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Abstract

Background: As microarray technology has become mature and popular, the selection and use of a small number of
relevant genes for accurate classification of samples has arisen as a hot topic in the circles of biostatistics and bioinformatics.
However, most of the developed algorithms lack the ability to handle multiple classes, arguably a common application.
Here, we propose an extension to an existing regularization algorithm, called Threshold Gradient Descent Regularization
(TGDR), to specifically tackle multi-class classification of microarray data. When there are several microarray experiments
addressing the same/similar objectives, one option is to use a meta-analysis version of TGDR (Meta-TGDR), which considers
the classification task as a combination of classifiers with the same structure/model while allowing the parameters to vary
across studies. However, the original Meta-TGDR extension did not offer a solution to the prediction on independent
samples. Here, we propose an explicit method to estimate the overall coefficients of the biomarkers selected by Meta-TGDR.
This extension permits broader applicability and allows a comparison between the predictive performance of Meta-TGDR
and TGDR using an independent testing set.

Results: Using real-world applications, we demonstrated the proposed multi-TGDR framework works well and the number
of selected genes is less than the sum of all individualized binary TGDRs. Additionally, Meta-TGDR and TGDR on the batch-
effect adjusted pooled data approximately provided same results. By adding Bagging procedure in each application, the
stability and good predictive performance are warranted.

Conclusions: Compared with Meta-TGDR, TGDR is less computing time intensive, and requires no samples of all classes in
each study. On the adjusted data, it has approximate same predictive performance with Meta-TGDR. Thus, it is highly
recommended.
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Introduction

Biomarker discovery from high-dimensional data is a crucial

problem with enormous applications in areas of biomedical

research and translational medicine. Selecting a small number of

relevant features (e.g., genes in transcriptomics profiles, SNPs in

GWAs studies, and metabolites in metabolomics) to build a

predictive model that can accurately classify samples by their

diagnosis (e.g., diseased or health, different stages of one specific

cancer) and prognosis (e.g., potential response to a given

treatment, 5-year survival with a certain treatment) is an essential

step towards personalized medicine. In bioinformatics, such a task

is accomplished by a feature selection algorithm, which besides

reducing over-fitting and improving classification accuracy, leads

to small molecular signatures with manageable experimental

verification and the potential design of cheap dedicated diagnostic

and prognostic tools.

Among dozens to hundreds of proposed feature selection

algorithms [1–3], the Threshold Gradient Decent Regularization

(TGDR), proposed by Friedman and Popescu [4], stands out

because of the elegant theory beneath them, its easy-to-moderate

programming difficulty for a well-trained statistician and its good

performance and biologically meaningful results in real-world

applications. TGDR builds upon the classical gradient descent by

introducing a threshold parameter that directs the paths towards a

parameter with more diverse components. Ma and Huang [5]

elegantly extended the TGDR to the case where expression data

from several studies are combined. The proposed algorithm, the

Meta Threshold Gradient Descent Regularization (Meta-TGDR),

assumes that the same set of genes is selected on all studies, while

allowing the b coefficients to vary across studies, in a meta-analysis

fashion. In their paper, they demonstrated that a better

classification performance was achieved by using Meta-TGDR

rather than by using TGDR on the combined data set.

However, both TGDR as originally proposed, and Meta-

TGDR frameworks do not give the explicit definition or/and

format on the multi-class classification where an observation needs

be categorized into more than two classes. Additionally, Meta-

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e78302



TGDR [5] does not offer an overall predictive rule on an

independent data set (testing samples), from a study not used in

classifier training/estimation. The absence of such rule prevented

Meta-TGDR from the evaluation of its performance on indepen-

dent testing sets, and the comparison with TGDR in terms of

predictive performance. Furthermore, it limited the use of the

Meta-TGDR to real, clinical practice application precluding its

use in personalized medicine, where a classifier is built for use in

an extended population under variable laboratory setting.

In this paper, we specifically addressed the first issue by

proposing a new framework, referred as to multi-TGDR, and the

second issue by proposing an equation. Lastly, the results from

Meta-TGDR, and TGDR on the pooled data were compared in

terms of their predictive performance.

Materials and Methods

The proposed extensions to TGDR and meta-TGDR
In order to establish the nomenclature to be used through the

paper and to help the reader experience we start with a brief

description of the Meta-TGDR as below. The interested readers

are referred to [5] for more details on both TGDR and Meta-

TGDR frameworks.

Let Y m~(Y m
1 ,:::,Y m

nm
) be the indicator function (i.e., 0 if in the

reference class, 1 otherwise) for each study m = 1,.,M with nm

subjects and X m~(X m
1 ,:::,X m

nm
) the vector of nmxD matrices

representing the gene expression for each subject over the same set

of D genes. The likelihood function for study m can be written as:

Rm(bm)~
Xnm

j~1
Y m

j |(bm
0 zbmXj){log(1zexp(bm

0 zbmXj))
� �

ð1Þ

where bm
0 and bm~(bm

1 ,:::,bm
D) are the unknown intercept and

expression-coefficients for each study s. These parameters will be

simultaneously estimated by maximizing the overall likelihood

function R(b) = R1(b1)+…+RM(bM) with b~(b1,:::,bM )where only

the coefficients associated with gene expression are subject to

regularization,

Denote Dv as the small positive increment (e.g., 0.01) as in

ordinary gradient descent searching, vk = k6Dv the index for the

point along the parameter path after k steps; and b(vk) the

parameter estimate of b corresponding to this point. For a given

fixed threshold 0#t#1, the Meta-TGDR algorithm iterate on the

following steps:

1. Initialize b(0) = 0 and v0 = 0. (i.e., all genes are non-

informative).

