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An extensive candidate gene approach to speciation:
diversity, divergence and linkage disequilibrium in
candidate pigmentation genes across the European
crow hybrid zone

JW Poelstra1, H Ellegren1 and JBW Wolf1,2

Colouration patterns have an important role in adaptation and speciation. The European crow system, in which all-black carrion
crows and grey-coated hooded crows meet in a narrow hybrid zone, is a prominent example. The marked phenotypic difference
is maintained by assortative mating in the absence of neutral genetic divergence, suggesting the presence of few pigmentation
genes of major effect. We made use of the rich phenotypic and genetic resources in mammals and identified a comprehensive
panel of 95 candidate pigmentation genes for birds. Based on functional annotation, we chose a subset of the most promising
37 candidates, for which we developed a marker system that demonstrably works across the avian phylogeny. In total, we
sequenced 107 amplicons (B3 loci per gene, totalling 60kb) in population samples of crows (n¼23 for each taxon). Tajima’s D,
Fu’s FS, DHEW and HKA (Hudson–Kreitman–Aguade) statistics revealed several amplicons that deviated from neutrality; however,
none of these showed significantly elevated differentiation between the two taxa. Hence, colour divergence in this system may be
mediated by uncharacterized pigmentation genes or regulatory regions outside genes. Alternatively, the observed high population
recombination rate (4NerB0.03), with overall linkage disequilibrium dropping rapidly within the order of few 100bp, may
compromise the power to detect causal loci with nearby markers. Our results add to the debate as to the utility of candidate gene
approaches in relation to genomic features and the genetic architecture of the phenotypic trait in question.
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INTRODUCTION

The diversity of animal colouration has long attracted the interest of
naturalists and scientists alike. Many instances of colouration
differences across and within species have been shown to be a
function of habitat adaptation (Hubbard et al., 2010), while in others
it may reflect the outcome of seemingly arbitrary sexual and social
selection pressures (Ödeen and Björklund, 2003; Price, 2007). In
either case, colouration differences within and between populations
have been observed to arise rapidly and are believed to have an active
role in the initial steps of divergence and speciation (Gray and
McKinnon 2007; Hugall and Stuart-Fox 2012).

Birds show remarkable variation in colour and colouration
patterns, including within-population polymorphisms (Galeotti
et al., 2003), clinal variation (Antoniazza et al., 2010) and rapidly
evolved differences between populations and species (Milá et al.,
2007). The notion that colour variation can promote speciation may
be particularly relevant in birds, as mate preferences are mostly
learned through imprinting on parental phenotypes (Ten Cate et al.,
1993). As a consequence, barriers to gene flow can quickly arise
without the need for genetic coupling between mating trait and
preference (Irwin and Price, 1999). One prominent example where
colour differences in combination with imprinting have been invoked

in the speciation process is the marked phenotypic difference between
two parapatric Eurasian crow taxa, the all-black carrion crow (Corvus
(corone) corone) and the grey-coated hooded crow (Corvus (corone)
cornix) (Figure 1) (Brodin and Haas, 2006).

The two taxa, which have recently been raised to species status
(Parkin et al., 2003), are geographically distributed in a leapfrog
pattern, with carrion crows inhibiting western Europe and eastern
Asia and hooded crows the area in between. Both in Europe and Asia,
the taxa meet in hybrid zones thought to originate by secondary
contact after initial isolation (Meise, 1928). These hybrid zones are
narrow (50–160 km, Meise, 1928) and fairly stable, although both in
Scotland and Denmark, modest hybrid zone movement to the expense
of hooded crows has been described (Cook, 1975; Haas and Brodin,
2005). The marked phenotypic divergence is accompanied by assor-
tative mating (for example, Haas et al., 2010), yet stands in contrast to
limited evidence for postzygotic reproductive isolation (for example,
Saino and Bolzern, 1992) and very low levels of genetic differentiation
in all the genetic markers studied so far (Haas et al., 2009; Wolf et al.,
2010 and references therein). Levels of between taxon separation are
not distinguishable from population structure within taxa, which is
largely governed by a subtle isolation-by-distance pattern (Haas et al.,
2009). The prime candidate for a major reproductive barrier is the
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difference in colouration and is supported as such both by assortative
mating and theoretical modelling (Brodin and Haas, 2009). The
genetic basis of these colour differences would thus make for a prime
candidate of (a) speciation gene(s) with large effect.

