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Abstract. New predictors of cardiovascular outcomes are widely sought in research settings, and predictive tests are commonly
recommended for routine use in cardiovascular clinical care. A number of multivariable scoring systems are in use around the
world for assessment of a patient’s risk. While such scoring systems are often recommended for clinical use in medical practice
guidelines, their actual use in medical care falls short of recommendations. Limitations in the predictive capacity of existing
predictive models are recognized, including lack of predictive accuracy, lack of ability to separate those who develop events from
those who do not, and risks and costs of the testing modalities. Biomarker research is actively developing new testing strategies
trying to improve upon current approaches, but it is often unclear how to assess the incremental prognostic information that a
new test provides. In this report, we discuss the statistical approaches that can be used to evaluate additive predictive value of
new tests. We also consider clinical research examples to put this information into a practical context.
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1. Introduction

The clinical approach to patients in cardiovascular
disease treatment and prevention is commonly based
on the clinician’s ability to assess a patient’s prognosis
and target treatment intensity according to the severity
of the patient’s risk. Clinical practice guidelines in the
United States [4,33] and Europe [13], as well as else-
where in the world [50], recommend that clinicians uti-
lize multivariable risk assessment approaches,especial-
ly in preventive cardiology, to select treatments for in-
dividual patients. Various approaches to cardiovascular
risk assessment have been developed and recommended
for general clinical use in the United States (e.g., Fram-
ingham Risk Score) and Europe (Systemic COronary
Risk Evaluation (SCORE) model), and many other risk
assessment models have been proposed [47]. Despite
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the prevalence of different risk assessment tools, they
are not used as frequently as one might expect based on
clinical practice guideline recommendations [3,14,30,
35,46], and there is relatively little evidence that cur-
rent risk assessment methods actually lead to improved
patient outcomes [47]. These sobering facts suggest
that improved risk assessment methods are needed in
cardiovascular prevention practice.

Given the limitations of current risk assessment tools
and the associated problems with their application in
practice, research directed toward finding new ways of
predicting cardiovascular events is proceeding apace.
These new methods cover a broad range of approach-
es including genomic tests [34], inflammation blood
biomarkers such as C-reactive protein [9], thrombosis
markers such as D-dimer [51], imaging tests such as
coronary artery calcium measurement [10,19], vascu-
lar stiffness and vascular function tests [27], and bio-
chemical profiles such as metabolomics [28] and other
“omics” approaches. It has also been speculated that
a combination of different types of markers, producing
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a multimarker panel [17,53] would result in improved
risk prediction and better targeting of risk reduction
treatments.

With the profusion of new testing approaches, there
is an urgent need to understand how to assess the ad-
ditional predictive value of new markers, especially in
regard to their additive value over standard and wide-
ly available predictors. For example, the Framingham
Risk Score employs commonly measured variables
such as patient age, gender, total blood cholesterol con-
centration, systolic blood pressure, HDL-cholesterol
concentration, cigarette smoking history, and presence
or absence of diabetes. In addition, many of these
variables are amenable to interventions that are known
to lower risk of cardiovascular disease, so a physician
commonly targets treatment to the actual risk factors
included in the risk assessment strategy. This may not
be the case with imaging tests, vascular stiffness mea-
surements, or genomic markers for which there are no
known treatments at this time. Hence, unless a new pre-
dictive marker substantially improves risk prediction,
or provides insight into a new way of treating risk, or
replaces other less predictive markers, it may not have
true clinical value.

In this paper, we discuss statistical approaches that
are commonly used in evaluating whether a new test
provides additive predictive information beyond that of
a standard test battery. We also discuss ways in which
clinicians can decide when a new test provides clinical
utility and deserves consideration for routine use in
clinical practice.

2. Measures of association

Measures of associations, such as hazard ratios, odds
ratios and their corresponding confidence intervals, in-
form about the strength of the relationship between dis-
ease and the new marker, usually after adjustment for
known markers. However, measures of association do
not necessarily inform about the ability of the marker
to predict disease [25,38,49,52]. Magnitudes of associ-
ation measures will depend on the marker units (mark-
ers should be standardized so that the measure of as-
sociation is given per standard deviation to avoid this
limitation) and the significance of association generally
depends on the sample size of the dataset. In addition,
a strong association may suggest the marker is a good
predictor for disease, but this may not translate to being
clinically useful. This is because measures of associa-
tion neither assess how accurate the predicted risks are,

nor whether the predicted risks are sufficiently differ-
ent for individuals with and without disease [38]. Lat-
er in this paper, we provide examples to illustrate the
seeming paradox of a test being highly and consistently
associated with a cardiovascular outcome but not ad-
ditively predictive over standard risk assessment tools
based on other statistical evaluations.