2. With current estimate b,

i) i) Compute the negative gradient matrix gj,m(v)~
{LRm(bm)=Lbm

j .

ii) ii) Define the meta-gradient G (v) as a D-dimensional vector

whose jth-element is the sum of the gradient for each study;

i.e., Gj(v)~
XM

m~1
gj,m(v).

iii) iii) if maxjfDGj(v)Dg~0, stop the iteration.

3. Compute the threshold vector f(v) of length D, where the jth

component of f(v):

fj(v)~I(jGj(v)j§t|maxl(jGl(v)j)

Table 1. The results for simulated data.

A. Simulation 1 (the whole data)

% of b1?0
Average BF (%)

% of b2?0
BF (%)

% of b3?0
BF (%)

% of b4?0
BF (%)

Average #
of selected genes

Average
predictive error
(%)

Multi-TGDR 100 100 100 98 28.2 13.90

without bagging 100 99.98 91.48 90.64

Multi-TGDR BF.40% – – – – 21 13.98

BF.80% – – – – 5.42 11.96

On the reduced data, where top 20 features were kept

Multi-TGDR 100 100 92 98 18.4 15.82

no bagging 100 100 91.60 97.68

BF.40% – – – – 3.9 10.00

BF.80% – – – – 3.9 10.00

B. Simulation 2 (the whole data)

Multi-TGDR 100 100 96 100 30.2 13.26

without bagging 100 100 90.88 95.48

Multi-TGDR BF.40% – – – – 22.62 13.20

BF.80% – – – – 5.54 11.08

On the reduced data, where top 20 features were kept

Multi-TGDR 100 100 82 94 18.2 15.22

No bagging 100 100 81.60 93.00

BF.40% – – – – 5.5 9.24

BF.80% – – – – 3.76 9.24

doi:10.1371/journal.pone.0078302.t001

The Extension of TGDR to Multi-Class Cases
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4. Update b(v+Dv) = b(v) – Dv6g (v)6f(v) and update v by v+ Dv,

where the product of f and g is component-wise.

5. Steps 2–4 are iterated k times. Both t and k are tuning

parameters and determined by cross validation.

In both TGDR and Meta-TGDR, the search path is

determined by the gradient g (i.e., both the direction and

magnitude), and the threshold vector f(v) that establish which

features are selected through the tuning parameter t. Uniquely to

the Meta-TGDR, the concept of meta-gradient G, defined as the

sum of each study’s negative gradient, was introduced to define the

direction of the search path. In each iteration, features with the

largest meta-gradient would be selected, with the number of

features being regularized by t. If t= 0, all features are included in

the model whereas a t= 1 implies that only the feature with the

largest meta-gradient is selected. By this way, Meta-TGDR selects

the same set of features, but their corresponding coefficients may

differ across studies.

Multi-TGDR: Extension to multi-class

classification. Multiple-class classification is commonly en-

countered in real world, however, many proposed feature selection

algorithms lack the valuable capacity of dealing with multi-class

classification. In the original TGDR and Meta-TGDR framework,

multi-class classification had been left untouched even though all

authors claimed that such extension is very natural. Here, we

propose an extension of the TGDR framework to multi-class cases.

In the multi-class scenario, the response variable Yi -represent-

ing the class membership for subject i – may take values 1,…,K,

where K is the number of classes (K$3). Propositions to tackle this

problem using existing binary classifiers divided into two major

types: ‘‘one-versus-the-rest’’ where K binary classifiers were

trained to distinguish the samples in a single class from the

samples in all remaining classes, and ‘‘one-versus-another’’ where

K(K-1)/2 classifiers were trained to distinguish the samples in a

class from the samples in one remaining class. Many researchers

[6–8] had demonstrated that one-versus-another schema offered

better performance than one-versus-the-rest did. Therefore, we

compared our proposed framework with one-versus-another

schema only.

The central idea of our extension is to replace the single

indicator variable Yi for each sample for a set of K-1 variables Yik.

The threshold function is then defined as the maximum along the

set of local threshold functions, defined on the subspaces defined

by parameters associated to each class. To our knowledge, multi-

class TGDR has not been addressed; probably because it is more

computationally demanding than binary TGDR.

Let Yk1,…,Ykn be the vector of indicators for class k across

subjects; i.e., Ykj is equal to 1 if the jth subject belongs to class k and

zero otherwise. This vector is defined for each class k(k = 1,…,K-

1), while the Kth-class serves as the reference class. In order to

make our classes mutually exclusive,

XK{1

k~1

Ykjƒ1 Vj

As before, let X1,…,Xn represent the gene expression values.

After a simple algebraic manipulation,the log-likelihood function

can be written as:

R(b)~
Xn

j~1

XK{1

k~1

Ykj|(bk0zbkXj){log(1z
XK{1

k~1

exp(bk0zbkXj)

 !
ð2Þ

bk0’s are unknown intercepts which would be not subject to

regularization. bk = (bk1,…, bkD) are the corresponding coeffi-

cients for expression values for the same set of D genes for the

comparison between class k and reference class K. Note, the

dimension of all bk is restricted to be the same, but their

magnitudes differ. Hence the same number of non-zero genes is

used on all classes but their estimated values are different.

Let b~ bk0f ,bkgK{1
k~1 denote the set of all parameters to be

estimated in model 3, one can follow the binary TGDR procedure

as detailed in [5,9,10] but introducing the following modification

in the calculation of the threshold vector f(v) in step 3:

Here, fki(v) represents the threshold vector of size D for class

k(k = 1,.,K-1),

fki(v)~I(Dgki(v)D)§t| max
l[bk

(Dgkl(v)D) for i[bk

Then, the ith-gene specific element of threshold function f(v) will

be obtained as:

Table 2. Performance of classifiers for Lung Cancer data.

