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AFosB Induction in Striatal Medium Spiny Neuron Subtypes
in Response to Chronic Pharmacological, Emotional, and
Optogenetic Stimuli
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The transcription factor, AFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse,
antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of AFosB induction in the two
striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of AFosB
in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell
and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, A(9)-
tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the
serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic expo-
sure to many stimuli induces AFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated
induction of AFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these
regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral
hippocampus. These optogenetic conditions lead to highly distinct patterns of AFosB induction in MSN subtypes in NAc core and shell.
Together, these findings establish selective patterns of AFosB induction in striatal MSN subtypes in response to chronic stimuli and

provide novel insight into the circuit-level mechanisms of AFosB induction in striatum.

Introduction

Chronic stimuli, including drugs of abuse, antipsychotic drugs,
stress, and natural rewards, cause the stable accumulation of
AFosB, a truncated product of the FosB gene, in striatum (e.g.,
Hope et al., 1994; Hiroi and Graybiel, 1996; Hiroi et al., 1997;
Moratalla et al., 1996; Perrotti et al., 2004, 2008; Muller and Un-
terwald, 2005; McDaid et al., 2006; Teegarden and Bale, 2007;
Wallace et al., 2008; Solinas et al., 2009; Vialou et al., 2010, 2011;
Kaplan et al., 2011). This accumulation leads to the bidirectional
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regulation of many genes by AFosB in this brain region (Mc-
Clung and Nestler, 2003; Renthal et al., 2008, 2009; Vialou et al.,
2010; Robison and Nestler, 2011). The striatum is composed
mainly (~95%) of GABAergic projection medium spiny neurons
(MSNs), which are segregated into two subtypes based on their
enrichment of many genes, including dopamine receptor 1 (D1)
or dopamine receptor 2 (D2) (Gerfen, 1992; Graybiel, 2000; Lobo
etal., 2006; Heiman et al., 2008) and by their differential outputs
to distinct subcortical structures (Albin et al., 1989; Gerfen, 1992;
Kalivas et al., 1993; Graybiel, 2000; Nicola, 2007; Smith et al.,
2013). Recently, there has been an abundance of reports demon-
strating distinct molecular and functional roles of these MSN
subtypes in ventral striatum (nucleus accumbens [NAc]) and
dorsal striatum (dStr) in mediating motivational and motor be-
haviors (Lobo and Nestler, 2011; Gittis and Kreitzer, 2012).
Previous studies have demonstrated that AFosB is induced
primarily in D1-MSNs by chronic treatment with cocaine or
chronic wheel running, a form of natural reward (Moratalla et al.,
1996; Werme et al., 2002; Lee et al., 2006), whereas chronic re-
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straint stress induces AFosB in both MSN subtypes (Perrotti et
al., 2004). Further, compelling evidence from cell type-specific
transgenic lines or viral-mediated gene transfer demonstrates
that AFosB induction in DI1-MSNs increases behavioral and
structural plasticity to cocaine, behavioral responses to mor-
phine, wheel running, food reward, and resilience to chronic so-
cial defeat stress, whereas AFosB induction in D2-MSNs
negatively regulates behavioral responses to wheel running (Kelz
etal., 1999; Werme et al., 2002; Colby et al., 2003; Olausson et al.,
2006; Zachariou et al., 2006; Vialou et al., 2010; Grueter et al.,
2013; Robison et al., 2013).

Given the crucial role for AFosB in regulating these chronic
motivational stimuli, with distinct effects in D1-MSNs versus
D2-MSNs, we perform here a comprehensive study on the pat-
terns of AFosB induction in MSN subtypes by several chronic
stimuli, including chronic exposure to drugs of abuse, chronic
treatment with an antipsychotic drug, chronic exposure to al-
tered environmental and appetitive stimuli, chronic social defeat
stress, and chronic treatment with an antidepressant. To under-
stand the circuit mechanisms controlling AFosB induction in
striatum by several afferent limbic brain regions, we use optoge-
netic technologies to repeatedly activate cell bodies in dopami-
nergic or glutamatergic afferent brain regions and examine the
resulting AFosB induction in MSN subtypes. Our results provide
novel insight into the induction of AFosB in striatal D1-MSNs
and D2-MSNs by chronic stimuli and, for the first time, demon-
strate the circuit-mediated induction of AFosB in striatum and
within selective MSN subtypes.

