
Disease Markers 28 (2010) 323–331 323
DOI 10.3233/DMA-2010-0712
IOS Press

Analysis of polymorphisms in genes (AGT,
MTHFR, GPIIIa, and GSTP1) associated
with hypertension, thrombophilia and
oxidative stress in Mestizo and Amerindian
populations of México
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gUnidad de Biologı́a Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición
“Salvador Zubirán”, México, D.F., México
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Abstract. Several polymorphisms related to hypertension, thrombophilia, and oxidative stress has been associated with the
development of cardiovascular disease. We analyzed the frequency of M235T angiotensinogen (AGT), A222V 5,10 methylenete-
trahydrofolate reductase (MTHFR), L33P glycoprotein IIIa (GPIIIa), and I105V glutathione S-transferase P1 (GSTP1) polymor-
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phisms in 285 individuals belonging to Mexican-Mestizo and five Amerindian population from México, by real time PCR allelic
discrimination. Allele and genotype frequencies were compared using χ2 tests.
All populations followed the Hardy Weinberg equilibrium for assay markers with the exception of the Triki, whose were in Hardy
Weinberg dysequilibrium for the glutathione S-transferase P1 polymorphism.
Interestingly, according to all the analyzed single nucleotide polymorphisms (SNPs), the Triki population was the most differenti-
ated and homogeneous group of the six populations analyzed. A comparison of our data with those previously published for some
Caucasian, Asian and Black populations showed quite significant differences. These differences were remarkable with all the
Mexican populations having a lower frequency of the 105V allele of the glutathione S-transferase P1 and reduced occurrence of
the 222A allele of the 5,10 methylenetetrahydrofolate reductase. Our results show the genetic diversity among different Mexican
populations and with other racial groups.
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1. Introduction

Several epidemiological and clinical studies have
reported associations between polymorphisms of var-
ious genes related to hypertension, thrombophilia,
and oxidative stress with development of cardiovas-
cular and cerebrovascular diseases. Among these
genes are angiotensinogen (AGT) (MIM 106150) [1],
glycoprotein IIIa (GPIIIa) (MIM 173470) [2], 5,10
methylenetetrahydrofolate reductase (MTHFR) (MIM
607093) [3], and glutathione S-transferase P1 (GSTP1)
(MIM 134660) [4]. However, other studies have shown
no evidence of association between these polymor-
phisms and risk of these diseases [1,5,6].

Approximately 30% to 40% of the population vari-
ability in blood pressure is genetically determined [7].
The importance of the renin-angiotensin system for
maintenance of normal cardiovascular homeostasis is
well established [8]. It has been suggested that individ-
uals with a p.M235T (c.704C>T) polymorphism in the
AGT gene in the homozygous TT state have increased
plasma angiotensinogen levels and a corresponding in-
crease in risk of hypertension [9]. Likewise, it was
demonstrated that moderate hyperhomocysteinemia is
considered as an independent risk factor for ischemic
cardiovascular disease [10]. The genetic basis of this
disease may be due to a polymorphism in the MTHFR
gene (p.A222V, c.677C>T) where homozygosity for
the C-677T substitution results in reduced MTHFR en-
zyme activity and subsequently elevated homocysteine
concentrations of ∼20% [11].

GPIIIa is a thrombophilic gene involved in the regu-
lation of vascular thrombosis. The GPIIb/GPIIIa com-
plex mediates platelet aggregation by acting as a re-
ceptor for fibrinogen. This complex also acts as a re-
ceptor for von Willebrand factor and fibronectin [12].
The polymorphism c.98C>T in this gene causes a
p.L33P substitution and the existence of two antigeni-

cally distinct forms of the mature GPIIb/IIIa antigen on
platelets [13]. This variant itself has been associated
with risk of premature acute coronary syndromes and
stroke in young Caucasian women [14]. In addition,
oxidative stress is thought to play an important role
in the pathophysiology of hypertension, although this
statement lies within the context of the development
of preeclampsia [15]. It has been hypothesized that
reduced levels of GSTP1 due to the the lower activity
of the GSTP1 (p.I105V, c.313A>G) allele in this syn-
drome may be an indicator of decreased capacity of the
GST detoxification system and may cause a prolonged
exposure to reactive by-products, which may contribute
to maternal endothelial dysfunction [15,16].

