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Prediction of heterosis using genome-wide SNP-marker
data: application to egg production traits in white Leghorn
crosses

EN Amuzu-Aweh1,2, P Bijma1, BP Kinghorn3, A Vereijken4, J Visscher4, JAM van Arendonk1 and
H Bovenhuis1

Prediction of heterosis has a long history with mixed success, partly due to low numbers of genetic markers and/or small data
sets. We investigated the prediction of heterosis for egg number, egg weight and survival days in domestic white Leghorns,
using B400 000 individuals from 47 crosses and allele frequencies on B53 000 genome-wide single nucleotide
polymorphisms (SNPs). When heterosis is due to dominance, and dominance effects are independent of allele frequencies,
heterosis is proportional to the squared difference in allele frequency (SDAF) between parental pure lines (not necessarily
homozygous). Under these assumptions, a linear model including regression on SDAF partitions crossbred phenotypes into
pure-line values and heterosis, even without pure-line phenotypes. We therefore used models where phenotypes of crossbreds
were regressed on the SDAF between parental lines. Accuracy of prediction was determined using leave-one-out cross-
validation. SDAF predicted heterosis for egg number and weight with an accuracy of B0.5, but did not predict heterosis for
survival days. Heterosis predictions allowed preselection of pure lines before field-testing, saving B50% of field-testing cost
with only 4% loss in heterosis. Accuracies from cross-validation were lower than from the model-fit, suggesting that accuracies
previously reported in literature are overestimated. Cross-validation also indicated that dominance cannot fully explain heterosis.
Nevertheless, the dominance model had considerable accuracy, clearly greater than that of a general/specific combining ability
model. This work also showed that heterosis can be modelled even when pure-line phenotypes are unavailable. We concluded
that SDAF is a useful predictor of heterosis in commercial layer breeding.
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INTRODUCTION

Heterosis or hybrid vigour is the observed increase in growth,
productivity, fertility and vigour of a hybrid organism over that of
its parents (Shull, 1914; Dobzhansky, 1950). This genetic phenom-
enon is an essential element of commercial poultry, pig, sheep and
plant breeding schemes. In poultry breeding, heterosis was exploited
even as early as 1893 (Warren, 1942). Over the years, poultry breeders
have established pure lines (not necessarily homozygous) that when
crossed produce F1 hybrids with superior performance in traits of
economic importance like growth, egg production and survival. In
plant breeding, hybrid cultivars are produced by crossing inbreds
from opposite and complementary heterotic groups (Bernardo, 1994).
The wide application of such breeding designs demonstrates that the
benefits of heterosis are widely exploited by breeders.

In practice, selecting lines to be used as parents in crossbreeding
programmes is a challenge because testing all possible line combi-
nations is expensive and time consuming. Also, predicting the F1
performance from per se phenotypic records of pure lines has failed
(Duvick, 1999; Hallauer et al., 2010), and prediction methods based

on microsatellite markers have not been very conclusive (Gavora
et al., 1996; Minvielle et al., 2000; Atzmon et al., 2002; Jagosz, 2011;
Di et al., 2012). Therefore, there is the need to find reliable methods
for predicting heterosis because it has the potential to substantially
increase the efficiency of crossbreeding schemes, by identifying
optimal parental combinations and reducing costs of field-testing.

Some hypotheses have been put forward as possible explanations
for the genetic mechanisms underlying heterosis: the dominance
hypothesis attributes heterosis to the masking of deleterious recessive
alleles from one parental line by dominant alleles in the other parental
line; the overdominance hypothesis attributes heterosis to advanta-
geous combinations of alleles at heterozygous loci; and the epistasis
hypothesis assumes that interactions among loci lead to heterosis
(Lynch and Walsh, 1998; Crow, 1999; Goodnight, 1999; Lamkey and
Edwards, 1999).

In a single locus model, heterosis is solely due to dominance and is
proportional to the squared difference in allele frequency (SDAF)
between the parental lines (Falconer and Mackay, 1996). This finding
has triggered research into predicting F1 heterosis and overall
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performance based on microsatellite marker information from
parental pure lines. In poultry, evidence to support the theory that
heterosis is higher in offspring from more genetically distant parents
has been found (Gavora et al., 1996; Haberfeld et al., 1996; Atzmon
et al., 2002). Also, many prediction studies have been carried out on
commercial crops such as maize, rapeseed, sunflower, chick pea and
carrot. Some of these studies reported correlations between genetic
distances (GD) and heterosis (Reif et al., 2003; Balestre et al., 2009),
but others concluded that GD is not a reliable predictor of heterosis
(Dias et al., 2004; Krishnan et al., 2013).

Because of inconsistencies in the results from previous studies, one
cannot conclude whether the prediction of heterosis based on molecular
marker information has been a success or not, as pointed out in reviews
by Dias et al. (2004) and Krishnan et al. (2013). The former authors
reviewed several studies in plants and suggested that the number of
molecular markers (averages of 160 random amplified polymorphic
DNAs, 281 restriction fragment length polymorphisms and 25 simple
sequence repeats) should be increased for accurate predictions. Gavora
et al. (1996) and Minvielle et al. (2000) reported studies on poultry
using B85 DNA fingerprint bands. Nowadays, genotyping technologies
have advanced, producing large amounts of genome-wide marker
information and creating opportunities to reinvestigate the genetic
basis of heterosis, and methods for its prediction.

A further difficulty in the study of heterosis, particularly in
livestock populations, is that phenotypic values on pure-bred
individuals are often recorded only in specific environments that
differ systematically from the environments in which crossbred
phenotypes are recorded. In those cases, heterosis cannot be observed
because it is fully confounded with the environment. Although an
analysis of crossbred data using a specific vs general combining ability
model is feasible in such cases, this provides estimates of combining
ability rather than heterosis. In contrast to heterosis, general and
specific combining ability (GCA/SCA) depend on the set of crosses
included if the crossing scheme is incomplete, and this is generally the
case in animal populations. Dependency of results on the set of
crosses included hampers the comparison of results with the
literature, and the prediction of future crosses. Hence, animal breeders
are interested primarily in heterosis and hybrid performance, rather
than combining ability, but are faced with the problem that pure-bred
phenotypes are unavailable.