3. Measures of calibration

Assessing model calibration is an important tool in
evaluating any risk prediction model. Measures of cal-
ibration assess how closely the predicted probabilities
agree with the observed data. A sensible first step is
to compare predicted versus observed risks, either in a
graphical [7] or tabular display [25,39].

Calibration of a model is commonly summarized us-
ing the Hosmer-Lemeshow (H-L) test [23]. Individuals
are categorized, typically into deciles [23], according
to their predicted risk. The predicted risks are then
compared against the observed risk in each category
using squared differences. Significant differences be-
tween the observed and predicted risks produces small
p-values (e.g.; p < 0.05), indicating poor calibration.
A limitation is that the performance of the test is affect-
ed by how the categories are formed such that a contra-
dictory test may result from an alternative grouping [7,
32]. It is also worth bearing in mind that the H-L test
assesses the goodness-of-fit rather than puts a quantity
on the accuracy of the predictions, and any deviation
from the model assumptions (e.g.: linearity, propor-
tional hazards) will affect the result. Thus, a poor-
ly calibrated model may result from using the wrong
functional form of the biomarker rather than indicating
the absence of good predictors [24]. For this reason,
and if the categories (deciles) are formed differently
between two models, H-L test statistics will not always
incrementally improve on addition of new markers.

4. Measures of explained variation

Measures of explained variation quantify the propor-
tion of the variation in the observed disease outcome
that can be explained by risk markers through a statisti-
cal model. In standard linear regression the most gener-
al definition is R2 = 1- (residual sum of squares)/(total
sum of squares) and similar measures are available and
in use for logistic regression [11,31]. However, mea-
sures of explained variation for survival models can
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be affected by the censoring nature of the event data,
and thus there is no consensus on one measure, de-
spite various proposals [43–45]. Values for R2 and its
equivalent measures typically range between 0 and 1:
R2 = 1 indicates that the fitted model explains all vari-
ability in the disease outcome while R2 = 0 indicates
no relationship between the disease and risk markers.
Achieving a value close to 1 for survival models is ex-
tremely unlikely since it would mean that the model
predicts the exact time point at which each participant
fails (to whatever degree of precision the survival time
is measured, e.g. to the day).

5. Measures of discrimination

Measures of discrimination quantify the separation
in risk predictions between individuals with and with-
out disease. The greater the separation in the risk pre-
dictions, the more likely the model will identify indi-
viduals at highest or lowest risk, and thus may be more
clinically useful. The most popular measure of dis-
crimination is the area under the ROC curve [AUROC],
which is a function of sensitivity (the probability of a
true positive test result) and the specificity (the prob-
ability of a true negative test result). This has been
generalized for survival data by the C-index [20,21],
with a definition of being the probability that for two
randomly drawn patients, the person who has the event
first has a higher probability of event. The c-index
is estimated by examining all possible pairs of indi-
viduals under study for which the individual who has
the shorter follow-up time fails. All possible pairs are
classified as concordant (matching in rank according to
the magnitude of the linear predictor and the order of
failure), discordant (opposite in rank according to the
magnitude of the linear predictor and the order of fail-
ure) or undecided (tied in either category). The overall
measure is calculated as follows:

C =
nc + 0.5nu

nc + nd + nu
,

where nc, nd and nu are the number of concordant,
discordant and undecided pairs respectively. Note that
censored individuals can only be compared to individ-
uals known to fail before their censoring point and not
to those who fail afterwards or to any other censored
observations. Hence for datasets with large amounts
of censoring, many pair-wise comparisons cannot be
made which can result in bias [18].

Values for the AUROC and the c-index are fairly eas-
ily interpretable, being in the range of 0.5 to 1. A value

of 0.5 indicates no ability, beyond that of chance, of the
model to discriminate between participants in terms of
risk; a value of 1 indicates perfect discrimination.