Materials and Methods

Animals. DI-GFP or D2-GFP hemizygote mice (Gong et al., 2003) on a
C57BL/6 background were maintained on a 12 h light dark cycle with ad
libitum food and water. All studies were conducted in accordance with
the guidelines set up by the Institutional Animal Care and Use Commit-
tees at the University of Maryland School of Medicine and Icahn School
of Medicine at Mount Sinai. Male mice (age 8 weeks) were used for all
experiments. All mice were perfused, and brains were collected during
the afternoon of the light cycle. Hemizygote DI-GFP and D2-GFP mice
ona C57BL/6 or FVB/N background have been shown to be equivalent to
wild-type mice with respect to behavior, physiology of D1-MSNs and
D2-MSNs, and development of the MSNs (Lobo et al., 2006; Chan et al.,
2012; Nelson et al., 2012). Moreover, the overall patterns of AFosB in-
duction seen in this study are comparable with those seen in wild-type
animals with non—cell type-selective tools (e.g., Perrotti et al., 2004,
2008).

Cocaine treatment. D1-GFP (n = 4 per treatment) and D2-GFP (n = 4
per treatment) mice received 7 daily intraperitoneal injections of cocaine
(20 mg/kg) or 0.9% saline in the home cage. For 1 or 3 d cocaine (20
mg/kg) injections, mice received 6 or 4 d of 0.9% saline injections fol-
lowed by 1 or 3 d of cocaine injections, respectively. All mice were per-
fused 24 h after the last injection. This dose of cocaine was selected based
on previous studies (e.g., Maze et al., 2010).

Haloperidol treatment. DI-GFP (n = 3 or 4 per treatment) and D2-
GFP (n = 4 per treatment) mice received haloperidol (2 mg/kg) in the
drinking water, pH 6.0 (Narayan et al., 2007), or regular drinking water,
pH 6.0, for 3 weeks (21 d). Mice were perfused on day 22.

Morphine treatment. D2-GFP mice (n = 4 or 5 per treatment) were
briefly anesthetized with isoflurane and received subcutaneous implants
of morphine (25 mg) or sham pellets on day 1 and day 3 as previously
described (Mazei-Robison et al., 2011). Mice were perfused on day 5.

Ethanol treatment. D2-GFP mice (n = 4 or 5 per treatment) were
exposed to 10% ethanol (EtOH), a dose that C57BL/6 have been shown
to drink (Yoneyama etal., 2008). Mice were given a two bottle choice test
for 10% EtOH (bottle A) and water (bottle B), whereas D2-GFP controls
received water in both bottles (bottle A and B) for 10 d. All mice receiving
EtOH bottles exhibited a preference for EtOH as calculated by (100 X

Lobo et al.  AFosB Induction in Striatal Medium Spiny Neuron Subtypes

bottle A volume/[bottle A volume + bottle B volume]). Mice that received
the 10% EtOH bottle consumed significantly more EtOH compared with
water, whereas mice receiving water in both bottles demonstrated no differ-
ence in liquid consumption. On the evening of day 10, all mice were given
normal drinking water and were perfused on day 11.

A(9)-tetrahydrocannabinol (A(9)-THC) treatment. D2-GFP (n = 3 per
treatment) mice received intraperitoneal injections of A(9)-THC (10
mg/kg) or vehicle (0.9% saline with 0.3% Tween) twice a day for 7 d
(Perrotti et al., 2008). Mice were perfused 24 h after the last injection.