It has been observed that diverse genetic polymor-
phisms associated with cardiovascular diseases are usu-
ally found in most human populations but often with
variations in the allele frequencies [17]. The Mexican-
Mestizo population is constituted by a mixture of Eu-
ropeans and Africans with native Indian subjects [18].
These individuals have a proportion of 56% Amerindi-
an genes, 40% Caucasian genes, and 4% African
genes [19]. According to the National Institute of An-
thropology, a Mexican-Mestizo is defined as a person
who was born in Mexico, has a Spanish-derived last
name, and has a family of Mexican ancestors back to
the third generation [20]. Moreover, in Mexico ∼7%
of the total population corresponds to an ethnic group,
using the language as a classification criterion [21].
Interestingly, several of these groups have maintained
a limited admixture level with the Mestizo population
as a consequence of the geographical isolation and/or
cultural barriers.

Because the Mestizos and Amerindian populations
are genetically heterogeneous and considering the pu-
tative role of polymorphisms in genetic susceptibili-
ty to cardiovascular diseases, the principal aim of this
study was to analyze the frequency of p.M235T an-
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Fig. 1. Geographical location of the six Mexican populations analyzed in the study. 1. Yaqui, 2. Huichol, 3. Puŕepecha, 4. Triki, 5. Maya, 6.
Mestizo.

giotensinogen, p.A222V 5,10 methylenetetrahydrofo-
late reductase, p.L33P glycoprotein IIIa, and p.I105V
glutathione S-transferase P1 polymorphisms in the
Mestizo and five Amerindian populations from México.

2. Subjects

The study was approved by the Institute’s Human
Research Committee. Informed consent was obtained
from all subjects before participating in the study. The
local authorities of the Amerindian population gave
their approval to participate in the study, and a transla-
tor was used as needed. From the 285 subjects, DNA
from blood samples was obtained from apparently nor-
mal male individuals with no phenotypic abnormali-
ties. Individuals ranged in age from 18–60 years ages.
The study was comprised of subjects from six Mexi-
can populations from six different geographical regions
(Fig. 1): 71 Mexican-Mestizos living in Mexico City or
its surroundings; 29 Purépechas from the state of Mi-
choacán in western Mexico; 27 Yaquis from the state
of Sonora located in northern Mexico; 15 Huicholes
from Nayarit in northwestern Mexico; 89 Trikis from
the state of Oaxaca and 54 Mayas from the state of
Yucatán, both located in southeastern México.

The Mexican-Mestizo group resulted from the ad-
mixture between Native American and European
(Spanish) populations with a much smaller contribu-
tion of African groups. Because México City has been
a site of massive immigration during the last century
receiving inhabitants from all around the country, this

group can be considered representative of the overall
Mexican population. Only individuals born in México
whose parents and grandparents were born in México
were considered Mexican-Mestizo. All Amerindian in-
dividuals and their ancestors throughout three genera-
tions were born in the same community and spoke their
own native language.

3. Methods

3.1. Genotyping

The study was performed to determine the frequen-
cies of the polymorphisms in AGT (p.M235T), MTH-
FR (p.A222V),GPIIIa (p.L33P), and GSTP1 (p.I105V)
genes. Peripheral blood samples were obtained from
all individuals, and genomic DNA was purified by stan-
dard techniques [22]. Single nucleotide polymorphism
(SNP) analysis was performed using real-time PCR al-
lelic discrimination TaqMan assays (AB) with minor
modifications. All PCR reactions contained 20 ng of
DNA, 2.5 µl TaqMan Universal Master Mix (AB) (2X),
0.25 µl primers and probes (10X) and water for a fi-
nal volume of 5 µl, including the appropriate negative
controls in all assays. Real-time PCR was performed
on an ABI Prism 7900HT Sequence Detection System
(Applied Biosystems, Foster City, CA, USA) under the
following conditions: 50◦C for 2 min, 95◦C for 10 min,
and 40 cycles of amplification (95◦C for 15 s and 62◦C
for 1 min). For each cycle, the software determined the
fluorescent signal from the VIC or FAM-labeled probe
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Table 1
Primers and probes used for the PCR allelic discrimination TaqMan assay