The AUROC describes how well a model can rank
cases and non-cases, whereas the c-index compares the
ranked survival times, incorporating information from
censored individuals, but, neither measure is a function
of the actual predicted probabilities. In some CVD
prospective cohort studies, especially those examining
younger women [39] the majority of individuals are at
very low risk, with a small proportion being at high
risk of disease. In such a circumstance, rank-based
measures do not take this into account [16] so that 2
individuals who are at low risk (e.g.: 1.0% versus 1.1%)
have the same impact on the AUROC and c-index as 2
individuals who are at moderate versus high risk (e.g.;
5% versus 20%). Thus, changes in the low ranks may
lead to significant changes in the AUROC and c-index
but could have very little clinical impact.

A recently proposed measure of discrimination for
the survival model is the D-statistic [41]. The moti-
vation for this measure is that it assesses the observed
events across the spread of predictions and has an in-
terpretation of being the log-hazard ratio comparing
the upper-half predicted risk group versus the lower-
half predicted risk group. Increasing values for D in-
dicate greater separation between the observed risk of
disease for participants predicted to be at high versus
low risk. Royston and Sauerbrei [41] demonstrated the
D-statistic to have many favorable properties, includ-
ing interpretability, robustness to outliers and ability to
deal with censoring. The D-statistic is easily computed
by first transforming each participant’s linear predictor
from the fitted Cox model to transformed standard nor-
mal order rank statistics [41]. A second Cox regression
on the rank statistic produces the coefficient D, inter-
preted as the log hazard ratio between individuals in
the lower versus upper half predicted risk group.

It is worth noting that discrimination will general-
ly depend on the range of predictor values available.
For example, a study which includes individuals across
a wide age range will typically have more ability to
discriminate between individuals at high and low risk
than a study with individuals from a narrow age range
(and similarly for other strong predictors). This could
lead to different studies having substantially different
C-indices and D-statistics.

To assess the addition of a new marker to a model
with established risk markers, it is more meaningful
to investigate the change in measures for the R2, AU-
ROC, C-index and D-measure. These measures gen-
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Table 1
Previously published measures of prognostic value for six progressive models for time to first
coronary heart disease event, from all-male Malmo study (n = 5983, 653 CHD events over 23 years
of follow-up). Modified from Figure 2 in Reference [49]

R2 (95% CI) C-index (95% CI) D-measure (95% CI)

age 0.00 (−0.00, 0.01) 0.60 (0.58, 0.62) 0.46 (0.32, 0.60)
age + systolic blood pressure 0.01 (0.01, 0.02) 0.65 (0.63, 0.67) 0.68 (0.55, 0.82)
Above + smoking 0.02 (0.01, 0.03) 0.67 (0.65, 0.69) 1.02 (0.89, 1.16)
Above + total cholesterol 0.03 (0.02, 0.04) 0.69 (0.67, 0.71) 1.10 (0.96, 1.23)
Above + fibrinogen 0.03 (0.02, 0.05) 0.69 (0.67, 0.71) 1.12 (0.99, 1.26)
Above + body mass index 0.04 (0.02, 0.05) 0.70 (0.68, 0.72) 1.16 (1.03, 1.30)

erally increase with each additional risk marker in the
model, as illustrated in Table 1. Changes in the R2,
AUROC and c-index with addition of new markers to a
standard predictive model are often very small and not
easy to interpret. There is some controversy over the
incremental change in the AUROC and c-index, when
despite being small – still might be clinically meaning-
ful [39]. Some believe that any improvement is impor-
tant, whereas others may add a confidence interval on
the incremental change and/or apply a formal test [40,
49].

6. Risk reclassification

Measures of explained variation or discrimination do
not provide information about the actual risks that the
models predict or about the proportion of participants
who have low or high risk predictions. Reclassifica-
tion methods however, as proposed by Cook, attempt
to describe and measure the changes in predicted risk
categories [6,7,39]. The primary purpose is to assess
whether the addition of a new risk marker in a pre-
diction model improves the classification of individu-
als into clinically relevant risk groups. The methods
involve calculation of each participant’s risk of CVD
event at some pre-defined time point (typically 10 year
risk) using models with and without a new biomark-
er of interest. Individuals are then classified into risk
categories (e.g.: < 5%, 5–10%, 10–20% and > 20%
risk of CVD event by 10 years) according to risk pre-
dictions from each model, and cross tabulated. The
tables are appealing because they are visually inter-
pretable, and simple calculations can be made such as
the total percentage of individuals reclassified, or the
percentage of people in an intermediate category who
are then reclassified to a higher or lower risk catego-
ry. The table may be grouped by individuals with and
without events to distinguish individuals correctly and
incorrectly reclassified [37].