Cocaine self-administration. D2-GFP mice (n = 4 or 5 per treatment)
were initially trained to lever press for 20 mg sucrose pellets on a fixed
ratio 1 (FR1) reinforcement schedule until an acquisition criterion of 30
sucrose pellets consumed for 3 consecutive test days was reached accord-
ing to standard procedures (Larson et al., 2010). Mice that learned to
lever press were surgically implanted with an intravenous jugular cathe-
ter to allow for subsequent cocaine intravenous administration. One
week after surgery, mice were introduced to the self-administration par-
adigm during 2 h daily sessions on an FR1 schedule of reinforcement.
The self-administration equipment (Med Associates) was programmed
such that a response on the active lever resulted in the delivery (over 2.5 s)
of cocaine (0.5 mg/kg/infusion per correct lever press), whereas a re-
sponse on the inactive lever had no programmed consequence. Mice
self-administered cocaine on an FR1 schedule in daily 2 h sessions, 5 d per
week, for 3 weeks. D2-GFP mice receiving 0.9% saline injections over the
equivalent time period were used as controls. Mice were perfused 24 h
after the last cocaine or saline administration.

Heroin self-administration. Before heroin self-administration, D2-GFP
mice (n = 4 per treatment) were trained to lever press for chocolate
pellets (BioServ, Dustless Precision Pellets) in seven 1 h daily sessions.
Mice that learned to lever press were surgically implanted with an intra-
venous jugular catheter to allow for subsequent heroin intravenous
administration. One week after surgery, mice were introduced to the
self-administration paradigm during 3 h daily sessions on a FR1 schedule
of reinforcement according to standard procedures (Navarro et al.,
2001). The self-administration equipment (Med Associates) was pro-
grammed such that a response on the active lever resulted in the delivery
(over 5 s) of heroin (30 pg/kg/injection; NIDA Drug Supply Program),
whereas a response on the inactive lever had no programmed conse-
quence. Animals were given access to the heroin self-administered pro-
cedure for 14 d. D2-GFP mice receiving 0.9% saline injections over the
equivalent time period were used as controls. Mice were perfused 24 h
after the last heroin or saline administration.

Juvenile environmental enrichment. D2-GFP (n = 4 per group) mice
were weaned into an enriched environment or normal housing condi-
tions at postnatal day 21 (P21) using a paradigm adapted from rats
(Green et al., 2010). The enriched environment consisted of a larger
hamster cage with enrich-o-cob bedding (Andersons Laboratory bed-
ding) filled with enrichment devices that included mouse tunnels, dome
and wheels, crawl balls, huts (Bio Serv), and other toys. Mice remained in
the housing conditions for 4 weeks until P50 and were then perfused.

Sucrose treatment. D2-GFP mice (n = 4 or 5 per treatment) were given
a two bottle choice test for 10% sucrose similar to a previous study
(Wallace et al., 2008). Mice were given 10% sucrose (bottle A) and water
(bottle B), whereas D2-GFP controls received water in both bottles for
10 d. All mice receiving sucrose bottles exhibited a preference for sucrose
as calculated by (100 X bottle A volume/bottle A volume + bottle B
volume). Mice that received the 10% sucrose bottle consumed signifi-
cantly more sucrose compared with water, whereas mice receiving water
in both bottles demonstrated no difference in liquid consumption. On
the evening of day 10, all mice were given normal drinking water and
were perfused on day 11.

Calorie restriction. D2-GFP mice (n = 4 per genotype) went through a
calorie restriction protocol, in which they received 60% of ad libitum
calories daily (Vialou etal., 2011) for 10 d. D2-GFP control mice received
full access to chow. On the evening of day 10, all mice received full access
to chow and were perfused on day 11.