The genetic basis for melanin-mediated plumage colouration in
birds can be assumed to follow the general pattern seen in other
vertebrates (Hill and McGraw, 2006). Genetic evidence for the
regulation of melanin-based plumage colouration in wild populations
is, to date, mostly restricted to one gene, the melanocortin 1 receptor
(Mc1r) (for example, Mundy et al., 2004). However, rich resources in
vertebrate model species such as mice should allow identification of
other genes in species systems for which there is no evidence of an
involvement of Mc1r (such as in crows, Haas et al., 2009). Research in
laboratory mice has uncovered the identity of many genes in the
melanin pigmentation pathway (Bennett and Lamoreux, 2003;
Hoekstra, 2006), many of which have the potential to alter pigmenta-
tion phenotypes. These include upstream signalling receptors, such as
Ednrb, and less pleiotropic trans-membrane proteins like Kit (and
Mc1r) and their immediate regulators (for example, agouti-signalling
protein, Pomc, Kitlg). Downstream elements like Tyr, Tyrp1, Dct and
Pmel17 are directly involved in eumelanin synthesis, while an
important intermediate transcription factor is Mitf. Finally, genes
acting, for instance, during melanoblast maturation and melanocyte
development (for example, Adamts20, Muted, Mitf) or that are
involved in melanosome transport and melanin deposition into
keratinocytes (for example, Rab27a, Mlph) can also generate pheno-
typic effects (Nascimento et al., 2003).

To be able to study the genetic basis of the colour differences
among carrion crows and hooded crows, we sequenced multiple
regions of 37 prime pigmentation candidate genes in both taxa. We
evaluate levels of genetic variation within and between species,
perform outlier detection screens and quantify linkage disequilibrium
(LD), which is instrumental in evaluating the utility of a candidate
gene approach and devising future strategies for unravelling the
genetic architecture of this hybrid zone. Our primer set was also
tested for amplification in eight other species across the avian
phylogeny with good success and will allow targeting of melanin
pigmentation genes in most other avian species.

MATERIALS AND METHODS
Gene selection and sequence acquisition
We screened the Mouse Genome Informatics database (http://www.informatics.

jax.org/) and extracted 142 candidate genes involved in pigmentation

(pigmentation phenotype (MP:0001186)). We then identified 1:1 orthologous

genes with the chicken and zebra finch genomes for a total of 95 genes from

BIOMART (Ensembl 64; Supplementary Table S1). To reduce this set of genes

to one of a feasible size for sequencing, we prioritized the most promising

candidate genes by (1) the presumed phenotype to which the gene contributes

in mouse, (2) the degree of pleiotropic effects of mutations in these genes in

mouse (low degree preferred), and (3) whether genes are implicated in

pigmentation changes in other vertebrate species. Details for these three

selection criteria for each of the 95 genes, with extensive references for known

mutations causing pigmentation changes outside of mice, can be found in

Supplementary Table S1. Because carrion and hooded crows are coloured

all-black and grey-pied, respectively, genes with mutations that caused tissue-

specific pigmentation changes and complete melanisation were prioritized over,

for example, genes with mutations that completely inhibited pigmentation or

that cause very localized pigmentation aberrations, for example, in eyes or toe

pads. This selection procedure resulted in a prime candidate set of 37 genes

(Supplementary Table S2).

For each of these genes, we designed consensus anchored primers at

multiple locations spread across the gene (Supplementary Tables S2 and S3)

based on alignments of chicken and zebra finch sequences, using the Primer3

software (Rozen and Skaletsky, 1998). When the orthologue for only one bird

species was known, we designed primers based on that species alone. Because

of the much greater evolutionary conservation of exons, all primers were based

on exonic sequences and targeted mainly the enclosed introns. We attempted

to develop multiple amplicons per gene, well spaced across the gene. We also

designed primers for nearby (on average 14 kb) upstream and/or downstream

genes to capture nucleotide variation in potential cis-regulatory regions (17

amplicons near 14 candidate genes; see Supplementary Table S2). Part of the

analyses were done on a gene-by-gene basis, and in such cases, nearby up- or

downstream were included with the focal gene and are together referred to as a

candidate gene unit.