The aim of this study was to determine whether genome-wide
difference in allele frequencies between pure lines can be used to
predict heterosis for egg number, egg weight and survival days in white
Leghorn crosses. For this purpose, we used allele frequencies on 60 K
single nucleotide polymorphism (SNP) loci from 11 pure lines of white
Leghorns, and phenotypic data on 47 crosses between those lines,
representing B400 000 individuals. No phenotypic data were available
on the pure lines. In animals, this is the largest data set ever used for
the prediction of heterosis and the first to utilise genome-wide SNP-
marker data. We performed a cross-validation to test how accurately
we could predict heterosis in crosses for which phenotypic records were
unavailable. Moreover, we investigated the estimation of heterosis in
the absence of phenotypic data on pure lines, and compared the
predictive ability of heterosis vs combining-ability modelling.

MATERIALS AND METHODS
Population structure
Phenotypic records of crossbred hens originating from 11 pure-bred white

Leghorn layer lines (5 sire- and 6 dam-lines) were obtained from the Institut

de Sélection Animale B.V. (ISA). Phenotypic records were available on

crossbreds only; phenotypic records on pure lines reared under similar

conditions were not available. Coding of the pure lines was as follows: S1,

S2, S3, S4, S5 represented sire-lines and D1, D2, D3, D4, D5, D6 represented

dam-lines. A cross produced by an S1 sire and a D1 dam is referred to as

S1�D1 and its reciprocal as D1� S1. Within each line there were multiple

sires and dams, resulting in full- and half-sibs within a cross. The mating

scheme shown in Table 1 produced a total of 47 crosses, some being reciprocal

crosses. Phenotypic records were from routine performance tests carried out

on test farms in the Netherlands, Canada and France from 2004 through 2010.

On the test farms, each henhouse had several rows of cages, and each row had

three tiers: bottom, middle and top. Crossbreds were kept in group cages of a

mix of full- and paternal half-sibs which were assigned randomly to a row and

tier within the henhouse, but ensuring that the different crosses and families

were randomized across all rows and tiers. On average, there were B5 hens per

cage. All hens had been beak-trimmed.

Phenotypic data
Traits studied were egg number, egg weight and survival days.

Egg number. Hens were kept in cages and all records were taken at the cage

level (rather than at the level of the individual hens). Hen-day records of eggs

produced from 100 through 504 days of age were used. Hen-day egg number

was calculated as the total number of eggs laid in the cage divided by the total

number of days that a hen was present (days are summed for all hens that were

placed in the cage), and then multiplied by the maximum number of days the

production period lasted. As an example, consider a production period lasting

410 days. If total number of eggs laid is 1650 in a cage that started with five

hens, and all hens survived until the end of the production period, then

summed hen days are 5� 410 days¼ 2050 days. Hen-day egg number is (1650/

2050)� 410¼ 330 eggs. In a case where the same egg numbers were reached,

but one hen died 50 days before the end of the period, the summed hen days

would be 2000 days. This would give a hen-day egg number of (1650/

2000)� 410¼ 338.25 eggs. This cage-based value represents one record and in

this paper we will simply refer to this trait as ‘egg number’. After descriptive

statistics of the data on egg number, we discovered that three consecutive

performance tests conducted by the same farmer had B9% of the records

above the biological limit of one egg per hen per day. We studied hen-day egg

number, so those unusually high records could be because of mistakes in

recording the duration of the production period or mortality records. We

therefore decided to eliminate all of that farmer’s tests from further analysis.

For other performance tests with only a few (o3%) of the records above the

biological limit, we only excluded those particular records but kept the other

records from that performance test in the analyses. No two tests in this

category were from the same farmer. Also, total egg number records that were

less than 150 eggs were considered to be errors (personal communication

Jeroen Visscher, ISA poultry breeders) and therefore excluded. Excluded

records represented 7.6% of the total record count. The final data set used

had 76 640 records.

Egg weight. Approximately five times throughout the production period (at

around 25, 35, 45, 60 and 75 weeks of age), for each cage, the average weight of

all eggs laid on a particular day was recorded. At the end of the production

period, these five averages were again averaged to give one value for egg weight

per cage for the entire production period. The data set used was the same as

that for egg number but there were some missing records for egg weight,

leaving 57 759 records.

Survival days. The trait survival days is the average number of days that the

hens within each cage survived. For example, if a cage started with five hens,

three of which survived for 410 days, one for 405 days and the other for 400

days, the record for that cage would be ((3� 410)þ 405þ 400)/5¼ 407 days.

Fractions were truncated. There were 76 640 records on survival days.

Allele frequency data
For each pure line, blood from 75 randomly chosen males was pooled, and

DNA was extracted for genotyping. The Illumina chicken 60 K SNP BeadChip

was used (Groenen et al., 2011). The same array was used for all genotyping.

Quality control criteria were call rate and visual inspection of the clustering of
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the three genotypes at each SNP. The total number of SNPs used in this study

was 53 582, after excluding the sex chromosomes. The sex chromosomes were

excluded because females are the heterogametic sex in chickens (ZW), thus the

sex chromosomes do not contribute to heterosis by dominance in females.

Estimated allele frequencies were corrected for unequal amplification by

‘k-correction’, using the relative allele signal of heterozygous individuals

(Hoogendoorn et al., 2000), and then normalised with respect to the two

homozygotes (Craig et al., 2005). Correction factors were obtained from 288

individually genotyped animals across all lines. On average, estimation of allele

frequencies from the DNA pooling technique has an accuracy of 0.993, with a

range of 0.986 to 1 (Hoogendoorn et al., 2000).