Training (N = 109) Test set (n = 36)

# genes Error (%) CV (%) Predictive Error (%) GBS

Pair-wise ACI vs ACII 13 12.77 29.78

ACI vs SCC I 28 0 11.63

ACI vs SCC II 19 0 12.00

ACII vs SCCI 15 0 3.39

ACII vs SCCII 13 0 8.70

SCCI vs SCC II 44 22.58 35.48

Overall 107 18.34 51.38 50.00 0.302

Multi-TDGR No Bagging 67 0 20.2% 47.22 0.292

with Bagging 19 9.17 – 44.44 0.303

doi:10.1371/journal.pone.0078302.t002

The Extension of TGDR to Multi-Class Cases
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fi(v)~ max
k

(fki)

As in binary TGDR and Meta-TGDR, all genes are assumed to

be non-informative at the initial stage. The tuning parameters, t
and k jointly determine the property of the estimated coefficients

(i.e., which ones would be selected, and their corresponding

magnitudes). When t= 0, all coefficients are nonzero for all values

of k. When t= 1, the multi-TGDR usually increases in the

direction of feature (i.e., gene here) with the largest gradient in

each iteration and the non-zero coefficients are few for a relatively

large number of iterations. Since by definition f(v) is 1 as long as

one of the elements fki(v) is 1, it indicates that if a feature is

selected because is important for, let’s say, class 1 (versus reference

class K), then it would appear in all the other comparisons even

though its corresponding coefficients in those comparisons may

not differ significantly from zero.

Here we establish a unique t tuning parameter, this assumption

may be relaxed so that t can have different values for each class,

which will allow different degree of regularization for different

comparisons. The proposed framework is referred to as multi-

TGDR.

Multi-class Meta-TGDR. The Multi-TDGR can naturally

be extended to a situation with multiples studies and multiple

classes. The step 3 in multi-class TGDR is combined with the

concept of meta-gradient of Meta-TGDR. That means fki is

defined on the meta-gradient instead of the regular gradient, i.e.,

fki(v)~I(DGki(v)D)§t| max
l[bk

(DGkl(v)D) for i[bk and fi(v)~

maxk(fki). Under this formulation, the same set of genes is selected

for each class and each study but coefficients can vary across

studies and classes. Obviously, with the increase on b’s dimension,

the iterations are more time-consuming compared to multi-class

TGDR. In this paper, this framework is referred as to Meta-multi-

TGDR.

Prediction of new samples using Meta-TGDR. In the

Meta-TGDR, the estimated coefficients b= (b1,…,bD), corre-

sponding to expression values for D genes selected, are different in

each study. This raises a question of how to use these study-specific

coefficients to perform an overall prediction in a new independent

sample (‘‘testing sample’’), not previously used in the training/

estimation stage. However Ma and Huang [5] did not offer a

solution to this issue, which preclude the evaluation of the

performance of the Meta-TGDR (and its comparisons with

TGDR) on independent ‘‘testing’’ samples. Here we extended

their work by conducting a meta-regression to synthesize the

results from Meta-TGDR and extrapolate the membership

prediction to a sample from a new study. Under the Meta-TGDR

settings, let Zij be the estimated log odds for the jth sample in ith

study using the estimated coefficients b̂bi (of length D) for each

study (i.e., Zij~X i
j b̂bi). Zij can be modeled as:

Zij~m0zm1X1jz:::mDXDjzeij i~1,:::,M j~1,:::,ni ð3Þ

where m1,…, mD represents the overall coefficient associated with

gene i, eij*N(0,s2
i ) and s2

i is the within-study variance for the

study i. Specification of equation 3 can be achieved by following a

3-step procedure with the first two steps obtain estimates of

s2
i using delta method [11] and step 3 calculates the posterior

probabilities using the estimated coefficients obtained in step 2.

Table 3. Multi-TGDR genes for lung cancer data after Bagging.

Probe Symbol Description bAC-II bSCC-I bSCC-2 Freq

206504_at CYP24A1 cytochrome P450, family 24, subfamily A, polypeptide 1 0.2931 20.3501 0.0692 0.77

1564414_a_at PNLDC1 poly(A)-specific ribonuclease (PARN)-like domain containing 1 20.0499 20.0942 0.3569 0.67

211416_x_at GGTLC1 gamma-glutamyltransferase light chain 1 20.2747 20.1519 20.1726 0.65

206059_at ZNF91 zinc finger protein 91 20.0755 0.0557 20.2927 0.55

205348_s_at DYNC1I1 dynein, cytoplasmic 1, intermediate chain 1 0.1083 0.0092 0.388 0.54

231867_at ODZ2 odz, odd Oz/ten-m homolog 2 (Drosophila) 0.0065 0.2616 20.0077 0.51

219926_at POPDC3 popeye domain containing 3 0.4104 0.1598 0.1239 0.51

219298_at ECHDC3 enoyl CoA hydratase domain containing 3 20.0718 0.0835 20.3062 0.5

203358_s_at EZH2 enhancer of zeste homolog 2 (Drosophila) 20.5307 20.0307 0.4366 0.49

214464_at CDC42BPA CDC42 binding protein kinase alpha (DMPK-like) 20.0406 20.3358 20.1537 0.48

210020_x_at CALML3 calmodulin-like 3 20.0172 0.2187 0.0875 0.46

201839_s_at EPCAM epithelial cell adhesion molecule 20.0045 20.0408 20.0017 0.45

238983_at NSUN7 NOP2/Sun domain family, member 7 0.0135 20.2718 20.019 0.45

206677_at KRT31 keratin 31 0.0076 20.0138 0.1216 0.44

235706_at CPM carboxypeptidase M 0.1549 20.0625 0.0164 0.43

226213_at ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene
homolog 3 (avian)