Gene Primers Probe

AGT 5’-GCTGTGACAGGATGGAAGACT-3′ (sense)
5′-AGTGGACGTAGGTGTTGAAAGC-3′ (antisense)

VIC 5′-CTGGCTCCCATCAGG-3′ wt
FAM 5′-CTGGCTCCCGTCAGG-3′ mt

MTHFR 5′-GCACTTGAAGGAGAAGGTGTCT-3′ (sense)
5′-CCTCAAAGAAAAGCTGCGTGATG-3′ (antisense)

VIC 5′-CTGGCTCCCATCAGG -3′ wt
FAM 5′-CTGGCTCCCGTCAGG-3′ mt

GPIIIa 5′-TCTCTTTGGGCTCCTGTCTTACA-3′ (sense)
5′-CAGATTCTCCTTCCGGTCACA-3′ (antisense)

FAM 5′-TGAGCCCAGAGGCA-3′ wt
VIC 5′-TGAGCCCGGAGGCA-3′ mt

GSTP1 5′-CCTGGTGGACATGGTGAATGAC-3′ (sense)
5′-CAGATGCTCACATAGTTGGTGTAGA-3′ (antisense)

VIC 5′-CTGCAAATACATCTCC-3′ wt
FAM 5′-CTGCAAATACGTCTCC-3′ mt

Table 2
Allele frequencies of the MTHFR c.677C>T, AGT c.704C>T, GPIIIa c.98C>T and GSTP1 c.313A>G polymorphisms in several populations

Huichol Maya Purépecha Trikis Yaquis Mestizo Caucasian Asian Black

SNP Allele Frequency
MTHFR C 0.467a 0.389b 0.293a 0.078a 0.537a 0.472a 0.6826 0.5527 0.928

C→T T 0.533 0.611 0.707 0.922 0.463 0.528 0.32 0.45 0.1
(2n = 820) (2n = 936) (2n = 658)

AGT C 0.733c 0.88c 0.879c 0.983d 0.759c 0.775c 0.4140 0.8138 0.8339

C→T T 0.267 0.12 0.121 0.017 0.241 0.225 0.59 0.19 0.17
(2n = 200) (2n = 1028) (2n = 806)

GPIIIa C 1.0c 0.973e 0.949c,f 1.0e 0.907f 0.958e,f 0.8314 0.9941 0.8942

C→T T 0.0 0.027 0.051 0.0 0.093 0.042 0.17 0.01 0.11
(2n = 432) (2n = 632) 2n = 92)

GSTP1 A 0.143g 0.38g 0.413g 0.298g 0.352g 0.415g 0.6443 0.8344 0.5845

A→G G 0.857 0.62 0.587 0.702 0.648 0.585 0.36 0.17 0.42
(2n = 236) (2n = 626) (2n = 274)

Note:The distributions of allele frequencies obtained in our populations (Amerindian and Mexican Mestizos) were compared to those previously
described in other populations (Caucasian, Asian and Black population) using the chi-square test (p significative values were in the range of p <
0.05 to p < 0.0001).
aDecreased frequency when compared to Caucasian and Black populations
bDecreased frequency when compared to Caucasian Asian and Black populations.
cIncreased frequency when compared to Caucasian population
dIncreased frequency when compared to Caucasian, Asian, and Black populations.
eIncreased frequency when compared to Caucasian, and Black populations.
fDecreased frequency when compared to Asian population.
gDecreased frequency when compared to Caucasian, Asian, and Black population.

(Applied Biosystems). Allelic discrimination was per-
formed using specific primers and probes for each al-
lele. The sequences of the primers and probes for each
polymorphism are shown in Table 1.

3.2. Statistical analysis

Results are expressed as mean ± standard deviation
(SD). Statistical analyses were performed using SPSS
v.10 (SPSS, Chicago, IL, USA). Continuous variables
were compared by unpaired Student’s test. Genotype
distributions were tested for deviation from Hardy-
Weinberg equilibrium in all groups. Allele and geno-
type frequencies were tested using the χ2 test (http://
ihg.gsf.de/cgi-bin/hw/hwal.pl); p value < 0.05 was ac-
cepted as statistically significant. Genetic distances
were estimated by calculating the coancestor coefficient
of Reynolds et al. [23].