Statistical analyses
Allele frequencies. Our statistical analysis rests on two assumptions. The first

assumption is that heterosis is due to dominance. Under this assumption, the

heterosis due to a single locus, say l, is proportional to the SDAF between the

parental lines at that locus,

Heterosisij;l ¼ dl ðpi;l� pj;lÞ2;

where dl is the dominance deviation at locus l, pi,l is the allele frequency at

locus l in parental line i, and pj,l is the allele frequency at locus l in parental line

j (Falconer and Mackay, 1996). Under the assumption that heterosis is due to

dominance, total heterosis is simply the sum of heterosis at each locus,

Heterosisij ¼
X

l

dl ðpi;l� pj;lÞ2:

The second assumption is that the dominance deviation at a locus is

independent of the SDAF between parental lines at that locus, so that

E ½dlðpi;l� pj;lÞ2� ¼ E ½dl� E½ðpi;l� pj;lÞ2�. Under this assumption, expected

heterosis: E ½Heterosis ij� ¼ nloci EðdlÞ E ½ðpi;l� pj;lÞ2�, where nloci is the total

number of loci. Thus, under this assumption, heterosis is linear in the SDAF

between parental lines, averaged over all loci, with a coefficient of proportion-

ality of nloci E(d1), which will be higher with directional than ambidirectional

dominance. We therefore used the genome-wide average of SDAF as a

predictor of heterosis. For any two parental lines, say i and j, SDAFij was

calculated as

SDAFij ¼
PN

n¼1 ðpin
� pjn
Þ2

N
; ð1Þ

where pin
� pjn is the difference in allele frequency between pure lines i and j

at SNP n, and N is the total number of SNPs.

We also calculated Nei’s standard GD (Nei, 1972) from the allele frequencies

using the PHYLIP software (Department of Genetics, University of Washington,

Table 1 The mean and number of records (given in brackets) per cross for egg number, egg weight and survival days

Father line

S1 S2 S3 S4 S5 D1 D2 D4 D5 D6

Egg

number

Mother

line

S1 329 (42) 321 (75) 343 (4899) 340 (1854) 334 (4104) 315 (46)

S2 339 (865) 340 (896) 333 (380)

S4 329 (189) 331 (1381)

S5 329 (336) 329 (1479)

D1 337 (4823) 337 (1321) 329 (2983) 333 (723) 340 (641) 337 (3025) 331 (531)

D2 338 (5996) 337 (927) 330 (3178) 335 (350) 340 (487)

D3 340 (4519) 337 (457) 336 (3729) 336 (264) 344 (435)

D4 334 (5085) 334 (1189) 323 (2187) 326 (41) 341 (3348)

D5 330 (208) 306 (20) 325 (3678) 335 (2783) 331 (100)

D6 336 (212) 335 (99) 325 (117) 326 (3808) 333 (2770) 304 (20) 295 (40)

Egg weight S1 60.1 (28) 61.3 (58) 60.8 (3516) 62.8 (1363) 61.5 (3085) 61.0 (28)

(in grams) S2 61.4 (671) 63.0 (618) 62.8 (278)

S4 63.5 (188) 61.3 (1177)

S5 64.1 (336) 61.8 (1288)

D1 62.4 (3553) 63.0 (912) 63.0 (2298) 62.1 (492) 62.6 (411) 63.3 (2207) 62.5 (360)

D2 60.5 (4448) 61.2 (668) 60.1 (2275) 61.2 (273) 60.9 (317)

D3 60.2 (3371) 61.2 (324) 60.7 (2994) 60.4 (216) 60.8 (283)

D4 61.3 (3772) 62.5 (874) 61.5 (1683) 61.2 (34) 62.1 (2525)

D5 61.9 (142) 62.6 (14) 61.0 (2820) 62.9 (2219) 60.8 (81)

D6 60.7 (161) 61.4 (80) 60.7 (95) 60.0 (2937) 61.1 (2254) 60.6 (13) 63.8 (19)

Survival S1 526 (42) 536 (75) 564 (4899) 556 (1854) 535 (4104) 522 (46)

days S2 563 (865) 543 (896) 583 (380)

S4 551 (189) 555 (1381)

S5 558 (336) 555 (1479)

D1 543 (4823) 559 (1321) 549 (2983) 534.8 (723) 549 (641) 539 (3025) 546 (531)

D2 541 (5996) 553 (927) 549 (3178) 528 (350) 554 (487)

D3 544 (4519) 540 (457) 544 (3729) 506 (264) 549 (435)

D4 539 (5085) 569 (1189) 544 (2187) 556 (41) 560 (3348)

D5 550 (208) 533 (20) 548 (3678) 559 (2783) 552 (100)

D6 549 (212) 546 (99) 543 (117) 550 (3808) 560 (2770) 518 (20) 504 (40)

All records were taken on a cage-basis. The rows for S3 and column for D3 did not have any observations so were omitted from the table.
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Seattle, WA, USA) (Felsenstein, 1993). Nei’s standard GD is given by

Nei’s standard GD ¼ � ln

P
l

P
a

p1la
� p2la

P
l

P
a

p2
1la

� �1
2

�
P

l

P
a

p2
2la

� �1
2

2
6664

3
7775;

where p1la
is the allele frequency of the a-th allele at the l-th locus in line 1, and

p2la
is the allele frequency of the a-th allele at the l-th locus in line 2. To visualise

the genetic differences between the pure lines, we constructed a phylogenetic

tree using MEGA (Tamura et al., 2011).