PCR amplification and cross-specific amplification across the bird
phylogeny
Primer pairs were initially tested on a DNA mixture of several individuals

using 10ml reactions containing 1ml diluted DNA (at a concentration of at

least 20 ngml�1), 1ml PCR buffer, 2.5 mM MgCl2, 0.2mM of both the forward

and reverse primer, 0.05 mM dNTP and 0.05 Uml�1 Amplitaq Gold DNA

polymerase. PCR was conducted at the following basic touch-down heating

scheme: (1) 10 min at 95 1C; (2) 20 cycles of (a) 30 s at 95 1C, (b) 45 s at 65 1C

at cycle 1 min—0.5 1C at every step (that is, down to 55.5 1C), and (c) 60 s at

72 1C; (3) 20 cycles of (a) 30 s at 95 1C, (b) 45 s at 55 1C, and (c) 60 s at 72 1C;

and (4) 5 min at 72 1C. Annealing temperatures were in several cases varied

from the basic scheme to optimize amplification of the targeted amplicon. Loci

that amplified properly were first sequenced on 4–8 individuals to check

sequence quality. When sequences from test runs were of sub-optimal quality,

we designed new species-specific primers from these crow sequences.

In total, we designed 176 primer pairs located within or near 37 different

candidate colouration genes. Of the 176 primer pairs, 123 (69.9%) could be

PCR amplified such that only a single clear band was consistently visible on

agarose gels. Of those, 107 could be successfully sequenced with an average

sequence length of 563 bp (for details, see below). Because crow and rook

amplicon sequences could also be unequivocally mapped back to zebra finch

using BLAST, we are confident that the amplicons represent the genes of

interest. All amplicons expected to be Z-linked did not have heterozygotic sites

in females, suggesting that they are also Z-linked in crows, which is consistent

with a high degree of synteny found in other studies (Wolf and Bryk, 2011).

Final sequencing for each of the 107 amplicons was performed on a panel of

23 hooded crows, 23 carrion crows, and 2 rooks (Corvus frugilegus) that were

used as the outgroup. All carrion crows were sampled in western Germany: 10

near Kleve (decimal degrees: 51.75N, 6.24E), 8 near Dortmund (51.57N,

7.38E), 2 near Bonn (50.66N, 6.79E), and 2 near Düsseldorf (51.26N, 6.68E).

Twenty-one of the hooded crows were sampled in Poland, all near Warsaw

(52.23N, 21.01E), one was sampled in Ireland, near Belfast (54.31N, 5.62W),

and one in Sweden, near Uppsala (59.93N, 17.76E). On average, 44 (of the 46)

crows were successfully sequenced for each amplicon.

Figure 1 Genetic differentiation between carrion crows (all-black) and

hooded crows (grey-coated). Boxplot of FST-values across 107 amplicons

(dots) derived from 37 candidate genes, with vertical lines connecting

amplicons from a single gene. Twenty-five random sequences from non-

colour-related genes are given as a reference. Boxes include the second and

third quantile; whiskers extend to the most extreme data points that lie

within 1.5 times the interquartile range from the box. On the left hand side:

a hooded crow (bottom) and a carrion crow (after Mullarney et al. 1999).
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All sequencing of PCR products was performed with traditional dye-

terminator sequencing on an ABI 3730 XL instrument (Applied Biosystems,

Life Technologies Ltd, Paisley, UK). Primer sequences and annealing tempera-

tures are given in Supplementary Table S3. All sequences have been deposited

in GenBank (accession numbers KF235895–KF240559).