20.0138 20.1827 20.0757 0.43

205713_s_at COMP cartilage oligomeric matrix protein 0.0632 20.2135 0.048 0.41

228846_at MXD1 MAX dimerization protein 1 0.026 0.0184 0.0838 0.41

227492_at OCLN Occluding 0.0015 20.4148 20.1417 0.41

Here, AC-I serves as the reference. Bagging frequency .40%.
doi:10.1371/journal.pone.0078302.t003
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1. ConsiderE(Yij DXij)~exp(Zij)=(1zexp(Zij)), and E(Yi)~
E(E(Yij DXij)). For each study estimate the variance of Y in

natural scale by:

Si~
Xnj

j~1
(Yij{E(Yij jXij))

2=ni

2. Estimates2
i using delta-method i.e.,

ŝs2
i ~Si=(E(Yi)|(1{E(Yi))

2

Once we have ŝs2
i , the overall estimated coefficients ms can be

easily obtained by a weighted least square equation (similar to the

one used in fixed-effect meta-analysis).

1. Finally, the overall mi’s estimated in step 2 is used to calculate

the odd-ratio and the posterior class-membership probability

for a new sample.

Miscellaneous
Stabilization of the selected genes using Bootstrap

aggregating. In order to improve the stability and classification

accuracy of multi-class TGDR, we applied Bootstrap aggregating

(Bagging) to our classifier [12]. Given a training set of size n,

bagging generates m new training sets, each of size n, by sampling

subjects from the original training set with replacement. Then m

multi-class TDGRs are conducted using the above m bootstrap

samples and combined by voting. Bagging helps to protect over-

fitting which usually exists in the classification setting.

Evaluation of predictive performance. The performance

of a classifier is measured using traditional performance metrics

over the training samples (training: # of misclassification/sample

size on training set; and 5 fold-cross-validation misclassified error

rate: the misclassified rate on the cross-validation data) and over

the test samples (the predictive error, which is more heavily

weighted than the misclassification errors when we evaluate the

predictive performance of an algorithm since those samples were

not used to construct the classifiers, thus less subject to over-

fitting). Since the membership probabilities for each sample can

easily be obtained from multi-TGDR/TGDR algorithm, we also

used the generalized Brier score (GBS) proposed by Yeung et al

[13], a generalization of the Brier Score to a multi-class

classification problem, to evaluate the performance of these

algorithms (i.e., multi-TGDR, TGDR and its pairwise coupling,

and Meta-TGDR). Under the K class setting, where Yik are

indicator functions of class k (k = 1,…,K), let p̂pikdenote the

predicted probability such that Yik = 1. For easier interpretation

and comparison of GBS score across different classification

settings, we normalized the GBS by the sample size n as in [14]

Table 5. Psoriasis LS versus Normal genes by TGDR and Meta-TGDR after Bagging.

TGDR Meta- TGDR

Probe Symbol Description b bYao bGud bSF+ b

229963_at BEX5 brain expressed, X-linked 5 20.2958

207356_at DEFB4A defensin, beta 4A 1.9258 1.3188 2.1196 1.6617 1.9405

224209_s_at GDA guanine deaminase 0.8995 1.3512 1.4587 1.1601 1.5021

202411_at IFI27 interferon, alpha-inducible protein 27 0.69 0.0313 0.083 0.0556 0.2784

1555745_a_at LYZ lysozyme 0.312 0.1929 0.0934 0.1837 0.0633

205916_at S100A7 S100 calcium binding protein A7 0.6612 0.2597 0.414 0.2862 0.4206

212492_s_at KDM4B lysine (K)-specific demethylase 4B 20.1272

201846_s_at RYBP RING1 and YY1 binding protein 21.4184 20.3202 20.1995 20.4103 20.2907

201416_at SOX4 SRY (sex determining region Y)-box 4 20.1703

215363_x_at FOLH1 folate hydrolase (prostate-specific membrane
antigen) 1

0.3342

203335_at PHYH phytanoyl-CoA 2-hydroxylase 20.3569

205758_at CD8A CD8a molecule 0.1235

1556069_s_at HIF3A hypoxia inducible factor 3, alpha subunit 0.2577

213424_at KIAA0895 KIAA0895 20.3158

205132_at ACTC1 actin, alpha, cardiac muscle 1 20.1815

1431_at CYP2E1 cytochrome P450, family 2, subfamily E,
polypeptide 1

0.2671

230005_at SVIP small VCP/p97-interacting protein 20.1723

202668_at EFNB2 ephrin-B2 20.1202

205471_s_at DACH1 dachshund homolog 1 (Drosophila) 20.1171 20.0807 20.0722 20.0721

229625_at GBP5 guanylate binding protein 5 0.1256 0.0786 0.0659 0.1468

213293_s_at TRIM22 tripartite motif containing 22 0.1796 0.1428 0.1477 0.0042

202267_at LAMC2 laminin, gamma 2 20.0785 20.0844 20.0971 20.0942

Here, Normal skin samples serve as the reference. Bagging frequency .30% for TGDR and .40% for Meta-TGDR.
doi:10.1371/journal.pone.0078302.t005
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i.e.,
Xn

i~1

XK

k~1
(Yik{p̂pik)2=2n. By taking into consideration

the magnitudes of predicted probabilities, GBS, can establish

difference in performance of classifiers with same overall predictive

error. The smaller the GBS value, which after normalization takes

values in [0,1], the better a classifier performs.

The Experimental Data and preprocessing

procedures. Psoriasis: Open-access data from 3 published

studies [15–17] available under GEO accession numbers

GSE14905, GSE13355, and GSE30999, respectively were used,

including samples from Lesions (LS) and adjacent Non-Lesional

(NL) skin form psoriasis patients and Normal skin from healthy

patients. Details of these studies – using Hgu133plus2 Affymetrix

chips- are given in [18].