Social defeat stress. D2-GFP mice (n = 4 or 5 per group) underwent
10 d of social defeat stress as described previously (Berton et al., 2006;
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Krishnan et al., 2007). Mice were exposed to aggressive CD1 retired
breeders for 5 min in a large hamster cage. Mice were then housed for
24 hin the same cage on the other side of a perforated divider to maintain
sensory contact. The next day mice were exposed to a new CD1 mouse
under the same conditions and housing. This was repeated for 10 d with
anew CD1 each day. Control mice were housed under similar conditions
without defeat stress. Mice were tested for social interaction on day 11.
Mice were first tested for time spent interacting with a novel chamber in
an open field box without another mouse present (no target) and then
subsequently tested for time spent interacting with a novel CD1 mouse
(target) that was contained behind the chamber (Berton et al., 20065
Krishnan et al., 2007). Mice were segregated into susceptible or resilient
groups based on parameters previously described (Krishnan et al., 2007).
This included overall time spent with the novel mouse and the interac-
tion ratio: (time spent with target/time spent with no target) X 100. This
measure has been shown to reliably identify susceptible and resilient
groups and is highly correlated with other behavioral differences (Krish-
nan et al., 2007). All mice were perfused 24 h after the social interaction
test (48 h after the last social defeat episode).

Fluoxetine treatment. D2-GFP mice (n = 3 or 4 per group) received 14
daily intraperitoneal injections of fluoxetine (20 mg/kg) or vehicle (0.9%
saline with 10% cyclodextrin) (Berton et al., 2006). Mice were perfused
24 h after the last injection.

Stereotaxic surgery. D2-GFP mice were anesthetized with ketamine
(100 mg/kg)/xylazine (10 mg/kg), placed in a small-animal stereotaxic
instrument, and their skull surface was exposed. Thirty-three gauge sy-
ringe needles were used to unilaterally infuse 0.5-1 ul, at a rate of 0.1 ul
per minute, of virus bilaterally into the ventral tegmental area (VTA),
medial prefrontal cortex (mPFC), amygdala, or ventral hippocampus
(VHippo). AAV [adeno-associated virus]-hSyn-ChR2 [channelrhodop-
sin 2]-EYFP or AAV-hSyn-EYFP was infused into the VTA of D2-GFP
mice (n = 5 per group) at stereotaxic coordinates (anterior—posterior,
—3.3 mm; lateral-medial, 0.5 mm; dorsal-ventral, —4.4 mm, 0° angle).
This was followed by bilateral cannula (26-gauge), with a length of 3.9 mm,
implantation over the VTA (anterior—posterior, —3.3 mm; lateral-medial,
0.5 mm; dorsal-ventral, —3.7 mm) (Koo etal., 2012; Chaudhuryetal., 2013).
AAV-CaMKII-ChR2-mCherry or AAV-CaMKII-mCherry were injected
into the mPFC (n = 4 or 5 per group), amygdala (n = 3 or 4 per group), or
vHippo (1 = 3 or 4 per group) of D2-GFP mice followed by implantation of
105 wm chronic implantable optic fibers (Sparta et al., 2011). Coordinates
were as follows: mPFC (infralimbic was targeted, but we observed spillover
of virus to prelimbic regions: anterior—posterior, 1.7 mm; lateral-medial,
0.75 mm; dorsal-ventral, —2.5 mm, 15° angle) and optic fiber (dorsal-ven-
tral, —2.1 mm); amygdala (basolateral amygdala was targeted, but we
observed spillover of virus into the central nucleus of the amygdala; anterior—
posterior, —1.6 mm; lateral-medial, 3.1 mm; dorsal-ventral, —4.9 mm, 0°
angle) and optic fiber (dorsal-ventral, —4.9 mm); vHippo (ventral subicu-
lum was targeted, but we observed spillover of virus into other regions of
ventral hippocampus; anterior—posterior, —3.9 mm; lateral-medial, 3.0
mm; dorsal-ventral, —5.0 mm, 0° angle) and optic fiber (dorsal-ventral,
—4.6 mm).

