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Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system
with an increasing incidence in females. Epidemiological data strongly implicate environmental
factors acting at the population level during gestation, childhood, and adulthood in the increasing
incidence of MS. Several such factors have been implicated in disease risk, but their causality
remains unproven, while other factors remain unknown. The understanding of risk factors acting
during development is particularly limited. Animal studies could potentially bridge the gap
between observational epidemiology and clinical intervention, providing not only direct evidence
of causality for a given environmental agent, but also an opportunity to dissect the underlying
molecular mechanisms. Given the short gestational and developmental period in rodents, effects of
developmental exposure can also be readily addressed. Nonetheless, studies in this area have so
far been few. In this review, we summarize the insights gleaned from studies that test
environmental influences in animal models of MS, with a particular focus on gestational and early
life exposures.

Pathogenesis of MS and its animal models
MS is a multifactorial inflammatory disease of the central nervous system (CNS)
characterized by demyelination, gliosis, axonal loss, and progressive neurological
dysfunction. The etiology of MS is not well-understood, but current evidence suggests that
activation of myelin-reactive T cells triggers an inflammatory cascade in the CNS, recruiting
other immune cells which mediate the subsequent tissue destruction and pathology.1, 2 There
are two animal models commonly used to study the immunopathogenesis of MS:
experimental allergic encephalomyelitis (EAE) and Theiler’s murine encephalomyelitis
virus-induced demyelinating disease (TMEVD).3 EAE is an autoimmune disease induced in
several animal species (from rodents to primates) by active immunization with CNS
homogenate or specific myelin proteins/peptides, or by adoptive transfer of CD4 T cells
reactive to these antigens. Alternatively, spontaneous EAE in mice can be induced by
transgenic expression of T cell receptors (TCRs) specific for myelin epitopes. As in MS,
autoreactive CD4 T cells enter the CNS to initiate inflammation and pathology, leading to
clinical signs. In contrast, TMEVD is induced by infection with TMEV, a neurotropic virus
that triggers immune infiltration into the CNS and subsequent neural damage and
dysfunction. Both of these models, in particular EAE, have been instrumental in the
improved understanding of MS pathogenesis and the development of novel therapies.4 We
have in fact shown in mice that EAE recapitulates with high fidelity many of the elements

Address correspondence and reprint requests to: Dr. Dimitry Krementsov, Immunobiology Program, C319 Given Medical Building,
University of Vermont, Burlington, VT 05405, Phone: (802) 656-9024, dkrement@uvm.edu or to: Dr. Cory Teuscher,
Immunobiology Program, C331 Given Medical Building, University of Vermont, Burlington, VT 05405, Phone: (802) 656-3270,
Fax : (802) 656-3854, C.Teuscher@uvm.edu.

NIH Public Access
Author Manuscript
Mult Scler. Author manuscript; available in PMC 2014 November 01.

Published in final edited form as:
Mult Scler. 2013 November ; 19(13): . doi:10.1177/1352458513506954.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



underlying MS pathogenesis, including the genetic architecture and role for cellmediated
immune mechanisms in disease pathogenesis.5, 6 Moreover, all of the currently approved
MS therapies are also efficacious in EAE, underscoring the relevance of this model.
Unfortunately, many therapies that are effective in EAE have no clinical efficacy in MS, and
some even exacerbate disease (e.g. interferon-γ therapy7). While it is likely that in some
cases the EAE model has generated incorrect predictions for MS pathogenesis, it is also
possible that the findings from this model have not translated due to other limitations, e.g.
dose, bioavailability, bioactivity, timing of treatment, etc.4 The EAE model clearly has its
limitations in its predictive power for MS, and results from this model need to be interpreted
cautiously and followed up with correlates in MS patients. However, when applied and
interpreted correctly, this model can provide novel mechanistic insights into the
etiopathogenesis of MS.