An avian pigmentation candidate gene set
We tested PCR amplification of our primer pairs in a panel of species spread

across the avian phylogeny. In cases where final sequencing primers for the

crows were not the initial primers designed from zebra finch and chicken

sequences, we tested the latter primers (listed in Supplementary Table S4). We

used willow grouse (Lagopus lagopus, Galliformes), grey heron (Ardea cinerea,

Pelecaniformes), peregrine falcon (Falco peregrinus, Falconiformes), herring

gull (Larus argentatus, Charadriiformes), wood pigeon (Columba palumbus,

Columbiformes) and three species of passerines (Passeriformes) from different

families: pied flycatcher (Ficedula hypoleuca), blue tit (Cyanistes caeruleus), and

reed bunting (Emberiza schoeniclus). Successful amplification was reported

when one clear single band was visible in PCR products, with no or little non-

specific amplification.

Cross-specific amplification success was high and is reported in

Supplementary Table S4. On average, 76.8% of primer pairs tested amplified

successfully in the eight species. Reflecting phylogenetic relationships, ampli-

fication success was better for the three passerine species (mean 87.4%) than

for more divergent non-passerines (mean 70.4%). We therefore predict that

this set can be used as a valuable resource for investigating the genetic basis of

colour differences across most bird species.

Basic sequence analysis
Sequences were aligned using Sequencher 4.6 (Gene Codes, Ann Arbor, MI,

USA) and CodonCode Aligner 3.0.1 (CodonCode Corp., Centerville, MA, USA)

and exported as multifasta files. The diploid sequences were phased using the

PHASE algorithm (Stephens et al., 2001) as implemented in DnaSP v5

(Librado and Rozas, 2009). Sequence diversity (p and Watterson’s y) and

population differentiation estimates (FST, (Hudson et al., 1992) and exact tests

of population differentiation) were computed for each amplicon in DnaSP and

Arlequin 5 (Excoffier and Lischer, 2010). Recombination was tested for using

the four-gamete test as implemented in DnaSP.

Outlier analysis
We initially used four FST outlier detection methods to formally evaluate the

evidence for outlier loci. Genetic variation that contributes to the colour

differences between hooded and carrion crows, or variation linked to such

causal variation, would be expected to show elevated levels of differentiation

relative to the rest of the genome and should therefore be picked up by FST

outlier methods.

Firstly, we used the Bayesian method BayesFst (Beaumont and Balding,

2004), which separately estimates locus effects, population effects and the

interaction between the two. Secondly, we used BayeScan (http://www-leca.ujf-

grenoble.fr/logiciels.htm, Foll and Gaggiotti, 2008), a Bayesian method that

directly estimates the posterior probability of each locus belonging to either a

model including or a model excluding the effects of selection. Thirdly, we

employed Fdist (Beaumont and Nichols, 1996) as implemented in the software

Lositan (http://popgen.eu/soft/lositan, Antão et al., 2008). However, Lositan

gave inconsistent results among runs and often supposedly detected tens of

single-nucleotide polymorphisms (SNPs) both under balancing and positive

selection, including in the latter category SNPs with an FST as low as 0.044. We

also attempted to use the method of Excoffier et al. (2009) implemented in

Arlequin 5 (Excoffier and Lischer, 2010), which is designed to reduce false

positives by taking hierarchical population structure into account. However,

this method was not able to analyse the data set, potentially because of the

limited genetic differentiation present (L. Excoffier personal communication).

Results are only reported for the first two approaches.

Neutrality tests
Neutrality tests were performed both on samples of hooded and carrion crows

separately (to detect loci under selection in only one subspecies) as well as on

samples of both taxa pooled together (to detect loci under similar selection in

both subspecies). First, we used several tests that interrogate the allele

frequency spectrum for each amplicon separately. We calculated Tajima’s D

and Fu’s FS using Arlequin 5 (Excoffier and Lischer, 2010); statistical

significance was assessed using 10 000 simulations. Besides identifying loci

under selection, these tests are sensitive to past demographic changes, because

such fluctuations perturb the allele frequency spectrum. DHEW is a recently

developed compound test for neutrality. It combines Tajima’s D, Fay and

Wu’s H and the Ewens–Watterson test, and is more robust against demography

than any of these tests individually (Zeng et al., 2007). We computed the

significance of the DHEW test using DH.jar, kindly provided by K. Zeng.

