Skip to main content
. 2013 Aug 28;111(6):520–529. doi: 10.1038/hdy.2013.76

Table 4. The segregation of dam and sire microsatellite alleles could be traced for six mapping families.

Cross type Broel(♂) × WN(♀) WN(♂) × Broel(♀) LB(♂) × Naaf(♀)
Microsatellite LG01—CottE1 LG02—Cott108 LG02—Cott108
Parents ZG42 Dam (♀) Sire (♂) ZG40 Dam (♀) Sire (♂) ZG26 Dam (♀) Sire (♂)
    A B A C   B A C A   A A A B
Offspring 25 26 3 48 7 10 13 4 7 0 0 7
  20 24 43 1 4 6 1 9 10 0 10 0
                               
            ZG46 Dam (♀) Sire (♂) ZG32 Dam (♀) Sire (♂)
              B A C D   A A A B
            10 0 10 0 10 0 0 10
            0 3 0 3 7 0 6 1
                               
                      ZG35 Dam (♀) Sire (♂)
                        A A A B
                      21 0 0 21
                      17 0 16 1

Each subtable summarizes results for cross type (origin and gender of the parental populations), the concerned linkage groups with the marker name and genotypic data for one of six mapping families. The segregation of alleles (labeled A, B, C, D) from the dam and sire of the F1 into the F2 generation reveals a strong correlation of the offspring sex with the presence of a single paternal allele (numbers indicate individuals carrying the respective alleles. Bold numbers highlight the sex specific allele. Note that the inheritance of identical alleles cannot be resolved). This pattern is observed in a single family (ZG42) for the paternal allele on linkage group 1 from C. rhenanus and five times for the paternal allele on linkage group 2 which originates from C. perifretum.