Environmental factors and MS susceptibility
The etiology of MS involves both genetics and the environment.8 Epidemiological studies
have documented a 3–6 fold increase in MS incidence in females over the last 50–70 years,
while disease incidence in men has remained relatively stable.9 This rate of change clearly
implicates environmental variable(s) that are preferentially affecting MS incidence in the
female population. The timing of increased MS incidence may also provide insight as to the
identity of the environmental factors causing increased disease risk. The 20th century has
brought about many rapid societal changes for both sexes, some of which may be
responsible for increased MS risk in women. Many environmental factors have been
associated with MS susceptibility and have been reviewed extensively elsewhere.8 The most
prominent of these are sunlight exposure/latitude, vitamin D3 (VitD), and Epstein-Barr virus
(EBV) infection. The effect of sunlight has been thought to be mediated by
immunomodulatory effects of VitD, whose synthesis is catalyzed by UV exposure, although
immunosuppressive effects of UV radiation independent of VitD are also well-
documented.10 Accordingly, recent epidemiological studies suggest that VitD and UV
radiation exert independent effects on MS risk.11, 12

It is now well appreciated that various stimuli during gestation, development and early life
can affect adult onset disease via epigenetic imprinting mechanisms.13 A striking
experimental example of this concept is the effect of maternal care on brain development
and behavior in rats.14 Similarly, epidemiological data indicate that some of the
environmental exposures that determine MS risk take place not only in adulthood, but
during early life or in utero, as reviewed by Burrell et al.15

Clearly, there are many putative environmental risk factors to which an individual is
exposed during either development or adulthood which could explain the increasing
incidence of MS. Some of these have been associated with disease in epidemiological
studies, but their causality remains unproven. Others putative factors have not yet been
explored. Over the last century, a vast amount of seminal epidemiological data on MS have
been gathered, yet to date none has been successfully applied towards clinical
intervention.16 Animal studies can potentially bridge the gap between observational
epidemiology and the clinic, providing not only direct evidence of causality for a given
environmental agent, but also an opportunity to dissect the underlying molecular
mechanisms.

In the following two sections, we describe how animal models of MS have been applied to
study environmental risk factors and what has been learned from these results. We first
briefly highlight studies using adult exposure to the most significant environmental MS risk
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factors, followed by a more expansive summary of the studies examining the effects of
developmental exposure to these and other environmental risk factors.

Effects of environmental MS risk factors in animal models: adult exposure
Most of the animal studies of MS risk factors have been performed utilizing adult exposure.
To date, the most well-studied factors are VitD and UV radiation. Treatment of animals with
supra-physiological doses of the VitD metabolite, 1,25-dihydroxyvitamin D3 which is
thought to mediate most of the physiological actions of VitD, has long been known to
suppress EAE.17, 18 Supplementation with VitD itself also inhibited EAE selectively in
female mice,19 consistent with MS epidemiology.20 However, dietary VitD deficiency
suppressed rather than exacerbated EAE,21 raising doubts as to whether VitD deficiency is a
bona fide risk factor for MS. Moreover, while UV radiation has long been known to inhibit
EAE,22 recent studies show that this occurs in the absence of any detectable effects on VitD
synthesis or metabolism.23 In this regard, it has been reported that the persistence of
systemic UV radiation-induced immunosuppression is associated with altered dendritic cell
function and their induction of T regulatory cells, due to epigenetic changes in bone marrow
dendritic cell progenitors.24, 25 Lastly, we have shown that season influences EAE
susceptibility independent of UV,26, 27 further complicating the connection between
sunlight, VitD, and month of birth effects in MS (which are thought to be mediated by
sunlight exposure)15, and strengthening the known connection between circadian biology
and MS.28

Another well-studied putative MS risk factor is exposure to infectious agents, which is
thought to play an adjuvant-like effect in triggering pre-existing autoimmunity. Consistent
with this notion, early studies using TCR transgenic animals that spontaneously develop
EAE showed that increased exposure to microorganisms promoted EAE incidence.29

Moreover, infection of with a gamma-herpes virus homologous to EBV exacerbated EAE in
mice and rats,30, 31 in agreement with increased human MS risk in EBV-infected
individuals. Studies in EAE in a marmoset model also indicate an involvement of gamma-
herpes virus infection in augmenting disease pathogenesis.32 Moreover, pertussis toxin and
toll-like receptor ligands, two adjuvants used to potentiate spontaneous or induced EAE, are
examples of environmental agents derived from infectious organisms.3 In contrast, several
parasitic microorganisms can skew and dampen the pathogenic immune response in EAE,
and are being explored as potential therapy in MS.33 Overall, it is likely that many different
infectious agents may contribute to triggering of autoimmunity in MS, while others may be
protective.

