Skip to main content
. 2013 Nov 19;8(11):e78302. doi: 10.1371/journal.pone.0078302

Table 4. Performance of Classifiers for Psoriasis data.

A. Binary Classifiers
Training (n = 360) Test set (n = 89)
Method # genes Error (%) 5-fold CV (%) GBS PE (%) GBS
LS vs Normal Training: 233 Test: 49 TDGR (adjusted) 30 0 0.86 0.0001 0 0.0006
Meta-TGDR (unadjusted) 18 0 0.86 0.0010 2.04 0.0084
Meta-TGDR (adjusted) 22 0 0.86 0.0006 0 0.0028
TDGR w/Bagging (adjusted, BF >30%) 18 0 0.0011 0 0.0004
Meta-TGDR w/Bagging (adjusted, BF >30%) 10 0 0.0012 0 0.0032
LS vs NL Training: 271 Test: 68 TDGR (adjusted) 35 0 1.48 0.0009 1.47 0.0136
Meta-TGDR (unadjusted) 26 1.11 1.85 0.0105 2.94 0.0294
Meta-TGDR (adjusted) 25 0 1.48 0.0036 1.47 0.0143
TDGR w/Bagging (adjusted, BF >30%) 22 0 0.0021 1.47 0.0144
Meta-TGDR w/Bagging (adjusted, BF >40%) 16 1.48 0.0041 1.47 0.0142
NL vs Normal Training: 216 Test: 61 TDGR (adjusted) 26 0 0 1.5×10−5 0 7.3×10−5
Meta-TGDR (unadjusted) 40 5.56 18.06 0.0570 8.20 0.0659
Meta-TGDR (adjusted) 22 0 1.85 0.0032 0 0.0054
TDGR w/Bagging (adjusted, BF >30%) 24 0 2.4×10−5 0 7.3×10-5
Meta-TGDR w/Bagging (adjusted, BF >40%) 21 0 0.0033 0 0.0054

A. Comparison between TGDR and Meta-TGDR for binary classifiers. B. Comparisons between TGDR and Meta-TGDR for 3-class classifiers.