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Abstract

The term epigenetics refers to the study of a number of biochemical modifications of chromatin
that have an impact on gene expression regulation. Aberrant epigenetic lesions, in particular DNA
methylation of promoter associated CpG islands, are common in acute lymphocytic leukemia
(ALL). Recent data from multiple laboratories indicates that several hundred genes, involving
dozens of critical molecular pathways, are epigenetically suppressed in ALL. Because these
lesions are potentially reversible, the reactivation of these pathways using, for instance,
hypomethylating agents may have therapeutic potential in this disease. Furthermore, the analysis
of epigenetic alterations in ALL may allow: 1) the identification of subsets of patients with poor
prognosis when treated with conventional therapy; 2) development of new techniques to evaluate
minimal residual disease; 3) better understanding of the differences between pediatric and adult
ALL; and 4) new therapeutic interventions by incorporating agents with hypomethylating activity
to conventional chemotherapeutic programs. In this review, we desribe the role of epigenetic
alterations in ALL from a translational perspective.
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Introduction

Epigenetics is the study of biochemical modifications of chromatin. These modifications do
not alter the primary sequence of DNA but have an impact on gene expression regulation,
most frequently gene suppression. The field of epigenetics is rapidly expanding from DNA
methylation? to the realization that histone modifications? cross talk with DNA
methylation3, and the most recent discovery of microRNA# as having a role in DNA
methylation control®. Data from multiple laboratories and for all types of human
malignancies has clearly demonstrated that epigenetic alterations, or at least aberrant DNA
methylation, are very prevalent in cancer8. Epigenetic lesions complement genetic
alterations in oncogenesis. Epigenetic lesions are reversible and it is postulated that a
number of chemotherapeutic agents (DNA hypomethylating agents’:8, histone deacetylase
inhibitors®) act by reversing aberrant epigenetic marks and inducing physiologic gene
expression. In this short review, we focus on current knowledge of the epigenetics of acute
lymphocytic leukemia (ALL) from a translational perspective and on the use of this
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information to develop biomarkers and new therapeutic alternatives. At the present time, the
field mainly relates to aberrant DNA methylation, and little is known in terms of abnormal
histone code modifications or microRNA gene expression profiles.

Aberrant DNA methylation in ALL

The analysis of DNA methylation in ALL has paralleled the continuous development of
simpler and more powerful techniques to assess multiple promoters and many samples in
parallel. Most current techniques use bisulfite treatment of DNAZC. This method has allowed
the development of simple PCR assays to study methylation, including the more recent
development of pyrosequencing assays!l. Initial studies in ALL consisted of the analysis of
single genes in limited number of samples; these investigations (Table 1) focused on genes
such as calcitonim?=15, p1516-18 p7319.20 E_cagherir?l, ER?2. Other single gene studies
have included Dkk-323, LATSZ/KPM*, Hek?S, DBCI%8, BNIP#T, among many others. By
the time of these reports, it became apparent that human cancer was characterized by the
concomitant methylation of multiple genes?®. The studies in solid tumors28 were confirmed
in leukemia 29, prompting experiments in ALL3C. In the initial profiling study of adult ALL,
ten genes (MDR1, THSBSZ, THSBS1, MYF3, ER, P15, CD10, c-ABL, p16, p73) were
analyzed in a cohort of 80 patients with ALL (Table 1). Results of this profiling analysis
were reminiscent of those described in acute myelogenous leukemia (AML)2° or colon
cancer?8, First, close to 85% of patients had methylation of at least 1 gene and 40% of them
of 3 or more genes. Distribution of DNA methylation followed a bimodal pattern, with a
group of patients with significant increase in the number of methylated genes.; these patients
also had “denser” methylation. There was a strong correlation between methylation of most
of these genes indicating the presence of a molecular defect (ie hypermethylator phenotype)
leading to the concomitant aberrant methylation of multiple genes. Expression of CD10 was
inversely associated with methylation of CD10. At the genetic level, methylation of c-ABL
was only observed in patients with Philadelphia chromosome alterations (Ph), and only in
those patients with the p210 isoform, a reproducible result3!. In the exploratory study, an
association was observed between methylation and worse prognosis (for p73and p15).
These data indicated that aberrant DNA methylation of multiple promoter CpG islands is a
common feature of adult ALL. A number of large profile studies were subsequently
reported 32 (Table 1). When 15 genes were analyzed in more than 250 patients in both adult
and pediatric ALL, methylation of at least 1 gene was observed in 77% of patients and 35%
of them had methylation of 4 or more genes. Importantly, increased number of methylated
genes was associated with a worse outcome. These results confirmed the prevalence and
clinical relevance of aberrant DNA methylation of multiple promoter CpG islands in ALL.