Second, we used two versions of the Hudson–Kreitman–Aguade (HKA) test

(Hudson et al., 1987). This test compares levels of within-species polymorph-

ism to between-species divergence to test for deviations from neutral sequence

evolution. A rook (C. frugilegus) was used as the outgroup. All amplicons were

analyzed simultaneously using the HKA software (http://genfaculty.rutger-

s.edu/hey/software#HKA), with a modification to the source code for handling

more than 100 loci in one analysis. The HKA software only provides a

significance value for the entire sample of loci and not for individual loci. We

therefore tested amplicons with a deviation of at least 2.0 from neutrality in a

HKA test using mlHKA (Wright and Charlesworth, 2004), which allows for

explicit testing of candidate non-neutral loci against a sample of neutral loci.

As a ‘neutral’ reference unrelated to pigmentation, we used sequence data

from 25 random amplicons distributed across the genome as described in Wolf

et al. (2010).

LD
LD was calculated as D’ and r2 between pairs of variable sites within candidate

gene units using DnaSP. Only sites with a minor allele frequency of 40.1 were

used, as LD is best estimated using high-frequency polymorphisms (Reich

et al., 2001). The analyses were performed for hooded and carrion crows

jointly as well as separately. To avoid effects of population structure,

individuals from outlying populations were excluded: two Irish and one

Swedish hooded crow, and four carrion crows from Kleve and Bonn. Because

we were interested in the decay of LD with physical distance also beyond our

amplicon size (mostlyo1 kb), we estimated LD between all sites within the

same candidate gene unit (that is, all amplicons from one candidate gene as

well as from potentially targeted nearby up- or downstream genes). For this,

we first concatenated and then phased the sequences per candidate gene unit.

We then estimated the distances between sites from different amplicons using

the physical distances between the orthologous sites in the zebra finch genome

according to Ensembl (based on the locations of the primer sequences used).

Referring to physical distance in zebra finch is a fair assumption as divergent

bird genomes have a high degree of synteny (Ellegren, 2010), and intron length

is highly correlated between crow and zebra finch (r2¼ 0.93, Po0.001, Wolf

and Bryk, 2011). We calculated population recombination rates (r¼ 4Ner for

autosomal loci and 3Ner for Z-linked loci, with r being the per site

recombination rate) for each gene separately using the software LDhat 2.0

(McVean et al., 2004) and MAXDIP (Witonsky and Di Rienzo, 2012).

Predictions of r2 based on the estimate of r by LDhat were fitted using

Equation 3 in Weir and Hill (1986).

RESULTS

General patterns of nucleotide diversity
We obtained high-quality sequences in population samples of carrion
and hooded crows (and two rooks as the outgroup) for 107 amplicons
located within or near 37 candidate melanin pigmentation genes.
Ninety of these amplicons were located in the candidate colouration
genes themselves and the remainder in adjacent up- or downstream
genes.

In total, our sequencing effort amounted to 60 213 bp for each
individual, and we detected 535 polymorphic sites in the entire
data set consisting of 23 birds from each taxon. Population genetic
summary statistics for all amplicons can be found in Supplementary
Table S5. Average nucleotide diversity p across loci (weighted by
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sequence length) was 0.00132, being slightly higher in carrion crows
(0.00134) than in hooded crows (0.00120) (paired t-test: P¼ 0.002).
Watterson’s y per site was also higher in carrion crows (0.00174) than
in hooded crows (0.00158) but not significantly so (paired t-test:
P¼ 0.239). Diversity in the three sex chromosome-linked genes (10
amplicons; average p¼ 0.00112; average y¼ 0.00140) was not sig-
nificantly different from the autosomes (t-test for p: P¼ 0.540; t-test
for y: P¼ 0.422). Finally, 41 insertion-deletion (indel) polymorph-
isms were detected (giving an indel to SNP ratio of B0.077) and were
excluded from further analysis. Fixed differences between rooks and
crows were numerous, with an average net sequence divergence per
site (Da, Nei, 1987) of 0.006.