Prediction of heterosis. To test the significance of SDAF for predicting

heterosis, we fitted a linear mixed model where we regressed the phenotypes

of crossbreds on the SDAF between both pure lines producing the cross:

yijklm ¼ mþ sirelinei þ damlinej þ b � SDAFij

þ testk þ hen densityl:k þHRTm þ eijklm; ðModel 1Þ

where yijklm was a phenotypic record, sire-linei and dam-linej were the fixed

effects of the ith sire-line and jth dam-line of each cross (i, j¼ 1–10), b was the

regression coefficient of y on SDAF, testk was the fixed effect of each

performance test (k¼ 1–50); test is a factor that represents the year in which

the test was carried out, and on which farm. Hen densityl was a fixed effect

accounting for the initial number of hens within a cage. It had 205 levels, and

was nested within the test because the physical size of cages differed across

some performance tests. The combined effect of the henhouse, row and tier of

the cage was accounted for by including the term ‘HRTm’ as a random effect

(m¼ 1–1088) and eijklm was the random residual error term. Data were

analysed using the MIXED procedure in SAS version 9.2. This model was used

for all three traits. Under the assumptions given above, Model 1 is a heterosis

model, where the estimates of sire-line and dam-line are estimates of the pure-

line performance, whereas the estimate of b� SDAFij is an estimate of

heterosis. (See Discussion and Supplementary Information).

Predicted heterosis was calculated by multiplying the estimated regression

coefficient of the phenotypes on SDAF (obtained from Model 1) by the SDAF

between the lines in each cross,

Predicted heterosistrait;ij ¼ b̂trait�SDAFij ð2Þ

For example, predicted heterosis for egg number in an S1�D1 cross

was b̂EN� SDAFS1D1.

Note that as SDAFij is the same as SDAFji, the predicted heterosis for

reciprocal crosses is the same, although their trait values may differ.

Egg number had a markedly skewed distribution; a characteristic that causes

model assumptions of normally distributed residuals to fail. Also, P-values

obtained from the statistical analyses may not be valid. To correct for this, a

Box-Cox transformation (Box and Cox, 1964) is commonly applied before the

analysis (Ibe and Hill, 1988, Besbes et al., 1993). We therefore applied this

transformation to the egg number records. The general form of the Box-Cox

transformation equations is:

z tð Þ ¼ yt � 1

tGt� 1
y

;

where y is the original variable, z(t) is the standardized variable, Gy is the

geometric mean of the data and t is the parameter by which data are

normalised. We used an empirically selected ‘optimum’ t¼ 4 based on the

minimal residual variance of the model used to describe the transformed

records. We also considered the minimum test statistic for the Kolmogorov–

Smirnov normality test.

We fitted our models on both the transformed and original scale, however,

to facilitate interpretation, the estimated effects are given only on the original

scale in the Results.

Accuracy of predicted heterosis. To evaluate the accuracy of predicted heterosis,

we used two approaches. First, we calculated Pearson’s correlation coefficient

between predicted and observed heterosis; second, we used cross-validation to

assess the accuracy of predicted heterosis for crosses not included in the

estimation of b.

Correlations between observed and predicted heterosis. We calculated Pearson’s

correlation between observed and predicted heterosis. As we did not have

phenotypic records of the pure lines, we did not have true observed heterosis.

We therefore used the following strategy to obtain values of ‘observed

heterosis’.

Observed heterosis, y#, was obtained by correcting all records for effects of

sire-line, dam-line, test, hen density and HRT (henhouse-row-tier) using

estimates from Model 1,

y #
ijklm ¼ yijklm� m̂ � sirêlinei � dam̂linej � têstk

� hen d̂ensityl:k �HR̂Tm ; and

Observed heterosistrait; ij ¼ �y #
ij : ð3Þ

There are two issues in relation to y#. First, the correction factors in the

expression for y#
ijklm were estimated from Model 1, which includes the SDAF

term. Under a dominance hypothesis, therefore, y# is an estimate of heterosis,

rather than of SCA (see Discussion and Supplementary Information for more

details). Second, to obtain independent estimates for correction, Model 1 was

fitted separately for each of the crosses, and each time the cross for which

observed heterosis was to be calculated was omitted from the data set. Thus,

correction factors for each cross were obtained without using data on that

cross, so as to avoid that correction factors would be biased towards the data to

be validated. As we had 47 crosses, we obtained 47 different sets of factors for

correction, each based on data of 46 crosses.

Finally, accuracy was taken as Pearson’s correlation between observed and

predicted heterosis.

Cross validation. The measure of accuracy presented above describes the fit

for the current data set, but may not reflect the accuracy of predicted heterosis

in an independent data set. To investigate the accuracy with which a cross that

was not in the data set could be predicted, we performed a ‘leave-one-cross-

out’ cross-validation, in which one cross at a time was left out of the

estimation of b. As we had 47 crosses in our data set, this resulted in 47

different estimates of the regression coefficient, b̂ ij, for each trait. We then

predicted heterosis for each i� j cross that had been left out as:

Predicted heterosistrait;ij ¼ b̂trait; ij� SDAFij ð4Þ

where b̂ ij is the estimated regression coefficient when the i� j cross is omitted

from the training data set. Accuracy was taken as Pearson’s correlation between

observed (y#) and predicted heterosis. To quantify the bias of SDAF as a

predictor of heterosis, we also calculated the regression coefficient of observed

heterosis on both the ‘regular’ (equation 2) and cross-validated predictions

(equation 4).

Selection of crosses based on predicted heterosis. To quantify the benefits of

selecting crosses based on genomically predicted heterosis, we considered a

two-step selection process. In the first step, heterosis was predicted for all

crosses, and a subset of crosses was selected based on the prediction. In the

second step, only crosses selected in the first step were field-tested and a final

selection was made based on the observed (that is, true) heterosis and hybrid

performance. Compared with a selection based entirely on observed/true

heterosis, this two-step selection will yield lower heterosis after the final

selection, because the truly best cross may have been discarded based on

predicted heterosis in the first step.