Lung cancer: The lung cancer data sets included GSE10245,

GSE18842, and GSE2109, all studies were performed on Affy

HGU 133plus2 chips and publicly available on the GEO

repository.

Pre-processing procedures: The raw Affymetrix data (CEL

files) of both lung cancer and psoriasis data sets were downloaded

from GEO repository and expression values were obtained using

FRMA algorithm [19][20]. To pool data from different studies

together and to address the batch effects from different experi-

ments, COMBAT algorithm [20] was used to adjust on the

combined expression values for these two combined data sets. For

the lung cancer data, moderated F/t-tests (limma package) were

conducted to identify differentially expressed genes (DEGs) with

cutoffs for FDR and fold change as 0.05 and 2, respectively. When

there are multiple probesets representing the same gene, the one

with the largest F-value was chosen. The resulting 949 unique

genes were fed into the downstream analysis. Note, for the TGDR

algorithm there is no limit on the number of genes fed into the

algorithm. However, it is common practice in high-throughput

experiments (e.g., Ma and Huang [5,9]) to rule out ‘‘non-

informative’’ genes using a filtering procedure before the

classification. By doing so, a large amount of computing time

can be saved with only partial set of genes put in classifiers; but

with no or least loss on the potential biomarkers since almost all

genes which have high probability to be biomarkers pass the

filtering. Relevantly, Tritchler et al. [21] explored the effect of

Table 6. Psoriasis LS versus NL genes by TGDR and Meta-TGDR after Bagging.

TGDR Meta- TGDR

Probe Symbol Description b bYao bGud bSF+ b

210002_at GATA6 GATA binding protein 6 20.1895

235603_at HNRNPU heterogeneous nuclear ribonucleoprotein
U (scaffold attachment factor A)

20.7306 20.4787 20.4382 20.5031 20.694

231875_at KIF21A kinesin family member 21A 20.1396

233819_s_at LTN1 listerin E3 ubiquitin protein ligase 1 20.0771

203476_at TPBG trophoblast glycoprotein 0.4798 0.1412 0.2202 0.2286 0.5236

234335_s_at FAM84A family with sequence similarity 84, member A 20.1498

230828_at GRAMD2 GRAM domain containing 2 20.4782 20.0935 20.1705 20.306 20.1539

224171_at LSM14B LSM14B, SCD6 homolog B (S. cerevisiae) 20.2053

230699_at PGLS 6-phosphogluconolactonase 20.5561 20.0144 20.2076 20.328 20.1485

1552797_s_at PROM2 prominin 2 20.1398

226404_at RBM39 RNA binding motif protein 39 20.0434 20.1364 20.155 20.1385 20.2417

202648_at RPS19 ribosomal protein S19 20.4381 20.3294 20.6499 20.9706 20.7572

230586_s_at ZNF703 zinc finger protein 703 20.76 20.1284 20.3829 20.2787 20.9174

211661_x_at PTAFR platelet-activating factor receptor 0.7216

203335_at PHYH phytanoyl-CoA 2-hydroxylase 20.3971

213849_s_at PPP2R2B protein phosphatase 2, regulatory subunit B, beta 20.1023

226367_at KDM5A lysine (K)-specific demethylase 5A 20.3457 20.0369 20.0484 20.0447 20.0001

228132_at ABLIM2 actin binding LIM protein family, member 2 20.5047 20.5503 20.5072 20.5825 20.7550

202267_at LAMC2 laminin, gamma 2 20.1007 20.0953 20.0976 20.1271 20.0387

213424_at KIAA0895 KIAA0895 20.2031

205132_at ACTC1 actin, alpha, cardiac muscle 1 20.2045

203127_s_at SPTLC2 serine palmitoyltransferase, long chain
base subunit 2

1.3511 0.4363 0.665 0.7786 0.9813

201487_at CTSC cathepsin C 0.0171 0.0155 0.0174 0.0000

217388_s_at KYNU Kynureninase 0.1287 0.1755 0.1958 0.0002

205863_at S100A12 S100 calcium binding protein A12 0.3597 0.5641 0.5861 0.0486

243417_at ZADH2 zinc binding alcohol dehydrogenase
domain containing 2

20.1611 20.1703 20.1686 20.1063

211661_x_at PTAFR platelet-activating factor receptor 0.6241 0.6422 0.7737 0.9329

Non-lesional skin samples serve as the reference. Bagging frequency .30% for TGDR and .40% for Meta-TGDR.
doi:10.1371/journal.pone.0078302.t006
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filtering on some downstream analysis (i.e., clustering and network

analysis) in their work and discussed in details the advantages of

filtering as a preprocessing step. For psoriasis data, the filtering

steps taken (including SD, ICC and DEGs using meta-analysis

method) were used by us previously and described in details there

[18]. Similar to the lung cancer data, conducting those filtering

steps is mainly for the purpose of saving the computing time. 2301

unique genes passed the filtering were fed into multi-TGDR and

Meta-TGDR algorithms.

Statistical language and packages. The statistical analysis

was carried out in the R language version 2.15 (www.r-project.

org), and packages were from the Bioconductor project (www.

bioconductor.org). R code for multi-TGDR is available upon

request.

Table 7. Psoriasis 3 classes genes selected by multi-TGDR after Bagging.