In general, gene specific studies are limited by selection bias. Genome-wide analysis allows
unmasking of unanticipated genes and molecular pathways. Several efforts have been made
to create an unbiased methylation profile in ALL33:34, Kuang et al used the Methylated CpG
Island Amplification (MCA) technique coupled with an established promoter array33: in
excess of 400 genes were uncoverd as potential methylation targets in ALL33. Using
bisulfite pyrosequencing, 26 of these genes were validated in leukemia cell lines and 15
(Table 1) in primary ALL samples. Genes were evenly distributed through all autosomes
(Figure 1) and could be clustered in specific molecular pathways encompassing multiple
functions33. There was overrepresentation of Wnt related genes and kinases such as the
Ephrin family of ligands and receptors. Independent studies have already shown the
importance of Wnt signaling epigenetic alterations in ALL3®. The inactivation of Ephrin (a
large family of kinases) mediated signaling also seems common in ALL (Kuang et al in
preparation)36 and may be related to altered Akt signaling®. In a parallel study, Taylor et
al3* also reported results of a large scale methylation analysis in ALL using a different type
of array. Using this technique, this group identified 262 differentially methylated genes in
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ALL and validated 10 of them in a small cohort of patients (Table 1). Of interest, there was
little overlap between the results of the 2 array experiments33:34, with only 9 genes
concordant between both studies. These differences are probably related to the CpG islands
covered by each array platform and the results are likely complementary. Recently, Taylor et
al also have shown the feasibility of performing “deep-sequencing” methylation studies in
acute leukemiad’,

Analysis of aberrant DNA methylatyion as a tool to predict prognosis in

ALL

Methylation of multiple genes/pathways is common in ALL. Because aberrant DNA
methylation can suppress tumor suppressor genes, it is possible that the methylation/
suppression of these genes may confer distinct clinical pathological characteristics to these
patients, including worse prognosis. One of the first studies to demonstrate such an effect, an
analysis of 3 genes (p15, p73and p57)38, is illustrative, in that none of these genes when
analyzed individually showed clear prognostic value. For instance, p57was first found to be
methylated in leukemia3®. Subsequent studies showed the gene to be methylated in close to
50% of adult patients and to be correlated with methylation of p73and p15, but not with any
other significant patient characteristic. p73is a p53homologue that is upstream of p5740;
these three genes have a role in cell cycle progression. Patients who showed methylation of
more than 1 gene of this triad had a median survival of 52 weeks (the equivalent of Ph +
ALL in the preimatinib era) that was significantly worse than that of patients with
methylation of only 0 or 1 gene of this triad (Figure 2). The inference from these data was
that the cell cycle control check point controlled by p73/p57/p15 had evolved requiring
redundant systems (ie pZ5and p57)and therefore the need of complete epigenetic
suppression to have an effect on survival. Indeed, in a limited set of patients, there was clear
cell cycle dysregulation in patients with methylation of this pathway38. Because it is
presumed that methylation results in silencing, the same group of investigators analyzed the
prognostic value of protein expression (the reverse of methylation) of the p73/p15/p57triad
in ALL*! using a tissue microarray platform constructed with the bone marrow samples that
had been used for methylation analysis3®. Methylation of these genes inversely correlated
with protein expression, and those patients with evidence of protein expression had a
significant better outcome by multivariate analysis. These results have several implications:
1) that methylation and expression studies can be complementary and 2) that the
identification of methylation marks may result in the development of widely available
clinical assays.

Others have also shown that the methylation of multiple genes and pathways is associated
with worse outcome in ALL32 and that the larger the number of genes methylated, the worse
the outcome32:33, Although in general results of most groups have been concordant or
complementary, there has been some controversy surrounding the p21 gene. In the original
study, p21 methylation was shown to be a strong prognostic marker in ALL*2. Subsequent
investigations failed to find this association®3, a finding confirmed by several other
groups*4. [unclear syntax: what is being confirmed, the original or the second study?] The
most likely reason for this discrepancy is probably use in the original study of a non-bisulfite
assay, prone to false positives and in some cases difficult to interpret.

Are there methylation differences between pediatric and adult ALL?