4. Results

The frequencies of the AGT c.704T>C, MTHFR
c.677C>T, GPIIIa c.98C>T and GSTP1 c.313A>G
polymorphisms were analyzed in different Indian and
Mestizo-Mexican populations. Distribution of allelic
frequencies and comparison of these with other pop-
ulations are shown in Table 2. The most distinguish-
ing group among the six Mexican populations was the
Trikis, given that this group presented a significant ge-
netic differentiation in most of the studied SNPs (p <
0.0002) when compared to the other studied popula-
tions; the only exception was GSTP1.

Among the most remarkable differences was that ob-
served for the MTHFR c.677C>T polymorphism where
the Trikis had a very low frequency of the allele C
(7.8%), whereas the rank was 29.3% and 53.7% for
Purépechas and Yaquis, respectively. Considering the
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Table 3
Genotype frequency, heterozygosity (H) and Hardy-Weinberg equilibrium testa of four SNPs from six Mexican populations

MTHFR AGT GPIIIa GSTP1
Population CC CT TT CC CT TT CC CT TT AA AG GG

Mestizo n 17 33 21 42 26 3 65 6 0 13 33 25
(n = 71) H (%) He = 49.8; Ho = 46.5 He = 35.0; Ho = 36.6 He = 8.1; Ho = 8.4 He = 48.6; Ho = 46.5
Maya n 7 28 19 42 11 1 51 3 0 6 29 19
(n = 54) H (%) He = 47.6; Ho = 51.8 He = 21.2; Ho = 20.4 He = 5.4; Ho = 5.5 He = 47.1; Ho = 53.7
Trikis n 0 14 75 86 3 0 89 0 0 14 25 50
(n = 89) H (%) He = 14.6; Ho = 15.7 He = 3.3; Ho = 3.4 He = 0; Ho = 0 He = 42.0; Ho = 28.1b

Purépechas n 2 13 14 22 7 0 26 3 0 4 16 9
(n = 29) H (%) He = 41.5; Ho = 44.8 He = 21.3; Ho= 24.1 He = 9.8; Ho= 10.3 He = 48.5; Ho = 55.2
Yaquis n 9 11 7 16 9 2 22 5 0 3 13 11
(n = 27) H (%) He = 49.7; Ho = 40.7 He = 37.0; Ho = 33.3 He = 17.0; Ho= 18.5 He = 45.6; Ho = 48.1
Huicholes n 3 8 4 7 8 0 15 0 0 1 2 12
(n = 15) H (%) He = 49.8; Ho = 53.3 He = 40.0; Ho = 53.3 He = 0; Ho = 0 He = 23.1; Ho = 13.3

aHeterozygosity expected (He), Heterozigosity observed (Ho) and Hardy-Weinberg equilibrium test.
bSignificant Hardy-Weinberg dysequilibrium by Pearson’s goodness-of-fit χ2 test (1 df).
SNP, single nucleotide polymorphism.

Table 4
Coancestry coefficent (above diagonal) and combined probability of pairwise comparisonsa (below diagonal) between
Mexican populations and three worldwide racial groups

Mestizo Maya Triki Huichol Purépecha Yaqui Caucasian Asian Blacks

Mestizo ***** 0.0064 0.19114 0.0358 0.0158 −0.0088 0.0780 0.1380 0.1661
Maya 0.1814 ***** 0.1194 0.0476 −0.0081 0.0131 0.1436 0.1807 0.2388
Triki 0.0000 0.0000 ***** 0.2748 0.0740 0.2694 0.4056 0.4110 0.6021
Huichol 0.1123 0.0556 0.0000 ***** 0.0568 −0.0066 0.1639 0.3478 0.2881
Purépecha 0.1257 0.7341 0.0000 0.0133 ***** 0.0227 0.1534 0.1834 0.2879
Yaqui 0.5707 0.0637 0.0000 0.1750 0.0510 ***** 0.0597 0.1743 0.1304
Caucasian 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 ***** 0.0910 0.0723
Asian 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000 ***** 0.1672
Blacks 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 *****
aExact test: 10,000 permutations.