Population differentiation and outlier tests
The average value of FST across the candidate pigmentation loci was
generally low at 0.0209 (s.d.¼ 0.0360, range: �0.030 to 0.119) and
was not distinguishable from the average value across 25 random
amplicons from Wolf et al. (2010) (0.0230, t-test: P¼ 0.6244;
Figure 1). The exact and chi-square tests of population differentiation
were significant for 28 and 24 (out of 107) amplicons, respectively.
Only four amplicons, all in different candidate genes, had an FST of
X0.1: Cno_2i (FST¼ 0.119), Slc45a2_2 (FST¼ 0.118), Slc24a5_1i
(FST¼ 0.111), and Kit_4i (FST¼ 0.100). There were no fixed differ-
ences between carrion crows and hooded crows, and 290 of the 535
SNPs were shared between the two taxa. In all, 142 SNPs were unique
to carrion crows, and 103 were unique to hooded crows. Average FST

of sex chromosome-linked loci was 0.0281 (SD 0.0357), which is not
significantly higher than that of the autosomes (Mann–Whitney
U-test: P¼ 0.288). Results from BayesFst and BayeScan both indicated
a lack of significant outliers (Figure 2). In summary, we found no
strong evidence for any of the candidate genes explaining differences
in colouration between carrion crow and hooded crow.

Neutrality tests
Tajima’s D, Fu’s FS and DHEW tests were carried out for all 107
amplicons and all three population configurations: (1) all crow
samples together (ALL), (2) all carrion crows (CC), and (3)
all hooded crows (HC). Test results are reported in Supplementary
Table S5.

On average, Tajima’s D was negative for all population configura-
tions: �0.507 for ALL, �0.458 for CC, and �0.313 for HC. The

difference in Tajima’s D values between CC and HC was significant
(paired t-test: P¼ 0.021). Tests for seven amplicons were significantly
different from zero using Po0.05 (4 All, 1 CC and 2 HC). All of these
had a Tajima’s D value smaller than zero, and none was significant
after Bonferroni’s correction.

For Fu’s FS, average values were also well below zero: �2.055 for
ALL, �1.451 for CC, and �0.981 for HC, and again, the difference in
Fu’s FS values between CC and HC was significant (paired t-test,
0.003). Fifty-two tests were significantly different from zero using
Po0.05 (24 ALL, 16 CC and 12 HC), and 9 remained so after
Bonferroni’s correction (5 ALL, 3 CC, 1 HC). All significant tests had
a negative value of Fu’s FS. Two of the loci with significant Fu’s FS

after correction also had significant (but not after correction) Tajima’s
D: Asip_2b and Tpcn2_4i.

For DHEW, only five tests were significant at Po0.05: 1 for ALL, 3
for CC, and 1 for HC, and one test (for CC; Rab27a_1) remained
significant after Bonferroni’s correction. Rab27a_1, however, had a
negative FST, and as a whole, significant DHEW tests did not overlap
(same population and amplicon) with significant Tajima’s D and Fu’s
FS tests. The HKA test, conducted with all amplicons simultaneously
and separately for HC and CC, gave an overall non-significant result
in both the cases. Nonetheless, as the significance of the test depends
on the summed deviation from neutral expectations across many
amplicons, non-neutrality of only a few amplicons might not be
picked up. Using the mlHKA software to examine amplicons with a
deviation of at least 2.0 in the original HKA test, Hps4_u2 (in a gene
downstream of Hps4) was significantly non-neutral for both HC and
CC and Pomc1_u1 (in a gene upstream of Pomc1) only for CC.
However, for both amplicons, the amount of within-species poly-
morphism relative to between-species divergence exceeds the neutral
expectation, which would suggest the potential influence of balancing
rather than directional selection.