Probe Symbol Description b_NL b_LS Freq

203872_at ACTA1 actin, alpha 1, skeletal muscle 0.1043 20.2438 0.51

229963_at BEX5 brain expressed, X-linked 5 20.0688 20.8066 0.75

207356_at DEFB4A defensin, beta 4A 0.3202 0.672 0.46

235603_at HNRNPU heterogeneous nuclear ribonucleoprotein
U (scaffold attachment factor A)

0.2325 20.4157 0.68

205863_at S100A12 S100 calcium binding protein A12 20.9565 1.6449 0.42

205916_at S100A7 S100 calcium binding protein A7 0.4054 0.9465 0.81

226825_s_at TMEM165 transmembrane protein 165 20.0338 0.0811 0.58

206373_at ZIC1 Zic family member 1 0.2361 0.0792 0.59

203239_s_at CNOT3 CCR4-NOT transcription complex, subunit 3 20.2049 20.3561 0.43

201693_s_at EGR1 early growth response 1 20.182 20.094 0.47

234335_s_at FAM84A family with sequence similarity 84, member A 0.542 20.0105 0.99

214711_at GATC glutamyl-tRNA (Gln) amidotransferase, subunit C homolog (bacterial) 20.1048 0.0458 0.45

230828_at GRAMD2 GRAM domain containing 2 0.4728 20.0949 0.85

207764_s_at HIPK3 homeodomain interacting protein kinase 3 0.032 20.3303 0.54

212492_s_at KDM4B lysine (K)-specific demethylase 4B 20.6416 20.4202 0.88

214352_s_at KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 20.1416 20.0083 0.55

224171_at LSM14B LSM14B, SCD6 homolog B (S. cerevisiae) 0.443 0.0658 0.93

1556175_at MTSS1L metastasis suppressor 1-like 0.3438 0.015 0.85

202600_s_at NRIP1 nuclear receptor interacting protein 1 20.1361 20.3617 0.61

230699_at PGLS 6-phosphogluconolactonase 0.4517 20.049 0.79

229392_s_at PIK3R2 phosphoinositide-3-kinase, regulatory subunit 2 (beta) 0.6238 20.101 0.78

1552797_s_at PROM2 prominin 2 0.5688 0.0752 0.84

229806_at QRICH1 glutamine-rich 1 1.2418 20.6387 0.86

226404_at RBM39 RNA binding motif protein 39 0.4885 20.0797 0.96

202648_at RPS19 ribosomal protein S19 0.2297 20.0548 0.9

201846_s_at RYBP RING1 and YY1 binding protein 21.4064 21.2206 0.99

1563646_a_at TMEM67 transmembrane protein 67 0.2242 0.0222 0.48

243417_at ZADH2 zinc binding alcohol dehydrogenase domain containing 2 0.5824 20.0841 0.92

230586_s_at ZNF703 zinc finger protein 703 1.3228 20.0688 0.99

215363_x_at FOLH1 folate hydrolase (prostate-specific membrane antigen) 1 0.2521 0.5247 0.71

211661_x_at PTAFR platelet-activating factor receptor 20.1189 0.1913 0.51

203335_at PHYH phytanoyl-CoA 2-hydroxylase 0.4112 20.9118 0.61

202275_at G6PD glucose-6-phosphate dehydrogenase 0.0251 20.2045 0.52

1556069_s_at HIF3A hypoxia inducible factor 3, alpha subunit 20.0016 0.6154 0.62

213424_at KIAA0895 KIAA0895 0.0646 20.1698 0.48

215695_s_at GYG2 glycogenin 2 0.0756 20.0037 0.55

205132_at ACTC1 actin, alpha, cardiac muscle 1 0.1735 20.2476 0.6

1431_at CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1 0.0139 0.0433 0.45

230005_at SVIP small VCP/p97-interacting protein 20.0019 20.1661 0.43

There are 39 genes in the final model. Normal tissue from healthy controls serves as the reference. Bagging frequency .40%.
doi:10.1371/journal.pone.0078302.t007
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Results and Conclusions

Simulation studies
In this section, we use two simulated examples to study the

empirical performance of multi-TGDR.

Example 1
In the first simulation, 1006n iid standard normal (mean = 0,

variance = 1) random variables (i.e., X1,…,X100, those are vectors

of length n, n is the sample size), and n class membership outcome

variables (Y1,…,Yn) taking the values of 1–3 were simulated. The

logit function for class 2 and 3, having class 1 as reference, was

calculated through the following relationship:

f1~0:5{2X1z1:2X2z0:8X3

f2~{1:5z1:7X1{1:5X2{X4

where the logit for class 2 depends only on features X1 X2 X3 and

class 3 logit depends on features 1,2 and 4. According to this

model, 50 data sets were generated and analyzed by the proposed

multi-TGDR framework. Results for this simulation, summarized

in Table 1A shows that almost 100% of times the relevant features

were selected by multi-TGDR framework. As criticized by Wang

et al [22], lack of parsimony is an obvious disadvantage of TGDR

algorithms, a shortcoming inherited by the multi-TGDR. How-

Figure 1. The estimated coefficients of the genes selected by multi-TGDR in the psoriasis data. Normal skin tissues from controls served
as the reference. NL: Non-Lesional skin; LS: Lesional skin.
doi:10.1371/journal.pone.0078302.g001
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ever, the introduction of the Bagging procedure improves upon

parsimony.

Example 2
To explore the effect of the correlations among features (i.e.,

independent variables) may have on multi-TGDR, we set the

simulations as in the previous example but assumed the following

correlations among features: cor (X1, X5) = cor (X3, X7) = 0.8

and cor (X2, X6) = cor (X4, X8) = 20.8. Table 1B presents the

results for this simulation. When compared with the uncorrelated

scenario of example 1, the size of final selected feature is

marginally larger while the predictive errors are almost the same.

Nevertheless, multi-TGDR always selected the relevant features

successfully and has good predictive performance. Bagging

procedure improves upon both parsimony and predictive perfor-

mance. Thus, it is highly recommended to combine bagging with

any TGDR algorithm although bagging is very computing-time

intensive.