Bonferroni correction factor, to establish pair compar-
ison significance (Table 2; p < 0.003), the other ge-
netically distinctive group was the Mestizo, which was
differentiated from the Mayas, Purépechas and Yaquis.

Comparing allelic distribution in the six Mexican
ethnic groups with those reported previously in other
populations (Table 2), we observed in the case of the
MTHFR a significant reduction in the frequency of al-
lele C in all studied populations when compared with
Caucasian, Asian and Black populations. Moreover,
the frequency of AGT 704C allele in the Mestizo, Maya,
Purépecha, Huichol and Yaqui groups was high when
compared to the Caucasian population. Concerning the
Trikis, the same allele showed an increased frequency
in relation not only to the Caucasian population but also
to the Asian and Black populations.

Frequency of GPIIIa 98T allele was slightly in-
creased in Mestizo and indigenous Mexican groups
when compared with Caucasian and Black populations.
On the other hand, the frequency of the allele was simi-
lar between the Mexican population and an Asian pop-
ulation.

In regard to the GSTP1 313G allele, all Mexican
populations (ranking from 14% to 41%) had a reduction
in frequency when compared with Caucasian (64%),
Asian (83%) and Black (58%) populations.

Distribution of genotypes for all analyzed genet-
ic markers was in Hardy-Weinberg equilibrium (Ta-
ble 3) with the exception of the distribution observed
for GSTP1 polymorphism in the Trikis. In this ethnic
group there was an increment in the homozygous pro-
portion, suggesting a significant endogamous process,
which is supported by comparison of the heterozygo-
sis in all the studied Mexican populations. In this re-
spect, the Trikis presented the lowest frequency of het-
erozygosity in most of the genetic markers as compared
with the other groups, with the exception of the GPIIIa
polymorphism.

Genetic distances were estimated by calculating the
coancestor coefficient of Reynolds et al. [23] among the
different populations (Table 4). The neighbor-joining
tree (Fig. 2) was obtained by using the genetic dis-
tances of the Mexican populations and three other racial
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Fig. 2. Neighbor-joining tree using concenstry coefficient distances between Mexican populations and three racial groups based on four SNPs
(MTHFR, AGT, GPIIIa and GSTP1).

groups (Caucasian, Asian and Black) and graphically
demonstrates the relationship among the populations.
As suggested for the preceding analysis, Trikis were
the most genetically differentiated group.

5. Discussion

The Mexican population has a historical distinction
for its ethnic diversity, and the country presents one
of the highest concentrations of indigenous popula-
tions on the entire American continent (obtained from
the Instituto Nacional Indigenista) [24]. According
to the most recent population census, the indigenous
population of Mexico is 8.7 million (obtained from
the Instituto Nacional de Estadı́stica Geofrafı́a e In-
formática) [21]. These indigenous subjects are descen-
dants of Amerindian populations with an ancient Asian
origin [25]. In addition, the Mexican Mestizos popu-
lation appears to be the result of the genetic admixture
among Amerindians, Caucasian and Black genes. The
general pattern has a high Indian ancestry followed by
Caucasian and Black ancestry [18]. Because it has been
determined that genetic polymorphisms have an ancient
origin and are usually found in most human popula-
tions but often with different allele frequencies [17], it
would be very probable that Mexican populations may

have diverse types and frequencies of genetic polymor-
phisms of different genes that predispose to cardiovas-
cular diseases.

We analyzed the allelic and genotype frequencies in
polymorphismsof hypertension, thrombophilicand ox-
idative stress-related genes MTHFR, AGT, GPIIIa, and
GSTP1 in different Mexican populations. Regarding
the MTHFR c.677C>T polymorphism, we observed an
allelic frequency ranking from 46% to 92%. In gen-
eral, these frequencies were higher than that found in
the Caucasian [26], Asian [27] and Black [28] popu-
lations. The elevated frequency of the 677T allele in
Mexican populations has also been observed in earlier
studies [29,30]. It is noteworthy that our results deter-
mined that the Triki population has the highest frequen-
cy (92%) of the mutant allele with no homozygous in-
dividuals for the 677C allele. In a previous study [30],
the frequency of the 677T allele in the Pur épecha pop-
ulation was lower (57%) than observed in this study
(70%). This difference may be caused by some genet-
ic admixture of the former indigenous population with
Caucasian genes.