Optogenetic conditions. For in vivo optical control of VTA neuronal
firing, a 200 wm core optic fiber patch cord was modified for attachment
to the cannula. When the fiber was secured to the cannula, the tip of the
fiber extended ~0.5 mm beyond the cannula (Lobo et al., 2010; Chaud-
hury et al., 2013). For in vivo optical control of mPFC, amygdala, and
vHippo neuronal firing, a 62.5 wm split fiber patch cord was attached to
the implantable head mount fibers (Sparta et al., 2011). Optic fibers were
attached through an FC/PC adaptor to a 473 nm blue laser diode (Crystal
Lasers, BCL-473-050-M), and light pulses were generated through a
stimulator (Agilent, 33220A). For VTA, blue light (473 nm) phasic
pulses, 20 Hz for 40 ms (Chaudhury et al., 2013), were delivered for 10
min a day over 5 d. For mPFC, amygdala, and vHippo, blue light (473
nm) pulses, 20 Hz for 30 s, were delivered for 10 min a day for 5 d. Light
delivery occurred in the home cage, and all mice were perfused 24 h after
the last light stimulation.

In vitro patch-clamp electrophysiology. Whole-cell recordings were ob-
tained from VTA dopamine neurons or mPFC glutamatergic neurons in
acute brain slices from mice injected with viruses noted above. Slice
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recordings were performed on mice with no in vivo stimulation, but with
1 d of slice stimulation (1 d) or 4 d of in vivo stimulation and 1 d of slice
stimulation (5 d). To minimize stress and to obtain healthy slices, mice
were anesthetized immediately after being brought to the electrophysi-
ology area and perfused for 40— 60 s with ice-cold aCSF, which contained
128 mm NaCl, 3 mm KCl, 1.25 mm NaH,PO,, 10 mm p-glucose, 24 mm
NaHCO;, 2 mM CaCl,, and 2 mm MgCl, (oxygenated with 95% O, and
5% CO,, pH 7.4, 295-305 mOsm). Acute brain slices containing mPFC
or VTA were cut using a microslicer (Ted Pella) in cold sucrose-aCSF,
which was derived by fully replacing NaCl with 254 mm sucrose and
saturated by 95% O, and 5% CO,. Slices were maintained in a holding
chamber with aCSF for 1 h at 37°C. Patch pipettes (3—5 M{}), for whole-
cell current, were filled with internal solution containing the following:
115 mm potassium gluconate, 20 mm KCl, 1.5 mm MgCl,, 10 mm phos-
phocreatine, 10 mm HEPES, 2 mm magnesium ATP, and 0.5 mm GTP
(pH 7.2, 285 mOsm). Whole-cell recordings were performed using aCSF
at 34°C (flow rate = 2.5 ml/min). Blue light trains (20 Hz for mPFC or
phasic 20 Hz, 40 ms for VTA) were generated by a stimulator connected
viaa FC/PC adaptor to a 473 nm blue laser diode (OEM) and delivered to
mPFC and VTA slices via a 200 wm optical fiber. Current-clamp exper-
iments were performed using the Multiclamp 700B amplifier, and data
acquisition was performed in pClamp 10 (Molecular Devices). Series
resistance was monitored during the experiments, and membrane cur-
rents and voltages were filtered at 3 kHz (Bessel filter).