In high-throughput experiments, it is common practice to use

low-level analysis to eliminate non-informative features before

embarking on more complex, time-consuming modeling. To

evaluate if the pre-processing steps used in our data (see methods

section) can erroneously filter out the informative features, we

reran both simulations using only the 20% top features (ranked by

limma’s moderated t-tests). The results show that the exclusion of

non-informative features deemed by a pre-processing filtering

would not degrade the predictive performance of the final models.

In terms of implementation on real-world applications, this

filtering step eases the computational burden of downstream

analysis (i.e., TGDR and Bagging) by reducing the initial

dimensions of 50 k to a few thousands; a reasonable size even

for a PC.

Applications on microarray expression data
Using the real-world applications, the appropriateness and

accuracy of the proposed multi-TGDR was evaluated. We also

compared the performance of Meta-TGDR and TGDR under a

priori batch-adjustment.

Lung cancer
About 80% of lung cancers (LC), the leading cause of cancer-

related death throughout the world, are classified as non-small cell

lung carcinoma (NSCLC) with Adenocarcinoma (AC) and

squamous cell carcinoma (SCC) the two major subtypes of

NSCLC. SCC is characterized as a poorly differentiated tumor

subtype that develops in the proximal airways and is strongly

associated with cigarette smoking. In contrast, AC usually arises in

the peripheral airways and is more commonly observed in non-

smokers and women. Mutations have been identified in AC and

not in SCC, suggestion different mechanism of progression and

treatment response.

For LC data, we randomly divided it into 4 subsets with roughly

equal sizes and used 3 fold of them as the training set (n = 109) and

the remained 1-fold as the test set (n = 36). Using multi- TGDR

algorithm, 67 biomarkers were identified with 0% training error

and a predictive error of 20.2% in a 5-fold cross-validation (CV).

The comparison between pair-wise TGDRs and the multi-class

TGDR is summarized in Table 2, and it shows that multi-TGDR

over-perform the pair-wise strategy in all performance statistics. In

terms of computing time, a single run of binary TGDR (including

the determination of tuning parameters using cross-validation and

model estimation) took on average 19 seconds on a MacBook

equipped with double-core 1.8 GHz processors and 8GB RAM.

Thus, for the LC data, the total computing time for the pair-wise

TGDRs was about 2 minutes and only 77 seconds for the multi-

TGDR framework, saving about 36% of the computing time.

After applying Bagging (NB = 100) to the LC data, we found

that all genes in the 67-gene signature produced by multi-TGDR

appear in the classifier with more than 5% frequency and 19 of

them has bragging frequencies (BF) larger than 40% (Table 3).

CYP24A1 is the gene most frequently selected (77%) followed by

PNLDC1 (67%). By reducing the multi-TDGR signature to those

genes with BF .40%, the performance showed slightly improve-

ment by a predictive error reduction of 2.78% on the test set.

We concluded that bagging procedure discarded the random

noises produced by a single run of TGDR. Furthermore, the

calculation of membership probabilities in multi-class TGDR is

more straightforward compared to the pair-wise coupling. Given it

is intrinsically challenging to derive meaningful diagnostic

signatures from high-throughput experiments in complicated

problems like this, one major objective of presenting this data

set is to use it as a benchmark for the development of more suitable

classifiers on lung cancer subtypes and stages.

Psoriasis
Psoriasis vulgaris is a common chronic inflammatory skin

disease of varying severity, characterized by red scaly plaques.

Publicly data from 3 published studies [15–17] were used,

including samples from Lesional (LS) and adjacent Non-Lesional

(NL) skin of psoriasis patients and Normal skin from healthy

patients.

Here, we used the psoriasis data to investigate the effect of the

Batch/study adjustment in the performance of TGDR and Meta-

TGDR, as well as to further evaluate multi-TGDR. Again, we

randomly divided the whole data into 5 subsets with roughly equal

sizes and used 4 fold of them as the training set (n = 360) and the

left one fold as one test set (n = 89). By doing so, we can evaluate

the validity of the proposed equation for the overall estimates since

both the study-specific and overall estimates are available for the

samples in this test set.

Here, we first present the performance of the binary classifiers

followed by the multi-class problem. The binary classifiers (LS vs

Normal, LS vs NL and NL vs Normal) will allow us 1) to assess the

effect of batch adjustment on the performance of TGDR and

Meta-TGDR and 2) to evaluate the validity of the method

proposed here to allow prediction of independent data set in the

Meta-TDGR framework.

Binary Classification Problems in Psoriasis Data. The

results for all 3 comparisons were presented in Table 4A. The

positive effect of batch adjustment on Meta-TDGR’s performance

is striking and consistent across all comparisons and datasets.

When the data were adjusted for batch effect before classification,

TGDR and Meta-TGDR had identical miss-classification rates on

training and testing samples in all 3 comparisons and TGDR

slightly outperformed in terms of GBS.

LS versus normal: Using TGDR on batch-adjusted expres-

sion from LS and Normal skin samples, we identified 30

biomarkers with a 0% and 0.86% training and CV-5 error,

respectively. Bragging (NB = 100) frequencies were above 5% for

all 30 genes. By considering a series of cutoff values for the

frequency (5%–50%), a 30% for BF was chosen as it minimized

the GBS and misclassification rates with the smallest number of

non-zero genes leading to a final model with 18 genes (Table 4).

Meta-TGDR (after batch adjustment) identified 22 biomarkers all

with BF.5%. Cut-off for BF was set at 40% and among the 10

selected genes (see Table 5), 6 (p,0.0001) overlapped with the 18

genes in the TGDR bagging classifier.