Recombination and LD
Using the four-gamete test, a total of 46 recombination events were
detected within 36 amplicons (that is, in 33.6% of all amplicons). A
total of 404 pairwise combinations of SNPs located within the same
candidate gene unit (several amplicons but same candidate gene) had
a minor allele frequency larger than 0.1 and were analyzed for LD. Of
these, 144 (35.6%) were in significant LD using Fisher’s test, and the
average r2 was 0.118. Employing a common definition of useful LD as

Figure 2 Results of FST outlier differentiation tests with bayesFst (a) and bayeScan (b). In both panels, the transformed FST-value for each SNP is shown,

with transformed p-values on the x axis, and a vertical bar indicating significance equivalent to P¼0.05. The logit function in panel (a) is logit(x)¼ log(x/

(1�x)), see Beaumont and Balding (2004).
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an r2 of at least 0.3 (Ardlie et al., 2002), useful LD was detected for 47
of all 404 (11.6%) pairwise combinations.

In Figure 3, r2 and D0 values are plotted against the expected
physical distance, showing low levels of LD even at short physical
distances. Nonetheless, LD also decays rapidly with physical distance.
Compared with overall levels mentioned above, of 190 pairwise
combinations within 1 kb of each other (the large majority of which
are within the same amplicon), 96 (50.5%) were in significant LD, 37
(19.5%) in useful LD and the average r2 was 0.186. Even within this
1-kb range, decay of LD with distance is evident as shown in
Supplementary Figure S1.

Analyses for hooded and carrion crows separately revealed slightly
higher levels of LD in the carrion crow (average r2 0.182, 18.5% of
comparisons in useful LD) than in hooded crows (average r2 0.139,
11.6% of comparisons in useful LD). LD between Z-linked sites was
similar to the overall pattern: the average r2 over 24 pairwise
combinations was 0.158, with 10 pairs (41.7%) in significant LD
and 3 pairs (12.5%) in useful LD.

The average population recombination rate (r) was estimated to be
0.017/site/generation (SE across genes: 0.0058) by LDhat, whereas
MAXDIP arrived at an estimate of 0.038/site/generation (SE across
genes: 0.0155; see Supplementary Table S6).

DISCUSSION

Candidate gene approaches have been successfully applied to address
evolutionary questions in a variety of systems. Pigmentation genes are
of prime interest as the colouration they influence is easy to observe
and study, can be subject to strong natural (Linnen et al., 2009; Van’t
Hof et al., 2011) or sexual selection (Uy et al., 2009), and shows a
clear relationship to speciation (Hubbard et al., 2010). Melanin
pigmentation genes, in particular, are well suited for candidate gene
approaches, as vertebrate melanogenesis is a well-characterized path-
way in which many mutations with large effects have been identified.

Given the rich knowledge on this pathway, it is somewhat
surprising that these approaches have generally been restricted to a
very limited number of candidate genes. Here we chose a system
where colouration genes are likely important in speciation and
undertook an extensive candidate gene approach. We compiled a list
of avian melanin pigmentation genes and sequenced, on average,
three amplicons per gene in 37 of the most promising candidates of
two closely related crow taxa with strikingly different colouration. We
quantified levels of diversity, differentiation and LD and used this

information in the context of crow speciation genetics and, more
generally, as a critical test of candidate gene approaches in wild
populations.

Differentiation and signatures of selection
We performed a suite of tests to identify genetic variation that may be
associated with the plumage differences between all-black carrion
crows and grey-coated hooded crows. Because of the fixed differences
in plumage colouration and the very low background levels of genetic
differentiation (average FST of 0.012), loci linked to causal variants
should be easily detectable as differentiation outliers. However, no
clear FST outliers were found by either of the Bayesian approaches we
used. Several other tests, such as Tajima’s D, DHEW and the HKA test,
can detect non-neutral patterns of variation that would be expected if
the plumage differences arose by selection. Although a few tests were
significant, the weak signals and the lack of congruence between
different tests points towards weak effects or false positives. Thus, we
could not find support for any of the analyzed pigmentation genes to
be involved with the phenotypic divergence between the two crow
taxa.

Population genetic inferences
Deviations from neutrality are more likely to have been caused by
demographic processes, as is suggested by the observation that
Tajima’s D and Fu’s FS values were consistently negative across loci
in both carrion crows and hooded crows. The signal was stronger for
Fu’s FS, which is known to be more sensitive to demographic change.
These findings are thus consistent with a recent increase in population
size, as has been inferred for many species in temperate regions
(Hewitt, 2004), and likely reflects range expansion and population
growth after the last glaciation. Interestingly, carrion crows showed a
stronger signature of expansion than hooded crows, which hints at
different recent population histories despite the low level of
differentiation.