It has been observed that homozygosity for the 677T
allele results in reduced MTHFR enzyme activity and,
subsequently, elevated homocysteine concentrations of
∼20% [11], which represents a risk factor for ischemic
vascular disease [10]. Likewise, several studies de-
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scribed the association between the MTHFR 677TT
homozygous genotype and an increased risk of hyper-
tension [31], macrovascular abnormalities in systemic
sclerosis patients [32], intima-media thickening in pa-
tients with cognitive impairment [33], and preeclamp-
sia [34]. However, in a study carried out by our group,
it was found that the 677TT genotype confers a reduced
risk of preeclampsia in Maya-Mestizo women under a
recessive model for the 677T allele [35]. The incon-
sistency of the results in different populations may be
caused by the differential phenotypic expression of spe-
cific genotypes as a consequence of diverse factors such
as genetic background, age, gender, physiological and
pathological conditions, intake of food and drugs, and
physical activity [36,37]. All of these findings demon-
strate the importance of studying the allelic and geno-
type frequency of different polymorphisms in diverse
human groups.

The AGT 704TT genotype increases plasma an-
giotensinogen levels that, in turn, augment the risk of
hypertension [9]. In this study, AGT 704C allele and
genotype frequencies distribution were similar among
Mexicans. In all populations the 704C allele was pre-
dominant, and Trikis bear the highest frequencies of
this (98%). In contrast, the 704TT genotype was ab-
sent in Trikis, Purépechas and Huicholes and was very
low in Mestizo, Maya and Yaquis. Comparison of the
allele frequencies of the Mexican populations with oth-
er previously described allele frequencies in different
human groups resulted in being similar between Mex-
icans and Asians [38] as well as Blacks [39]. In con-
trast, the 704T allele was lower than that observed in
the Caucasian group [40].

Concerning the c.98C>T polymorphism of the GPI-
IIa gene, it seems to predispose premature acute coro-
nary syndrome and stroke in young Caucasian wom-
en [14]. The frequency of the mutant allele (98T) was
very low in all the studied Mexican populations and
was similar to that reported for an Asian [41] and Black
population [42]. In contrast, a Caucasian group has the
highest presence of the mutant allele with a frequen-
cy of 17% [14]. To the best of our knowledge, this
is the first report of this polymorphism in a Mexican
population.

In regard to the GSTP1 gene, the 313G allele was
present in a higher frequency in Mexicans as compared
with Caucasians [43], Asians [44], and Blacks [45].
Currently there are no studies of this genetic marker
with other Amerindian populations. In contrast, Hatag-
ima et al. [46] studied the same polymorphism in a
Brazilian Mestizo population, finding that the frequen-

cy of the 313G allele was 38%, similar to that ob-
served in Caucasian and Black populations. This may
be attributed to the fact that the genetic constitution
of Brazilians has a high influence over these human
groups.

Interestingly, the neighbor-joining tree using coan-
censtry coefficient distances between Mexican popula-
tions and three racial groups showed that Trikis were
the most genetically differentiated group. Consequent-
ly, this population presented the highest relative genet-
ic homogeneity, a characteristic that may be a conse-
quence of the conservation of its endogamous repro-
ductive cultural patterns [47].

In summary, according to the study of polymor-
phisms involved in hypertension, thrombophilia and
oxidative stress (AGT, GPIIIa, MTHFR and GSTP1),
we determined their allele and genotype frequencies in
different Mexican populations with diverse geographi-
cal, anthropological, genetic, and cultural antecedents.
Because these polymorphisms have been associated
with distinct cardiovascular pathologies, we are cur-
rently studying whether the presence of some alleles
may be a risk factor associated with these types of dis-
eases in the studied Mexican populations.
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