Movement between categories for the two predictive
models can be further summarised using measures re-
cently proposed by Pencina et al. [37]. The Net Reclas-
sification Improvement (NRI) summarises movement
in the correct direction on average (i.e. events move up
and non-events move down the risk categories). The
NRI is a sum of two proportions: the proportion of
individuals with events who move up or down the risk
categories and the proportion of individuals without
events who move up or down the risk categories. The
NRI is difficult to interpret and it may be more useful
to report the two components separately to be able to
assess whether reclassification improves more for indi-
viduals with or without events [32,37,54]. An exten-
sion of the NRI is the clinical NRI, which summarises
the movement between clinically relevant risk groups,
e.g.: 10–20% risk groups to > 20% say, is of interest
if individuals above 20% risk are treated [5,40].

A limitation of reclassification tables and corre-
sponding NRI measures is that they depend entirely on,
and are affected by the choice of cut points, similarly
to the Hosmer and Lemeshow test [37]. For exam-
ple, suppose the risk categories are formed as follows:
< 5%, 5–10%, 10–20% and > 20% risk of CVD event
by 10 years. An individual who gets reclassified from a
19% predicted risk to 21% predicted risk will contribute
to the NRI, unlike an individual who gets reclassified
from 11% to 20% risk, despite the latter individual hav-
ing a greater change. Using a different cut-off (e.g.:
15% or 19%) would lead to a different NRI. It would
be highly clinically meaningful if a new biomarker re-
classified people from low-risk (e.g.: < 10%) to high
risk (e.g.: >20%) but few examples have shown such
large changes in the predicted risks. The Integrated
Discrimination Improvement (IDI) which is a contin-
uous version of the NRI summarises the improvement
in 10-year risk prediction without categorisation into
risk groups. Various relationships exist between the
IDI and other known measures (such as difference in
Yates slopes).
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Another potential limitation of the NRI, and also the
IDI, is that all directional reclassifications are assumed
equivalent, such that movements between medium to
high risk groups are treated with equal importance to
movements between low and medium risk groups, de-
spite the former being more clinically important. One
solution would be to apply different weights to the dif-
ferent reclassifications, so that movements which are
more clinically meaningful have more influence. As-
signing such weights is likely to require further as-
sumptions. It should also be noted that reclassification
tables and the corresponding NRI, Clinical NRI and
IDI measures exclude data from individuals censored
within the risk period – thus often substantially reduc-
ing the available data from that used to estimate the risk
prediction model. One solution is to look at the hazard
ratio between those subjects who move into higher risk
categories versus those moving into a lower risk cate-
gory. Such an assessment can fully allow for the cen-
sored nature of the data within the risk period. Howev-
er, all approaches censor events occurring after the pre-
defined time point (e.g., 10 years), thus decreasing the
number of available events and reducing event rates. It
may be reasonable to consider risk reclassification at
different time-points (e.g., 5, 10, 15 and 20 year risk)
depending on the available length of follow-up.

7. Validation

An important feature of a risk prediction model is
whether it is applicable to different patients [26,55].
The generalizability of a risk model depends heavily on
the breadth of the population used to derive it. There
may be little utility in deriving a risk model for CVD
amongst males aged above 50 years only to try to pre-
dict the risk for a 30 year old female. Similarly, risk
prediction models derived in Western populations may
not be applicable to Asian populations [29]. These
are extreme examples, and often one can only estab-
lish whether the risk prediction model works satisfac-
torily for similar patients to those from whose data it
was derived [1,2]. Even for very similar patients, it
cannot be assumed that the risk model will work well.
Overoptimistic assessments of prognostic ability due
to data-dependent methods used to derive the model
are a well-known deficiency, and are exacerbated by
small sample sizes. Further, the predictive ability of
the model may be weak, and so even if the predictions
for new individuals are unbiased, the model may still

be unable to separate patients into clinically useful risk
groups.