An obvious question was whether differences in prognosis known to differentiate adult from
pediatric ALL could be related, in part, to DNA methylation: quantitatively (number of
genes methylated) or qualitatively (differences in methylation patterns). The first report*
indicated that there were no obvious differences in terms of the frequency of methylation
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observed in children and adult ALL. However, there were several limitations to this study,
as the number of patients with pediatric ALL studied was small and insufficient genotypic
subsets of patients were studied. However, aberrant methylation of multiple genes is
common in pediatric ALL#%46: the Spanish group also demonstrated that the high frequency
of methylation in the younger group of patients and a potential correlation between
methylation and prognosis32. These data were against expectations, founded on the concept
that methylation increases with aging*’ and therefore older patients should have a higher
frequency of aberrant methylation. Prognostic differences between children and adults
possibly are not related to quantitative methylation but to the inactivation of specific
pathways. One example may be the p73/p15/p57 pathway3848: epigenetic inactivation was
observed in close to 25% of adult patients but was extremely rare in the younger patients*8,
despite that individual methylation of any of these three genes was not significantly different
from the adult subgroup?8. Although these results need to be confirmed in other larger
cohort of patients, they suggest that prognostic differences between age groups could be
related in part to differences in methylation patterns. Methylation of p16, a rare event in
primary ALL3949, has been shown to be present in pediatric cases with MLL alterations>0.
The same phenomenon has also been the cases for the FH/T gene®1-52, Specific patterns and
genetic associations may have a role in the prognosis of pediatric patients with ALL.

Can the analysis of DNA methylation be used as a marker of minimal
residual disease?

Another question is whether methylation patterns at the time of relapse are stable in ALL
(Figure 3); the answer would have important implications. If stable, it could be proposed
that these methylation alterations are a key molecular component of the malignant clone,
and the detection of residual levels of methylation might usefully indicate presence of
residual leukemia in patients in morphological remission (Figure 3A). Methylation profiles
of 5 genes (ER, MDR1, p73, p15 and p16) was determined in a group of patients before
therapy and at the time of morphological relapse®3. Overall, methylation patterns were stable
in about 70% of patients. Genes such as p73(92%), ER (88%) and MDR1 (72%) were
stable at the time of relapse, whereas pZ5was only concordant in around 60% of cases. Of
interest, there was an increase in pZ6 methylation accompanied by gain of p15 methylation
(Figure 3B), suggesting that gain of methylation may have a role in relapse/resistance
mechanisms in ALL. Overall, this study indicated that methylation patterns are stable in a
large fraction of patients with ALL, and therefore it might be possible to design minimal
residual disease assays using detection of aberrant DNA methylation in ALL. Whether the
methylation changes observed in the 30% of patients at relapse was the result of the
emergence of a new clone or epigenetic alterations in the original clone remains uncertain
but of with potential implications for our understanding of relapse dynamics and patterns of
resistance.

Based on these data, detection of residual methylation as a predict or of relapse in ALL has
been sought (Yang et al submitted)®*, DNA was extracted from 199 patients with Ph
negative ALL at the time of morphological remission (around day 14 to 21 after standard
hyperCVAD based chemotherapy®®). Three genes were analyzed: p15, p73and p57, using a
real-time bisulfite PCR assay especially developed for this analysis. Residual methylation of
p73was detected in 10% of patients, pZ5in 17%, and p57in 4%. In all, 25% of the patients
had evidence of residual methylation. The presence of residual p73methylation was
associated with a significantly worse outcome (HR 2.68, p=-.003) (Figure 3C). Although
these results are exploratory due to the limited number of genes analyzed, they show the
feasibility of methylation based assays to detect residual leukemia, which could complement
other flow or molecular assays. A more systematic analysis of genes in ALL may provide a
useful tool to predict outcome in patients in remission with ALL. These results also allow
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the consideration of incorporating hypomethylating agents as consolidation/maintenance
strategies in ALL.