The methodological problem is to predict true heterosis after the two-step

selection, as a function of the selected proportion in the first step. To enable

prediction, we assumed that the predicted and observed heterosis approxi-

mately follow a bivariate normal distribution. Then the standardized response

in true heterosis after the two-step selection can be obtained from the moment

generating function of the truncated bivariate normal distribution (Tallis,

1961), and is given by:

R2� step ¼
r12 jðt1ÞFðT12Þþjðt2ÞFðT21Þ

p
;

where t1 is the standardized truncation point applied in the first step of

selection, t2 is the standardized truncation point used in the second step
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(relative to the original distribution), p¼ p1p2 is the overall selected propor-

tion (10% in Figure 4), r12 is the correlation between both normal variates

(that is, the accuracy of predicted heterosis), fðt1Þ is the standard univariate

normal density function evaluated at t1, F(T12) is the (cumulative) univariate

normal distribution function evaluated at T12, and

T12 ¼
ðt2�r12t1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
12

p ;

T21 ¼
ðt1�r12t2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
12

p :

The standardized maximum response in heterosis, that is, heterosis obtained

when the selection is based entirely on true heterosis, so that p1¼ 1 and p2¼ p,

is given by:

Rmax ¼
jðt2Þ

p
;

where t2 is the standardized truncation point belonging to a selected

proportion p in a univariate normal distribution. Finally, the proportion of

maximum heterosis obtained in a two-stage selection is given by:

% Rmax ¼
R2� step

Rmax
� 100 %: ð5Þ

Application of the expressions for R2-step and Rmax requires values for the

truncation points t1 and t2 corresponding to the selected proportions p1 and p2

of a bivariate standard normal distribution with correlation r12. Those can be

obtained using algorithms for the integration of multivariate normal distribu-

tions, such as the Dutt’s algorithm (Dutt, 1973, Ducrocq and Colleau, 1986).

From the %Rmax, we calculated the amount of heterosis lost due to preselecting

animals based on genomically predicted heterosis as %loss¼ 100%�%Rmax.

RESULTS

Descriptive statistics
Table 1 shows the means and number of records per cross for egg
number, egg weight and survival days.

Egg number. Egg numbers ranged from 150.9 to 375.3 eggs, with a
mean of 334.7 eggs (s.d.¼ 18.2), which translates to an average of 0.83
eggs per hen per day over the entire laying period. The S5�D3 cross
had the highest mean of 343.6 eggs, whereas the D5�D6 cross had
the lowest of 294.7 eggs. Egg number had a markedly skewed
distribution (not shown).

Egg weight. Records ranged from 48.6 to 76.7 g, with a mean of
61.4 g (s.d.¼ 2.7). The D5� S5 cross had the highest mean egg weight
of 64.1 g, whereas the S4�D6 cross had the lowest of 60 g. Egg weight
records were normally distributed (not shown).

Survival days. Records ranged from 240 to 620 days, with a mean of
548.4 days (s.d.¼ 34.5). Mortality was relatively low, with 89.6% of
the hens (cage averages) surviving till the end of the production
period used in this study (from 100 to 504 days). The D4� S2 hens
had the highest record of 583.2 days, whereas the lowest survival
record was 503.6 days for D5�D6 hens. Survival days had a
negatively skewed distribution (not shown).

Difference in allele frequency between parental lines. Table 2 shows the
SDAFs for all crosses. Of the 47 crosses for which we had phenotypic
records, the lowest SDAF was 0.05 for D5�D6, and the highest was
0.113 for S4�D1. SDAFs between lines that were both dam-lines were
slightly lower (mean¼ 0.075) than for those between sire-line� dam-
line (mean¼ 0.084) and sire-line� sire-line (mean¼ 0.088).

Figure 1 shows a phylogenetic tree of the 11 white Leghorn pure
lines used in this study. The first branch clearly shows the
separation of the sire-lines (solid lines) from the dam-lines (dashed

lines), which is expected because sire- and dam-lines are selected
and bred for different traits. The only sire-line that was grouped
together with the dam-lines was the S5 line; however, it branched
off from the dam-lines relatively early, still making this sire-line
distinct from the dam-lines. The most closely related sire-lines
were S1 and S2, they share the most recent common ancestor than
any other two lines. The most closely related dam-lines were D2
and D4. This pattern of relatedness corresponds with the SDAF
values in Table 2.

Predicted heterosis
Table 3 shows the estimated regression coefficients for SDAF from the
full data, their standard errors (s.e.) and P-values for egg number, egg
weight and survival days. All fixed effects in the models were
significant (Poo0.05, results not shown).

The estimated regression coefficient of egg number on SDAF was
b̂EN ¼ 103.5, showing a positive and highly significant association
between SDAF and egg number. Thus, parental lines with larger
SDAFs produce offspring with higher levels of heterosis for egg
number. Of the 47 crosses in our study, the lowest predicted heterosis
was 5.2 eggs for D5�D6 and the highest was 11.7 eggs for S4�D1.
When we include SDAFs of potential crosses but of which no
phenotypic data were available (see Table 2), the range of
predicted heterosis is much wider (0.4–11.7 eggs), showing that

Table 2 Squared differences in allele frequencies (SDAFs) between

white Leghorn pure lines

S1 S2 S3 S4 S5 D1 D2 D3 D4 D5 D6

S1 0.004 0.095 0.094 0.082 0.089 0.082 0.072 0.085 0.082 0.073

S2 0.094 0.094 0.080 0.085 0.080 0.070 0.083 0.079 0.071

S3 0.105 0.099 0.112 0.095 0.091 0.098 0.101 0.090

S4 0.085 0.113 0.092 0.089 0.089 0.101 0.085

S5 0.103 0.056 0.060 0.058 0.089 0.057

D1 0.096 0.078 0.096 0.048 0.068

D2 0.032 0.029 0.083 0.061

D3 0.041 0.066 0.055

D4 0.081 0.060

D5 0.050

D6

SDAFs in bold font represent those for which phenotypes were available. In some cases,
reciprocal crosses were made, so although the bold SDAFs are 35 in number, we actually had
phenotypes for 47 crosses. Because reciprocal crosses had the same SDAF, only the upper
diagonal is presented.