A common technique for establishing how well the
risk model performs for new patients is “data-splitting”
or “cross-validation” in the original data. The model
is derived in one portion of the data and validated in
the other. An important issue is how to split the data
and although usually unbiased, it can lead to impres-
sion due to decreased sample sizes. Further, these val-
idation methods do not address the wider issue of the
generalizability of the model [42]. It is thus desirable
to evaluate a model on appropriate data collected from
another population [8,22].

8. Illustrative examples

There has been tremendous interest in the role of ge-
nomic testing as a way to enhance risk prediction in car-
diovascular and other diseases. The futuristic concept
of personalized medicine is predicated on the hope that
genomic information will allow individualized risk as-
sessments that will greatly exceed the predictive value
of “population-based”approaches such as the Framing-
ham Risk Score or the SCORE test. In cardiovascular
medicine to date, this expectation has not been realized,
as discussed recently [17]. One of the most consistently
demonstrated associations with cardiovascular risk is
the genetic variation at chromosome 9p21.3 [34]. Typ-
ically, this association yields a hazard ratio for predic-
tion of cardiovascular events in the range of 1.1 to 1.4.
Whether such an association produces predictive infor-
mation beyond that of other readily available risk mark-
ers has not been fully examined. This additional pre-
dictive information was recently assessed in one large
cohort in women who were initially free of any major
chronic disease, prospectively followed over a median
of 10.2 years for incident cardiovascular disease [34].
Polymorphism at rs10757274 was associated with an
adjusted hazard ratio for incident cardiovascular dis-
ease of 1.25 (95% CI, 1.04 to 1.51) for the AG genotype
and 1.32 (CI, 1.07 to 1.63) for the GG genotype. How-
ever, the addition of the genotype to a prediction model
based on traditional risk factors, C-reactive protein, and
family history of premature myocardial infarction had
almost no effect on model discrimination as measured
by the c-index (0.807 to 0.809) and did not improve
the Net Reclassification Improvement score (−0.2%;
P = 0.59) or the Integrated Discrimination Improve-
ment score (0.0; P = 0.18). Whether this negative
result will be replicated in more diverse cohorts is not
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known from this study, but this report demonstrates the
paradoxical point discussed earlier in this paper that a
consistent and statistically significant hazard ratio of
association may fail to improve risk discrimination or
net reclassification, such that it provides no meaning-
ful improvement in clinical risk prediction beyond a
standard battery.

Other tests, typically those with stronger degrees of
association, are more likely to improve predictive dis-
crimination [38]. The case of coronary artery calci-
um measurement provides an example of the potential
for a relatively strong association to yield an improve-
ment in predictive discrimination. In the Multi-Ethnic
Study of Atherosclerosis (also called MESA), data on
risk factors as well as measurements of coronary artery
calcium score using rapid computed tomography were
collected in a sample of 6722 previously healthy men
and women from 4 major ethnic and racial groups in
the United States [10]. Follow-up was for a median of
3.8 years, and there were 162 coronary events, of which
89 were major events (myocardial infarction or death
from coronary heart disease). In comparison with par-
ticipants with no coronary calcium, the adjusted hazard
ratio of a coronary event was 7.73 (confidence intervals:
4.13–14.47) among participants with coronary calci-
um scores between 101 and 300 and 9.67 (CI, 5.20–
17.98) among participants with scores above 300 (P <
0.001 for both comparisons). As compared to the ge-
nomic study reported above in which AUROC did not
appreciably change, the AUROC for the prediction of
any coronary event was considerably higher when the
calcium score was added to the standard risk factors
(0.77 versus 0.82, p < 0.001). This change in AUROC
suggests a marked improvement in risk discrimination
when the calcium score is added to standard risk pre-
dictive models. Similar results in improved C-statistics
for calcium score added to Framingham Risk Scores
have been reported in other studies [19].