The Extension of TGDR to Multi-Class Cases
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LS versus NL: TGDR signature for LS vs NL classification

included 35 biomarkers with a training error of 0% and 1.48% in

5-CV. Applying Bagging procedure (NB = 100) the final model

(with BF .30%) included 22 genes (see Table 6). Meta-TGDR on

the adjusted data identified a 25 genes signature, all with BF .5%

and 16 of them above the selected cut-off of 40% for BF (See

Table 6). There is still an impressive overlapping (n = 11) between

these 16 genes and the 22 genes chosen by TGDR bagging model

(Fisher’s test: p,0.0001).

Although Meta-TGDR is more parsimonious, k (the number of

steps\iterations) is always dramatically bigger than in TGDR for

the same value of the tuning parameter t in both algorithms. One

possible explanation is that by allowing different coefficients for a

specific gene across studies, the direction of updating path in

individual study may differ, probably leading to a cancel-out

among one another. Therefore, the gradients might descend at

higher speed in TGDR than meta-gradients in Meta-TGDR and

the maximized likelihood value might be reached within fewer

steps. Since separate gradient matrixes were calculated for each

study in meta-TGDR and the tuning parameter k is always bigger

(gradient matrix and threshold function must be calculated in each

iteration), the computing time of meta-TGDR is expected to be

substantially longer than that of TGDR (e.g., for LS vs NL

comparison, meta-TGDR used 9 minutes and 42 seconds to

determine on the tuning parameters and to estimate the

coefficients while TGDR used 2 minutes and 46 seconds).
Psoriasis 3-class classification. Here we evaluate the

performance of the multi-TGDR versus the classifier build using

all pairwise binary TGDRs. The performance of the Meta-multi-

TGDR for adjusted and unadjusted data is also presented.

Using multi-TGDR on the training set, we identified 60 genes

with 0% training error 1.67% error in 5 fold CV. Interestingly; the

number of selected genes by multi-TGDR is approximately the

sum of all individualized binary TGDRs. The size went down to

39 genes (Table 6) when bagging frequency being larger than the

selected cut-off (40%). Again, disposal of the low-BF genes did not

hurt the predictive performance. On the contrary, it improves the

predictive performance in terms of GBS for both training and

testing samples.

The classifier built by combining the 3 pairwise binary TGDR

had the same in-training performance as multi-TGDR using 76

genes, with 44 of them being part of the multi-TGDR classifier

(p,0.0001). The inconsistency between two algorithms is partially

because local optimal points in individualized binary TGDRs

cannot warrant the global optimality in the multi-TGDR. With

this data set, multi-TGDR and pairwise binary TGDR had similar

performance while multi-TGDR was more parsimonious. Addi-

tionally, total computing time was about 8 minutes for pair-wise

strategy and 4.5 minutes for the multi-TGDR framework. Multi-

TGDR with Bagging provided the best performance (see Table 7

and Figure 1). This shed some evidence on appropriation and

accuracy of the multi-TGDR framework. Certainly, further

evaluation using independent test sets is needed.

Surprisingly, the performance of Meta-multi-TGDR, where

coefficients for both classes and studies are included is not

impressive. This may partially due to the fact that Meta-multi-

TGDR intends to find consistent-expressed genes across all classes

and studies (one possible reason why the number of non-zero

genes in multi-Meta-TGDR is the smallest). Based on the analyses

conducted here, we illustrated that TGDR on the adjusted data

has a similar or better performance compared to Meta-TGDR,

thus we think Meta-multi-TGDR, with its increase complexity and

computing burden, is quite unnecessary. Nonetheless, the Meta-

multi-TGDR greatly improved after batch adjustment reducing

training error from 18.33% to 7.11% and predictive error (on test

set) from 27% to 6.74%, demonstrating that the adjustment of

batch effect is imperative.

Discussion

When several microarray studies address the same or similar

objectives, it is statistically more robust to carry out the analysis by

pooling all studies together. To identify molecular signatures that

discriminate among different disease status or stages on the pooled

data, one can either apply TGDR to the batch-effect adjusted

expression values for all samples, or use Meta-TGDR to select

consistently informative genes and obtain the overall estimates

using the procedure we proposed in the paper.

Using real-world applications, we showed that TGDR and

Meta-TGDR have approximately equal predictive performance

when the data has been adjusted for batch-effect. Compared to the

latter method, TGDR on the adjusted data saves computing time,

and do not require that all classes must be represented in each

study. However, the stability of Meta-TGDR is usually better than

TGDR as shown by the analyses of psoriasis data, and future work

must be done to improve more on stability of TGDR. Nonetheless,

applying Meta-TGDR on the unadjusted data had worse

predictive performance compared to the analyses on the adjusted

data. This verified our conjecture that Meta-TGDR aims mainly

at selecting consistent genes across studies, with few to no capacity

to adjust for a large batch-effect.

Additionally, we assembled our analyses with the Bagging

procedure [12]. The benefits of Bagging including improved

selection stability; more classification accuracy; and protection

against over-fitting are clearly illustrated here.

Since multi-TGDR is an extension to binary TGDR, whose

performance had been proved to be equal or superior to many

other classification methods in the original papers [9], we did not

compare the multi-TGDR with other classification methods and

rather focus on the important issues addressed here: making Meta-

TGDR useful in practice by offering a solution to the prediction of

independent datasets, comparing TGDR and Meta-TGDR

performance after batch adjustment and extending both algo-

rithms to the multiclass setting. Future work should involve a

comprehensive comparison of multi-TGDR’ performance with

other multi-class classification methods and the identification of

data types most suitable for multi-TGDR. We currently devote

ourselves to such extensive and laborious work. Additionally, as

the numbers of classes in the applications presented here are not

big (4 in LC and 3 in psoriasis data, respectively), future work will

include some applications of the multi-TGDR framework with a

large number of classes, where the performance of pair-coupling

has been reported to decrease dramatically, to see if a single

likelihood-based classifier like multi-TGDR can be a rescue.
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