Figure 1 Phylogenetic tree for the 11 white Leghorn pure lines in our study

based on Nei’s standard genetic distance calculated from allele frequencies

of 53 582 SNPs. Dashed-lines represent dam-lines and solid-lines represent

sire-lines.
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some of the crosses with lower predicted heterosis were not part of
our data set.

The estimated regression coefficient of egg weight on SDAF was
b̂EW ¼ 22.3, showing a positive and highly significant association
between SDAF and egg weight. From the 47 crosses in our data set,
the lowest predicted heterosis was 1.1 g for D5�D6 and the highest
was 2.5 g for S4�D1.

The estimated regression coefficient of survival days on SDAF
was negative, but not significantly different from zero (P¼ 0.104).
Results for survival days will therefore not be presented further.

Accuracy of predicted heterosis
Correlation between observed and predicted heterosis. Figure 2 shows
correlations between observed and predicted heterosis for egg number
(2a) and egg weight (2b). The correlation between observed and
predicted heterosis was 0.60 for egg number and 0.43 for egg weight.

Cross-validation. For egg number, the estimates of b in the
leave-one-cross-out cross-validation ranged from 73.1 when the
S5�D5 cross was omitted to 135.3 when the S3�D1 cross
was omitted. Despite the large number of crosses included, the l
arge fluctuations in the estimated regression coefficients imply
high dependence on which crosses are present in the training
data set. Figure 3a shows plots of observed vs cross-validated
predicted heterosis for egg number. The correlation was 0.56, which
is slightly lower than the correlation for the ‘regular’ predictions
(Figure 2a).

For egg weight, the estimates of b in the leave-one-cross-out cross
validation ranged from 11.5 when the S5�D5 cross was omitted to
33.9 when the S5�D1 cross was omitted. As with egg number, there
were large fluctuations in the estimated regression coefficients.
Figure 3b shows plots of observed vs cross-validated predicted
heterosis for egg weight. The correlation was 0.47, which is slightly
higher than that for the ‘regular’ predictions (Figure 2b). For both
traits, the lowest regression coefficient was obtained when the S5�D5
cross was omitted.

Bias in predicting heterosis. The regression coefficient of observed on
‘regular’ predicted heterosis was 1.69 for egg number and 0.98 for egg
weight. That for the cross-validated predicted heterosis was 1.26 for
egg number and 0.82 for egg weight. This indicates that the
differences in heterosis between crosses were under-predicted for
egg number and over-predicted for egg weight.

Table 3 Estimated regression coefficients (b̂) of egg number, egg

weight and survival days on SDAF, s.e.’s and P-values

Trait b̂ s.e.(b̂) P value

Egg numbera 103.5 16.8 7.07 E�10

Egg weight 22.3 2.2 2.35 E�19

Survival days �42.06 25.9 1.04 E�01

aEstimates for egg number are on the original (untransformed) scale. The P-value on the
transformed scale¼6.76 E�11.

Figure 2 Observed (y#) vs predicted heterosis for egg number (a) and egg weight (b). r¼Pearson’s correlation between observed (y#) and predicted

heterosis; b¼ regression coefficient of observed (y#) on predicted heterosis. The line represents the regression of observed on predicted heterosis.

Figure 3 Observed (y#) vs cross-validated predicted heterosis for egg number (a) and egg weight (b). r¼Pearson’s correlation between observed (y#) and

cross-validated predicted heterosis; b¼ regression coefficient of observed (y#) on cross-validated predicted heterosis. The line represents the regression of

observed on cross-validated predicted heterosis.

Prediction of heterosis using genome-wide SNP data
EN Amuzu-Aweh et al

535

Heredity



Selection of crosses based on predicted heterosis
Figure 4 shows a plot of the per cent of maximum heterosis (%Rmax,
equation 5) as a function of the proportion of animals selected in the
first step of the two-step selection. Results show that considerable
preselection can be applied with little loss of heterosis in the final
selection. For example, when the top 50% crosses with the highest
genomically predicted heterosis are selected in the first step, the
resulting heterosis equals 96% of the heterosis that could have been
obtained by field-testing all potential crosses. Hence, a 50% cost saving
(on field-testing) can be achieved with only 4% loss in heterosis.

DISCUSSION

We investigated whether the SDAF between parental lines predicts
heterosis in egg number, egg weight and survival days in domestic
white Leghorn crosses, using data on B400 000 individuals from 47
crosses and allele frequencies on B53 000 SNP loci spread across the
genome. Moreover, we quantified the accuracy of this prediction
using cross-validation methods. Results show that SDAF predicted
heterosis for egg number and egg weight with an accuracy of B0.5,
whereas SDAF did not predict heterosis for survival days in our data.

Magnitude of heterosis
Predicted heterosis for egg number ranged from 5.2 to 11.7 eggs for the
47 crosses in our study. Though the difference of 6.5 eggs between
highest and lowest predicted heterosis may seem small, it equals two to
three generations of response to selection, corresponding toB4–6 years
in a practical layer breeding programme (personal communi-
cation Jeroen Visscher, ISA poultry breeders). Moreover, when con-
sidering all possible combinations of sire-lines and dam-lines, predicted
heterosis ranged from 0.4 to 11.7 eggs. For egg weight, predictions
ranged from 1.1 to 2.5 g for the 47 crosses in our study, and from 0.09
to 2.5 g when all possible crosses were considered. Our results agree
with the findings of Gavora et al. (1996) and Haberfeld et al. (1996),
who found that heterosis for egg production traits and body weight in
white Leghorns increases with GD estimated from DNA fingerprints.
They did not, however, state the range of predicted heterosis, which
could have served as a basis of comparison for our estimates.