As noted earlier, multimarker models have been
speculated as a way to improve risk prediction. Howev-
er, in practice, multimarker models have often not great-
ly improved risk discrimination when tested against
standard risk models. Presumably, this occurs because
many individual markers are highly collinear with oth-
er markers, and when combined as a multimarker pan-
el, little new discrimination is seen. For example,
Wang et al. [53] measured 10 promising biomarkers
in 3209 participants attending a routine examination
cycle of the Framingham Heart Study. These includ-
ed blood tests of C-reactive protein, B-type natriuretic
peptide, N-terminal pro–atrial natriuretic peptide, al-

dosterone, renin, fibrinogen, D-dimer, plasminogen-
activator inhibitor type 1, and homocysteine; and the
urinary albumin-to-creatinine ratio. During follow-up
(median, 7.4 years), 207 participants died and 169 had
a first major cardiovascular event. Adjusting for con-
ventional risk factors, the biomarkers that most strong-
ly predicted major cardiovascular events were B-type
natriuretic peptide level (adjusted hazard ratio, 1.25
per 1 SD increment in the log values (95% confidence
intervals (CI), 1.04–1.49) and the urinary albumin-to-
creatinine ratio (1.20, 95% CI 1.02–1.41). Persons
with “multimarker” scores (based on regression coeffi-
cients of significant biomarkers) in the highest quintile
as compared with those with scores in the lowest two
quintiles had elevated risks of death (adjusted hazard
ratio, 4.08 (95% CI, 2.51–6.62); P < 0.001) and major
cardiovascular events (adjusted hazard ratio, 1.84 (95%
CI, 1.11–3.05); P = 0.02). However, the addition of
multimarker scores to conventional risk factors resulted
in relatively small increases in risk discrimination, as
measured by the C-index (C-index for models of death
were 0.75 (with age and sex as predictors), 0.79 (with
age, sex, and multimarker score as predictors), 0.80
(with age, sex, and conventional risk factors as predic-
tors), and 0.82 (with all predictors). Similar findings
have been reported in other studies [12,36,48], but at
least one recent study found a substantial increase in
C-index upon addition of a novel multimarker panel to
standard risk predictors [56]. This area requires fur-
ther study to understand why some studies have found
incremental risk prediction improvements [56] while
many others have not.

9. Conclusions and clinical implications

Assessing utility of risk prediction models, and espe-
cially of new markers considered against previous stan-
dard predictive models, requires a broad-based statisti-
cal evaluation that exceeds statistical association tests
alone. Tests of calibration, explained variation, dis-
crimination, and reclassification can provide additional
insights into whether new markers do, or do not, add
predictive information to the standard markers. How-
ever, we have shown examples of statistically signifi-
cant associations, often shown repeatedly to “predict”
outcome, that have limited ability to improve discrim-
ination or other statistical measures of predictive per-
formance.

We have not considered here other important aspects
of test performance that describe more advanced down-
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stream effects of new tests in patient care. As dis-
cussed many years ago in regard to the clinical value
of radiologic testing [15], there should be a hierarchi-
cal approach to assessing test efficacy that begins with
technical efficacy of the test (such as ability of the test
to be accurately measured and standardized in multi-
ple laboratories) and proceeds to the highest level of
efficacy – societal benefit. With increased emphasis
on translational research, it should be emphasized that
the most substantial and meaningful impact of any new
test or procedure in medicine is an actual improvement
in patient outcomes and a further benefit of this im-
provement on improved overall health of the popula-
tion (such as can be measured by cost-benefit or cost-
effectiveness analyses from a societal viewpoint). Be-
tween technical efficacy and societal benefit, there are
additional steps of diagnostic or prognostic accuracy
(such as a measure of association); diagnostic thinking
efficacy (change in the physician’s understanding of the
patient’s risk based on the added value of the new test);
therapeutic efficacy (e.g., number of times a new test
actually resulted in changes in patient treatments); and
patient outcome efficacy (e.g., proportion of patients in
whom cardiovascular events were prevented due to the
improved selection of treatments following better risk
prediction). We recognize, with great humility, that
most current efforts in biomarker discovery and valida-
tion focus on the earliest levels of this hierarchical mod-
el when conducting statistical and technical studies of
test efficacy. Only when we can demonstrate the impor-
tant downstream improvements in therapeutic changes
and in actual patient or societal outcomes can we be
confident that new markers have actually created the
reality of “personalized and predictive medicine.” This
remains a hope at this point and not yet a reality, be-
yond the demonstrated value of traditional risk factors
for targeting patients for known risk reduction strate-
gies such as cholesterol lowering and anti-hypertensive
treatments [4,33].
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