74 74 74 67
MAVID Rat — — — — — 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
MLAGAN Rat — — — — — 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
MAVID Fugu — — — — — — 84 84 85 85 85 88 88 88 88 88 88 88 85 85
MLAGAN Fugu — — — — — — 22 22 22 22 42 48 48 48 48 48 48 48 48 41
MAVID Cow — — — — — — — 100 100 100 100 100 100 100 100 100 100 100 100 100
MLAGAN Cow — — — — — — — 100 100 100 100 100 100 100 100 100 100 100 100 100
MAVID Rabbit — — — — — — — — 96 95 95 95 95 95 95 94 94 94 94 94
MLAGAN Rabbit — — — — — — — — 90 90 90 90 90 90 90 90 90 90 90 90
MAVID Dog — — — — — — — — — 100 100 100 100 100 100 100 100 100 100 100
MLAGAN Dog — — — — — — — — — 100 100 100 100 100 100 100 100 100 100 100
MAVID Opossum — — — — — — — — — — 90 92 92 92 92 92 90 92 92 92
MLAGAN Opossum — — — — — — — — — — 74 74 72 72 72 72 72 72 72 78
MAVID Tetraodon — — — — — — — — — — — 88 88 88 88 88 88 88 85 85
MLAGAN Tetraodon — — — — — — — — — — — 48 48 48 48 48 48 48 48 40
MAVID Lemur — — — — — — — — — — — — 100 100 100 100 100 100 100 100
MLAGAN Lemur — — — — — — — — — — — — 100 100 100 100 100 100 100 100
MAVID Horse — — — — — — — — — — — — — 100 100 100 100 100 100 100
MLAGAN Horse — — — — — — — — — — — — — 100 100 100 100 100 100 100
MAVID Pig — — — — — — — — — — — — — — 100 100 100 100 100 100
MLAGAN Pig — — — — — — — — — — — — — — 100 100 100 100 100 100
MAVID Cat — — — — — — — — — — — — — — — 100 100 100 100 100
MLAGAN Cat — — — — — — — — — — — — — — — 100 100 100 100 100
MAVID Mouse — — — — — — — — — — — — — — — — 100 100 100 100
MLAGAN Mouse — — — — — — — — — — — — — — — — 100 100 100 100
MAVID Baboon — — — — — — — — — — — — — — — — — 100 100 100
MLAGAN Baboon — — — — — — — — — — — — — — — — — 100 100 100
MAVID Macaque — — — — — — — — — — — — — — — — — — 92 92
MLAGAN Macaque — — — — — — — — — — — — — — — — — — 96 96
MAVID Chimp — — — — — — — — — — — — — — — — — — — 100
MLAGAN Chimp — — — — — — — — — — — — — — — — — — — 100

Each row in the table shows the % coverage of the alignable exons in an organism as calculated by extracting the pairwise alignment with human
from the multiple alignment. The different columns in the table correspond to the number of sequences in the multiple alignment. Thus, the first
column corresponds to the pairwise alignment of human–zebrafish and the last column to the multiple alignment of all 21 sequences. Organisms
were added according to the k-MST, so that the alignment problems are as difficult as possible (mutually most distant organisms).
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addressed by standard phylogenetic models). We found that the
correct strains were grouped together within one round of align-
ment (starting with a random tree) in all of the 100 runs. To
validate the iterative alignment/tree building procedure, we also
examined the number of subtrees that were fixed with each suc-
cessive round of alignment. The tree inferred after the second
round of alignment has 45.87 of its subtrees in agreement with
the tree after the first run (on average), and the number fixed
between the second and third rounds is 54.08, on average. Start-
ing with different random trees and aligning for three rounds, we
find that 54.16 of the subtrees agree, on average. Our criteria for
comparing trees (exact agreement of subtrees) is rather strict, and
these numbers are very encouraging (one would expect about
one nontrivial subtree to agree for two random trees). Although
a MAVID multiple alignment combined with a neighbor-joining
tree may not be as accurate as hand-edited alignments, followed
by maximum likelihood tree building, it can serve to provide
very fast results that can then form the basis for further refine-
ment. An alignment problem of this size is not practical on a
standard desktop computer if all of the pairwise alignments are
computed in order to build an initial guide tree (as is done in
many programs, e.g., CLUSTALW).

The alignments and phylogenetic trees for all the above se-
quences are downloadable at http://baboon.math.berkeley.edu/
mavid/data.

Conclusion
As we have outlined in the introduction, we view the genomic
multiple-sequence alignment problem as a biological alignment
problem, rather than a purely mathematical one. That is, the
incorporation of biologically relevant information (in our case
ab-initio gene predictions) is critical to building accurate align-
ments and correctly identifying homologous relationships. Our
method of incorporating constraint information into the align-
ments helps address one of the primary objections to progressive
alignment strategies, namely, that progressive alignment is local
with the alignment at each node containing only information
about the sequences below it. The application of constraint in-

formation can be thought of as a look-ahead step that helps to fix
potential problems.

Our approach is also consistent with a number of other ideas
that we have not yet implemented, but which could be easily
integrated into MAVID and will improve results. Iterative refine-
ment, the process of realigning across an edge in the tree, fits in
naturally with our framework (Gotoh 1993, 1996). Similarly, the
homology map that MAVID uses can indicate information about
inversions and duplications, and this can be used to correctly
align regions containing rearrangements.

MAVID compares favorably with existing programs. As we
have pointed out, it is significantly more accurate than MLAGAN
on the alignment of the CFTR benchmark region. MLAGAN is the
only other program we know of that can even align such a large
data set. We also know of no other programs that can quickly
align hundreds of viral or mitochondrial genomes.

A MAVID Web server has been operational for over 6 mo
and processes over 1000 requests a month (Bray and Pachter
2003). Alignment requests have ranged from large genomic re-
gions in mammals, fish, flies, and plants to alignments of viruses,
mitochondria, and other bacterial genomes. MAVID can be ac-
cessed at http://baboon.math.berkeley.edu/mavid/. The program
is freely available for academic and nonprofit use.
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