Incorporating hypomethylating-based therapy in ALL

At the present time, two drugs with hypomethylating activity are approved in the US for
patients with myelodysplastic syndrome’:8. These agents also have activity in AMLSS. In
vitro data using cellular systems has indicated that the selective reactivation of a gene
specifically inactivated in ALL (in this case p57) results in ALL cell death, only in cells in
which the gene is epigenetically silenced and not in leukemia cells in which the gene is not
methylated®’. These results indicate that reactivation of epigenetically silenced genes can
have an anti-leukemia effect, perhaps selective, and they reinforces consideration
ofhypomethylating therapy in ALL, either as single agent or in combination with other
standard forms of therapy exploiting possible synergistic effects®8. There is only limited
experience with the hypomethylating agents in ALL. In one trial®®, relative high doses of 5-
azacitidine (150 mg/m? as a continous infusion daily x 5) were combined with cytarabine in
patients that had previously failed cytarabine. The hypothesis was that treatment with 5-
azacitidine could induce expression of deoxycytidine kinase. Two complete responses (CR)
were observed in 17 patients treated. In another study®?, decitabine was combined with
either amsacrine or idarubicin in patients with acute leukemia. There was a CR rate of 36%
(23 out 63) with a median disease free survival of 8 months. An ongoing trial is evaluating
the role of decitabine in patients with advanced relapsed/refractory ALL®L. In this study two
phase 1 trials are conducted in parallel. In the first phase, patients are treated with a 5-day
schedule of decitabine every other week. In the second phase, patients who had received
decitabine in the first phase but did not respond or relapsed to single agent decitabine can
then participate in a phase 1 study of decitabine and hyper-CVAD®2 combination. The
reasons for the more frequent schedule of decitabine in ALL were twofold: first, data from
in vitro modeling indicating the activity of decitabine in ALL cell lines especially when
using chronic exposure®3, and, second, the rapid proliferative nature of the leukemia clone in
patients with relapse disease. To date, doses up to 100 mg/m? IV daily x 5 every other week
have been safely administered, without excess toxicity and with evidence of clinical activity
in patients with multiple relapse/refractory leukemia.

Summary and future research

The study of epigenetic alterations in ALL is transitioning from a relative obscure field of
research to the potential development of new biomarkers and therapeutic alternatives for
patients with this disease. Here, we have summarized data that multiple tumor suppressor
genes and molecular pathways are inactivated in ALL. This information potentially can be
utilized to predict response to therapy, detect patients at risk that are in morphological
relapse, and to target the incorporation of hypomethylating agents in ALL. Large scale
validation studies and trials are needed to confirm these early data and to allow its into
clinical practice. The analysis of specific histone modification patterns, and the role of
histone deacetylase inhibitors® in combination with conventional chemotherapeutic agents®8
or hypomethylating agents®46, as well as the role of microRNAs?, should be studied in
conjunction in ALL.
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Figure 1. Chromosomal distribution of potential methylation targets uncovered by M CA/Agilent

array33

The figures on top of each chromosome indicate the number of the chromosome and the
number of genes (an percentage) located in each individual chromosome.
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Figure 2. Trandational implications of using analysis of DNA methylation in adult Ph negative
ALL

The impact on survival of methylation of a triad of genes composed of p73/p15and p57 was
evaluated in a cohort of adult patients with Ph negative ALL treated homogenously with
hyper-CVAD therapy38. Patients with methylation of 2 or 3 genes had a significantly worse
prognosis compared with those with methylation of 0 or 1 genes38, This data was confirmed
at the protein level*L. This information could be used to incorporate hypomethylating agents
or to consider the introduction of allogeneic stem cell transplantation.
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Figure 3. Analysis of DNA methylation asatool to detect minimal residual disease

A. A model of methylation dynamics in ALL. Pretreatment bone marrow of patients with
ALL should be populated by two or three clones: a dominant malignant clone (red), residual
normal hematopoiesis (black) and potential a subdominant malignant clone (green). With
intensive chemotherapy, most patients achieve complete remission and the marrow is now
dominated by the normal clone. But because a large fraction of adult patients will relapse
with conventional therapy it is possible that residual molecular levels of both the dominant
and possibly the subdominant clone are present during remission. At the time of relapse
approximately 70% of patients relapse with a methylation pattern similar to that of the initial
presentation and 30% with a different profile®3. B. Gene specific dynamics of 5 genes at the
time of relapse®3. Stable indicates that the methylation status of the gene does not change
from initial presentation to the time of relapse. C. The data presented in A and B allows the
hypothesis that detection of residual levels of methylation at the time of remission could
predict worse outcomes. This has been shown for the p73 gene®?.

Semin Hematol. Author manuscript; available in PMC 2013 November 19.



Page 13

Garcia-Manero et al.