We did not find a significant effect of SDAF on survival days
(P¼ 0.104). Two factors may account for this result. First, the limited
variation in survival days: as most hens survived until the end of the
testing period, there were many right-censored records. The censoring
was not accounted for in the linear model we used (Model 1). A
survival analysis model could have accounted for this, but would have
required individual survival records which were not available (cage-
means were used). Second, when fitting a sire-line� dam-line inter-
action in the model, this effect turned out to be very small, suggesting
that heterosis for survival days under the current housing conditions
and recording period is small, and thus difficult to estimate.

Accuracy of predicted heterosis
In general, the accuracy of heterosis prediction obtained in this study was
moderate for both traits (B0.5). We cannot clearly compare these accuracies
with those reported in previous research in this area, because they reported
accuracies as correlations between observed heterosis and GD obtained from
the fit of the model, and one study (Gavora et al., 1996) also reported R2

values of their prediction models. To our knowledge, none of the studies
that predicted heterosis based on the molecular marker divergence of
parental lines have reported correlations between observed and predicted
heterosis, or performed cross-validation.

Judging the prediction of heterosis based on the fit of the model,
that is, by using correlations between observed values and values
predicted from the same rather than independent data, may over-
estimate the accuracy of prediction. To investigate this issue, we
calculated the correlation between predicted heterosis and observed
heterosis when both were estimated from a single analysis on the full
data. This resulted in an accuracy of predicted heterosis of 0.72 for egg
number and 0.61 for egg weight. These values are clearly higher than
accuracies obtained when either y# (Figure 2) or both y# and b
(Figure 3) were estimated from independent data. Hence, the
accuracy of predicted heterosis based on the fit of the model
overestimates the accuracy with which future crosses can be predicted.

In the present study we have used the SDAF averaged overall SNPs.
To increase the accuracy of predicted heterosis, it has been suggested to
preselect ‘significant’ markers instead of using all markers for prediction
(Gavora et al., 1996; Shen et al., 2006). Results from studies on genomic
selection and genome-wide association studies, however, point towards
a highly polygenic nature of many traits in livestock. If those results
extend to dominance effects, it will be difficult to identify the relevant
loci and estimate their contribution to heterosis. Nevertheless, the use of
genome-wide marker information together with methods for genome-
wide evaluation (also known as ‘genomic selection’; Meuwissen et al.,
2001) may enable more accurate prediction of heterosis in the future.

Selection of crosses based on predicted heterosis
An interesting question for practical applications of the prediction of
heterosis in breeding programmes would be how well one can predict
future crosses. To address this question, we performed a cross-
validation using Model 1, where heterosis for each cross was predicted
using a regression coefficient estimated from data that excluded that
cross. Note that observed heterosis (y#) for each cross was also
obtained by correcting observations for the model effects, where
model effects were estimated by leaving out the cross of interest.
Hence, both predicted heterosis and y# for each cross were obtained
without making use of the data on that cross. Finally, the accuracy of
prediction was calculated as the correlation between predicted hetero-
sis and y#, resulting in a value of B0.5 for both egg number and egg
weight (Figure 3). With this accuracy, considerable preselection can be
performed based on predicted heterosis with limited loss of total

Figure 4 Percent of maximum heterosis exploited in a two-step selection

program as a function of the proportion of animals selected in step 1. In

step 1 animals are selected based solely on predicted heterosis (accuracy of

prediction¼0.5). In step two the pre-selected animals are field-tested and

a final selection is made based on true/observed heterosis. The overall

proportion of selected animals is 10% (see Materials and Methods).
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heterosis. Figure 4 shows that by reducing the amount of field-
testing by about 50%, the loss in total heterosis would only be 4%.
This would significantly reduce the cost of field-testing in cross-
breeding programs.

Heterosis vs combining ability modelling
The true heterosis for a particular cross is defined as the mean
phenotype of the cross expressed as a deviation from the mean of both
parental lines; it does not depend on other crosses that may or may
not be included in the analysis. In contrast, the true general combining
ability (GCA) of a line and the true SCA of a particular cross do
depend on which lines are included in the analysis (Hallauer et al.,
2010). This occurs because SCA is defined as a statistical interaction-
term, which is zero on average by virtue of the model. Consequently,
in a GCA/SCA model, the average heterosis in the data is included in
the main-effects of the model, which are the GCA-estimates. Thus, the
estimates of GCA and SCA will change when crosses are added or
removed from the analysis, even when the model fits the data perfectly.

The dependency of GCA/SCA-estimates on the set of crosses
included causes fluctuation of estimates when breeding companies
evaluate additional crosses. Moreover, the genetic basis of combining
ability is complex, even under a simple dominance hypothesis.
Although the true values of GCA and SCA can be derived for a
single locus model, the result is a complex function of additive and
dominance effects and the allele frequencies of the lines included in
the analysis. Heterosis, in contrast, has a simple genetic basis under a
dominance hypothesis, in which case it is proportional to SDAF. We
therefore opted for a heterosis model in this study.

To calculate the accuracy of predicted heterosis, we required a
measure of observed heterosis. However, we were faced with the
problem that data on the pure lines were available only on individuals
kept in high quality breeding environments, and no crossbred records
were available from those environments. Thus, pure-bred perfor-
mance was fully confounded with environment, so that we could not
calculate classical observed heterosis. This is a common problem in
heterosis studies in livestock: large data sets are available only within
breeding companies, in which purebred and crossbred individuals are
usually kept in environments that are systematically different.