Effects of environmental MS risk factors in animal models: developmental
exposure

The effects of environmental MS risk factors acting during development are less well
studied in animal models, despite the short gestational period in rodents which allows for
easily testing developmental effects. The factors that have been studied so far include VitD,
microbial products, stress, environmental toxins, and endocrine influences.

Epidemiological data suggest that sunlight exposure and VitD intake during gestation and
early childhood may influence MS risk15, 34. As described above, VitD supplementation or
VitD deficiency in adult mice can both suppress EAE. Likewise, the findings in EAE on the
role of VitD during development are also somewhat inconsistent. Using a model of dietary
VitD deficiency, Feron and colleagues showed that depletion of VitD in the dams during
gestation resulted in reduced EAE in the offspring,35 contrary to the prediction based on MS
epidemiology, but consistent with DeLuca et al who showed reduced EAE in VitD-deficient
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adult mice.21 In contrast, the second generation of mice that were gestationally deficient in
VitD developed more severe EAE.36 Meanwhile, VitD supplementation from birth to
weaning (pre-pubertal), reduced EAE.37 In agreement with the latter results, a very recent
study in rats directly compared the effects of VitD supplementation during gestation, early
life, or adulthood and found that only early life VitD supplementation suppressed EAE,
while the other treatment paradigms had no effect on disease.38 Taken together, the results
from these animal studies suggest that the critical window for VitD’s effects on MS may be
during early life/adolescence rather than gestation, and that some effects of VitD may be
transgenerational. Further studies are needed to clarify these results, particularly using VitD
deficiency or supplementation exclusively during the early life period or during gestation.
Moreover, the effects of UV radiation independent of VitD during development need to be
explored.

The effects of the human microbiome, i.e. the commensal microorganisms residing on skin
or mucosal surfaces, on the immune system are now well appreciated. The microbiome has
undoubtedly changed with diet, hygiene, and the use of antibiotics, and thus represents a
putative factor behind increasing MS risk. Since the microbiome can potentially be
manipulated in a targeted way, it represents an attractive avenue for altering MS risk or
disease progression. Multiple studies in EAE have shown that modulation of gut microbiota
composition can either promote or protect from disease, as has been reviewed in more detail
elsewhere.39 Typically, germ-free mice are resistant to EAE and become susceptible after
colonization with different microbiota; however, the introduction of specific commensals (or
their products) to existing microbiota can suppress EAE. However, no reports have directly
examined the role of gut commensals during development or gestation, despite the findings
that the presence or absence of different microbiota during early life can clearly affect CNS
development.40, 41 In previous EAE studies, the microbiome is typically manipulated after
weaning of pups, i.e. post-puberty; thus this may be considered an early life, but not pre-
pubertal exposure. Additionally, germ-free animals used in many of these studies are
maintained as germ-free for several generations, thus this exposure (or lack thereof) includes
adulthood and all developmental periods. Future studies will need to more clearly define
whether the immunomodulatory effects of gut microbiota take place during gestation, pre-
puberty, post-pubertal early life, or in adulthood. This would have important implications for
potential preventative or therapeutic interventions aimed at modulating the microbiome in
humans.

With regard to developmental exposure to microbial products, one report showed that early
life exposure to lipopolysaccharide (LPS), a component of bacterial cell walls, ameliorated
EAE in adulthood, accompanied by suppression of pro-inflammatory innate and adaptive
responses.42 In contrast, administration of LPS during pregnancy exacerbated EAE in the
offspring.43 Since in both of these models LPS is delivered systemically at relatively high
doses (similar to models of septic shock), these systems more likely to mimic a general
sickness/stress response to a systemic infection rather than natural exposure to commensal
microorganisms e.g. via mucosal surfaces.