Ge 8¢ 192/66 Buireubis Jum z1dg Td&/S
0¢ G 08/9€ Janlodsuel) aueiquiawisuel | 12bs T&§an
Ge 12 192/5S Buireubis Jum yTdL rd&S
0€ IAs 08/zy uolsaype |18 L2bg ZSESH.L
€ L2 162/L9 uolepelBap ewosoa10id Gzho NINEYS
0€'zz | (¥6-9€) Lv 08/62 ‘8T/LT 10ydagal usbous3 Gebg =S
€ or 162/00T aseury ebg 1SLV7T
€e €z Ge/8 aselajsuRIOUILY vebg 21d49
€e 86 GG/¥S Jossaidai [euonduosues L vebg ZXSW
e 9. 8S/vv Buryreubis unyd3 Tehs SYNAT
€e 9L T7/TE uonounf yBrL eThbg NT20
Ge 9T 192/¢y Bureubis Jum TEbY 2d¥4S
€e 69 Gelve utajold %00y JeaH gzhy TVdSH
o 0t 08/8 asepndad Gebe 01ao
€e 89 95/8€ eTbe sA0av
g€ 4 LOE/ZET Bureubis Jum T2de Svum
€e 09 Sv/Le aseuny ajejAuens y1dg oY
ee 98 LG/6Y sisdeuAs ‘SNO yrde 1LSVO
7€ 89 u/TT Joye|nBai eAlyebau ssed 19 vebe I-700
e €6 9T/ST xa1dwod 731 TZbe g1d47
v 18 9THT Jauueyd TvbT AN
ze'og'oz'sT | (1e-81) 02 1G2/Sv ‘08/LT 'SE/TT loyoey uonduiosuel | 9edt &d
ee 00T /9y Bur|reubis Jum vedt T0dSY
€e 00T TE/TE BuifreuBis proueisold Tedt 2od19
saoue PRY | (Bbuey) 9 | pezAfeue lequinN/paIejAYBW JBgWNN uolpun4 | uoired0| [eWOSOWO 1YD a9

"3AIRIUBLIO AJUO 310J3J3Y1 SI 3]qe) SIYL "Apnis 01 Apnis wiod) Jajip Aew , Aianisod uonejAyisw,,
J10J BLI11I0 JeY) pue uoRIAyIaW aUIWIBeP 0] Pasn alam Ssanbiuyds) Jo Jaquunu e Jeyl palou aq pinoys 1] "uonejAyAlsw Jo abejusalad pue Jaquinu syl
pue (UMOU3 Uaym) uoliouny [erualod ‘UoI1IeI0| [RLIOSOWOIYD J13Y] SB [[3M Se ‘W Ul palejAuylaw aq 01 pariodal sauab Jo 11| [enJed e saziewwns T 3|qe.l

7V uIseush perejAylew Jo 1s1| v
T a|qel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Semin Hematol. Author manuscript; available in PMC 2013 November 19.




Page 14

Garcia-Manero et al.

€€e S8 €6/S eioIBUILBW Ul PAAJOAU] Z1ibze INW
€ 6 162/22 €Tboz T-SW.L
74 0z vvI6 aseuy| TTbOC YOH
€ LS TG2/EVT aseajoud auLids €TbeT 1-S3N
23 25 aIve uajoud 1abuiy uz €Th6T 2864INZ
€€ 00T 9€/9€¢ o14ea UIslold T2hat 50AN
€ /8 9T/pT | 8uab sossaiddns Jowny sAlreINd 1ZbsT 200
€ ge 162/.8 uolsaype |18 7ebot ET-HAO
0e'1e | (¥5-L€) 6E 162/26 '€€/8T uolsaype |18 zehbat uiaypes-3
€ 00T Tv/TY utsjoud Jabuy uz 2Tbot 177vS
ve 8 9T/ET zebst JdON
0 0z 08/97 uoIsaype |18 GTbgT TSESH.L
Se 9z 192/89 Buifeubis Jum ezbyt TMdaH
e 0S 91/8 vebet 5xad
43 ve G8 sisoydody gebezt T-9VdV
Ge o 8. Bureubis um y1bzT T4IM
ve GL 9T/2T uodsues) as0aN|9 etdet $IVZOTS
ze'oe | (0s-81) 0F T1G2/St ‘€9/T€E 10230 8J942 9D gTd1T 25d
se €e €8T/09 Buijeudis Jum S1d1T opa
G1-¢T | (e6-2v) 29 SOT/SY ‘Lylvy ‘YTIET ‘LI9 LwsI|ogelsw wniajeD gTd1T ujoyaeD
Lz ST VElS sisojdody 9zbot EdING
Ge 8¢ €L Bureubis um ¥¢boT S-S
z€ 0z 0S asejeydsoyd €ebot NFLd
2€ €T €€ sisoydody vebe Mdva
0 8 08/9 aseuly| vebe 79v-9
9 LT 0L1/62 THIS J0 Jouquyul zebs 108940
€e 65 vylLe ursroud 9 A PIYND
ze'oe '81-9T | (05-¢€2) ¢ TG2/EL'08/6T ‘VE/LT ‘9¥/0T 'Sv/LT 102302 8]942 9D T2d6 S1d
s RPRY | BBueY) 9% | pazAeue equnn/pelelAyBW JBgwnN uoipuNS | UOITed0| feWOSOWO YD aueo

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Semin Hematol. Author manuscript; available in PMC 2013 November 19.