LD and the power of candidate gene approaches
The study of LD in wild organisms is only in its infancy. Results from
mammals and birds (Edwards and Dillon, 2004; Backström et al.,
2006; Balakrishnan and Edwards, 2009; Li and Merila, 2010) show
considerable variation in levels of background LD among taxa. Our
estimates of the population recombination rate (average point
estimates of 0.017 and 0.037/site/generation) are only slightly lower

Figure 3 Patterns of LD. (a) r2-Values and (b) absolute D 0-values between pairs of SNPs plotted against the estimated physical distance between them.
The line in panel (a) shows predictions of LD based on the value of r as estimated by LDhat for our data.
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than those from other bird species (red-winged blackbird: 0.0588
(Edwards and Dillon, 2004), zebra finch: 0.051–0.08 (Balakrishnan
and Edwards, 2009)), whereas being much higher than estimates for
humans (0.0004, Evans and Cardon, 2005). Similarly, levels of LD
measured in D0 or r2 are close to those in for example zebra finch
(Balakrishnan and Edwards, 2009), but considerably lower than in
humans. This is somewhat surprising, given that levels of nucleotide
variation in crows are rather similar to those in humans (pB0.001)
and much lower than in zebra finch. This may be an indication for an
increased recombination rate in crows and adds to the debate
concerning broad-scale recombination rate conservation across taxa
(Auton et al., 2012).

The data on LD not only constitutes a valuable addition to the
study of recombination in wild populations but also lays the necessary
groundwork to evaluate the power of candidate gene approaches
under different evolutionary scenarios. The applied tests of selection
described above only detect deviation from neutrality arising by
selection and/or demographic processes.

If the causative variant(s) of plumage colour segregated in the
ancestral population, and drifted to fixation in one taxon, the locus
would effectively look neutral. Only very closely linked markers would
have the power to detect a signal of enhanced differentiation for such
ancestrally segregating variants and, similarly, for old and/or weak
selection events that leave but small and temporal traces of extended
LD (McVean, 2007). As we mostly sequenced intronic sequence, and
r2 dropped below 0.3 (that is, useful LD, Ardlie et al., 2002) within a
few hundred base pairs, the power to directly observe a causal
mutation is therefore small in such cases.

When sequencing genes, the problem of linkage becomes particu-
larly acute for phenotypic changes that come about by mutations in
regulatory sequences. Recent studies have shown the prevalence of
especially cis-regulatory modifications, although in many cases the
precise identity of the changes have remained elusive (but see for
example, Chan et al., 2010). Cis-regulatory elements are often located
relatively nearby their focal genes, and we therefore also sequenced
parts of nearby down- and upstream genes of several, especially
promising, candidates. Nonetheless, the distances between potential
causal promotor or enhancer sequences and sequenced parts of genes
are likely to be larger than within the genes themselves and would
require even higher levels of LD.

These considerations do not preclude the utility of candidate gene
approaches in general, but may raise awareness under which scenarios
they are most promising. In sufficiently diverged populations,
admixture provides the necessary LD for trait mapping in laboratory
or natural (hybrid zone) crosses (Winkler et al., 2010). In addition,
LD extends considerably further in many domesticated, and poten-
tially in selfing, organisms (Nordborg, 2000; Andersson and Georges,
2004), as has been exploited for dog pigmentation genetics (Candille
et al., 2007). Alternatively, with the increasing availability of reference
genomes, sequence capture methods can be combined with next-
generation sequencing to conveniently cover the entirety instead of
only parts of candidate genes, alleviating reliance on LD. Eventually,
in cases of very low LD, whole-genome re-sequencing will be the
method of choice. Here low levels of LD come as an advantage,
allowing genetic fine-mapping of a trait. Under this scenario,
candidate genes can be very helpful in further narrowing of functional
elements in candidate regions.
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