Stress has long been known as a potent immunosuppressant, and, not surprisingly,
experimentally induced chronic stress in adult animals (e.g. restraint stress) suppresses
EAE.44 This is in line with a study showing decreased MS relapses in patients exposed to
chronic stress during the Gulf War.45 However, the vast majority of epidemiological studies
indicate that chronic or acute stress may instead precipitate disease onset or exacerbate
symptoms in relapsing–remitting MS.46 Similarly, acute stress, unlike chronic stress, in
adult animals accelerated EAE onset.47 With regard to developmental exposure, early life
stress induced in neonatal pups exacerbated EAE in adult rats48–50 and mice,51 with more
profound effects observed in males compared to females in both species. In agreement with
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this, we have shown that changing the postnatal maternal environment can also exacerbate
EAE.52 In contrast, postnatal handling decreased clinical signs in the TMEVD model,
although in this model the immune response against the virus was significantly affected by
this treatment,53 making it difficult to acertain whether this is an indirect effect due to
differential viral clearance. The effect of gestational exposure to stress on EAE has not been
studied directly, but a recent study in mice showed that maternal stress altered the fetal
transcriptome and modulated expression of microRNAs associated with MS and other
neurologic diseases.54 Moreover, as mentioned above, systemic administration of LPS
during pregnancy exacerbated EAE in the offspring.43 Taken together, these results indicate
that early life stress can exacerbate EAE in a sex-specific fashion, and suggest that MS risk
in adulthood may be influenced by stressful events in childhood or in utero, differentially in
males versus females.

The petrochemical revolution brought with it exposure to many synthetic compounds, some
of which have profound physiological effects. Two examples of this are bisphenol A (BPA),
a chemical compound used in the manufacture of plastics, and diethylstilbestrol (DES), a
drug originally given to reduce pregnancy complications, both of which have estrogenic
activity and exert endocrine disrupting effects during development.55 In fact, developmental
exposure to BPA was found to exacerbate asthma in mice,56 and recent epidemiological
studies show a positive correlation between maternal BPA levels and asthma incidence in
the offspring.57 Based on these findings, and the chronological concurrence between BPA
exposure and increasing MS risk in females, we examined the effects of developmental
exposure to this chemical in two different models of EAE, but found no effect on disease
severity or progression.58 Similarly, no effect of developmental BPA exposure was found in
a model of colitis, another tissue-specific autoimmune disease,59 suggesting that BPA
exposure may have selective effects on allergic, but not autoimmune diseases. With regard
to DES, no animal studies to date have confirmed the possible association between MS and
developmental DES exposure.60

Many other potential environmental toxins and endocrine disruptors exist, and their effects
should be examined in animal models of autoimmunity.61 Particularly interesting are
different environmental toxins or compounds that can serve as ligands for the aryl
hydrocarbon receptor, given the findings that adult exposure to such compounds can
modulate EAE.62 Another intriguing possibility is equol, an estrogen-like molecule which is
produced from dietary soy by certain commensal bacteria that are present in about 25% of
the human population,63 which could provide a potential mechanistic link between diet, the
endocrine system, the microbiome, and autoimmunity. Furthermore, evidence for the role of
gestational endocrine imbalance in autoimmunity comes from a study showing that
decreased thyroid hormone levels during pregnancy exacerbated EAE in the offspring.64 In
addition, we have observed a Y chromosome-dependent parent-of-origin effect on EAE in
female offspring, consistent with the possibility that the intrauterine hormone environment
can influence EAE.65 Taken together, these studies indicate that endocrine factors acting
during development can influence EAE in adulthood, and that other environmental
endocrine disruptors could potentially influence MS risk.

Conclusions and perspectives
MS is a highly complex and multifactorial disease that is profoundly impacted by the
environment during gestation, childhood, and adulthood. The understanding of risk factors
acting during development is particularly limited. Animal models provide a potential way to
systematically delineate and/or validate putative risk factors for MS and, perhaps more
importantly, to define the underlying molecular mechanisms of how these factors contribute
to the etiopathogenesis of this disease, including epigenetic and gene-by-environment
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interactions. Findings from animal models can be further verified and validated in the MS
population, either using epidemiology and/or biomarkers, similar to how the findings of the
role BPA in promoting experimental asthma56 were later confirmed in human studies.57

Improved understanding of the mechanisms of environmental risk factors may provide an
opportunity for public health strategies aimed at preventing MS, or personalized and
targeted therapeutic interventions for individuals with MS, an approach that could one day
become the standard of care for this highly heterogeneous and complex disease.
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