In the current study, we addressed this issue by hypothesising that
heterosis is solely due to dominance and that the dominance effect at a
locus is independent of the SDAF at that locus. Under those two
assumptions, heterosis is proportional to the SDAF between both parental
lines, averaged over loci. (See Falconer and Mackay, (1996), and the
derivation in Materials and Methods). Under these assumptions, therefore,
the estimate of the b� SDAF term in Model 1 is an estimate of heterosis,
and b̂ is an estimate of nlociE(d). Consequently, because the b� SDAF
term is included in Model 1, the estimates of the sire-line and dam-line
effects from Model 1 are estimates of the pure-line values, rather than of
GCA. We confirmed this finding by analysing simulated data in which
heterosis was due to dominance. Thus, under the hypothesis that heterosis
is solely due to dominance, a model y ¼ ::: þ sireline þ damline þ
b� SDAF þ e yields estimates of pure-line averages and heterosis,
whereas a model y ¼ ::: þ sireline þ damline þ sireline�
damline þ e yields estimates of GCA and SCA. Hence, with Model 1,
we could model heterosis even though we did not have phenotypes of the
pure lines. To further clarify that Model 1 yields estimates of pure-line
values and heterosis, rather than of combining abilities, we constructed a
three-locus model in an Excel file which is available as Supplementary
Information with this manuscript. This file also illustrates the difference
between a heterosis model and a GCA-SCA-model, particularly when a
diallel-cross is incomplete.

At first glance, one might expect that estimating sire and dam
effects from a model y¼yþ sire-lineþ dam-lineþ e, and subse-
quently defining observed heterosis as y� ¼ y� sirêline � dam̂line
would give similar results as using y# as observed heterosis. We,
however, observed that y* shows much lower correlation with
predicted heterosis than with y#. Correlations of predicted heterosis
with y* were only 0.32 for egg number and 0.02 for egg weight,
whereas correlations with y# were 0.56 and 0.47, respectively, (using
values from the cross-validation). Note that the higher accuracies for
y# are not an artefact of model fitting, as we used independent data
for estimating both y# and b in the cross-validation. The difference in
accuracy occurs because correction factors used for y* come from a
combining ability model, so that y* is an estimate of SCA rather than
heterosis. The higher accuracies found for y# than for y* illustrate the
benefit of using a statistical model that has a solid genetic basis.

We based our modelling approach on the hypothesis that heterosis
is due to dominance. If that assumption is true, one would not expect
b̂ to fluctuate significantly when leaving out one cross at a time in the
cross-validation. However, b̂ for egg number ranged from 73.1 to
135.3, and b̂ for egg weight ranged from 11.5 to 33.9 in the cross
validation. For comparison, the 95% confidence interval for the
estimated regression coefficient from the full data was 70:6pb̂p136:0
for egg number and 18:0pb̂p26:6 for egg weight. The fluctuation in
b̂ suggests that dominance does not fully explain heterosis in our data,
particularly for egg weight. Gavora et al., (1996) also found that
heterosis predicted with a dominance model was more accurate for
egg number than for egg weight. Fairfull et al., (1987), in contrast,
reported that heterosis in egg weight ‘closely approximated that
expected due to dominance alone’. Although dominance may not have
fully explained heterosis in our data, the dominance hypothesis
allowed us to estimate observed heterosis and to achieve a consider-
ably higher accuracy of predicted heterosis than with a combining
ability model (see results for y# vs y* in the previous paragraph).

The complexity of modelling heterosis shows that further research is
needed before scientists can reach a consensus on the genetic bases of
heterosis. A review on the study of heterosis by Chen (2010) gave the
following reasons for the difficulty of modelling heterosis: (1) epistatic
effects are difficult to explain with statistical models; (2) heterosis is
affected by genetic backgrounds; (3) the role of paternal and maternal
effects of genetic loci; and (4) the fact that heterosis is affected by
many genetic loci, each with differing contributions. In support of the
need for further research, Kaeppler (2012) states that ‘the final answer
to the basis of heterosis will be the accumulation of results of many
and diverse studies and not a singular, unifying, novel discovery’.

GD and SDAF
The prediction of heterosis based on the molecular marker information
from pure lines has been studied extensively in both plants and animals.
Approaches reported in the literature are (1) the regression of either hybrid
performance or heterosis on molecular GD, and/or the estimation of
correlations between those variables (Gavora et al., 1996; Haberfeld et al.,
1996; Cheres et al., 2000; Minvielle et al., 2000; Jordan et al., 2003; Dias et al.,
2004; Balestre et al., 2009; Gärtner et al., 2009) or (2) the estimation of
marker effects or associations of markers with hybrid performance, heterosis
or SCA (Vuylsteke et al., 2000; Gärtner et al., 2009). Although some of these
studies mentioned the theory that heterosis is proportional to SDAF
between the parental populations (Falconer and Mackay, 1996), they rather
used various measures of GD as predictors of heterosis, without theoretical
justification. Only Reif et al. (2003), who used the square of modified
Roger’s distance, stated that it is linearly related to SDAF, and thus yields
equivalent predictions of heterosis.
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We therefore investigated the similarity between SDAF and GD by
calculating Pearson’s correlations between SDAF and the commonly
used measures of GD: Nei’s, Rogers’, modified Rogers’ and Cavalli-
Sforza (Cavalli-Sforza and Edwards, 1967, Nei, 1972, Wright, 1984).
Correlations between the GDs as well as with SDAF were 40.98,
indicating that the ranking of pure-line combinations is very similar
for all measures. Furthermore, we investigated the accuracy of
predicted heterosis using the GD showing the lowest correlation with
SDAF (Roger’s and modified Roger’s distance; both had
correlation¼ 0.98), and found almost identical results as with SDAF.
Hence, whether heterosis is predicted using GD or SDAF does not
appear to be crucial. Nevertheless, for reasons of scientific consistency,
the use of SDAF is to be preferred because the relationship between
heterosis and SDAF has a sound theoretical basis.
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