Immunohistochemistry. Mice were anesthetized with chloral hydrate
and perfused with 0.1 m PBS followed by 4% paraformaldehyde in PBS.
Brains were postfixed in 4% paraformaldehyde overnight and then cyro-
preserved in 30% sucrose. Brains were sectioned on a cryostat (Leica) at
35 um into PBS with 0.1% sodium azide. For immunohistochemistry,
sections were blocked in 3% normal donkey serum with 0.01% Triton-X
in PBS for 1 h on the shaker at room temperature. Sections were then
incubated in primary antibodies in block overnight on the shaker at
room temperature. Antibodies used were the following: rabbit anti-FosB
(1:2000, catalog #sc-48, Santa Cruz Biotechnology), mouse anti-NeuN
(1:1000, catalog #MAB377, Millipore), chicken anti-GFP (1:5000, cata-
log #10-20, Aves), and rabbit anti-CREB (cAMP response element bind-
ing protein; 1:1000, catalog #06-863, Millipore). The next day, sections
were rinsed in PBS followed by a 1 h incubation in secondary antibodies:
donkey anti-rabbit Cy3, donkey anti-mouse Cy5, and donkey anti-
chicken DyLight-488 or Alexa-488 (Jackson ImmunoResearch Labora-
tories). For mCherry and tyrosine hydroxylase immunohistochemistry,
experiments were performed as previously described (Lobo et al., 2010;
Mazei-Robison et al., 2011). Sections were rinsed in PBS, mounted onto
slides, and coverslipped.

Imaging and cell counting. Immunofluorescence was imaged on a Zeiss
Axioscope or Olympus Bx61 confocal microscope. Cell counting was
performed with Image] software. Images sampling bregma 1.42-1.1 of
NAc (core and shell) and dorsal striatum were taken from 2 or 3 brain
sections/animal (see Fig. 1A). A total of 400500 cells were counted per
brain region per mouse using 250 wm X 250 wm images. Cells were
counted using Image]J software similar to a previous study (Lobo et al.,
2010). Approximately 400-500 total NeuN cells were counted per brain
region per mouse, and then the number of GFP ™, GFP ":AFosB *,
GFP ~, and GFP ":AFosB * cells were counted in each region. Data were
quantified as follows: (GFP *:AFosB ¥ neurons X 100%)/(total GFP ©
neurons) and (GFP ~:AFosB " neurons X 100%)/(total GFP ~ neurons).
Statistical analyses were performed using GraphPad Prism software.
Two-way ANOVAs followed by Bonferroni post tests were used for all
cell counting analyses.

Results

AFosB is differentially induced in D1-MSNs and D2-MSNs
after repeated exposure to cocaine versus haloperidol

We first examined AFosB induction in MSN subtypes in D1-GFP
and D2-GFP mice using chronic cocaine conditions previously
shown to preferentially induce AFosB protein in D1-MSNs (Mo-
ratalla et al., 1996). DI-GFP and D2-GFP BAC transgenic mice,
which express enhanced green fluorescent protein under the D1
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section demonstrates the three striatal regions studied: NAc core, NAc shell, and dStr. Scale bar, 500 wm. B, Time course of chronic (7 d) cocaine (20 mg/kg, i.p.) or saline treatment, with brains
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exposure (two-way ANOVA, cell type X day F, 13, = 17.87, p << 0.01, Bonferroni post test: *p < 0.01, **p << 0.001).

or D2 receptor gene (Fig. 1A), received intraperitoneal injections
of cocaine (20 mg/kg) or saline for 7 d, and brains were collected
24 h after the final injection (Fig. 1B). We then performed immu-
nohistochemistry on brain sections using antibodies against
NeuN, GFP, or FosB and imaged and counted cells in NAc core,
NAc shell, and dStr (Fig. 1 A, C). Whereas the anti-FosB antibody
recognizes full-length FosB and AFosB, numerous studies using
Western blotting or immunohistochemistry have confirmed that
AFosB is the only detectable species present at the 24 h with-
drawal time point (e.g., Perrotti et al., 2008). We therefore used
the 24 h or longer time point to collect brains after all conditions
in this study to ensure that we are only detecting AFosB. Because
striatal MSNs comprise ~95% of all neurons in striatum, we used
NeuN immunolabeling to identify the GFP ™ neurons, which are
enriched in the opposite MSN subtype (i.e., D2-MSNs in the
DI1-GFP mice and D1-MSNs in the D2-GFP mice). We found that
DI-GFP mice treated with cocaine display a significant induction

of AFosB in GFP */NeuN* neurons (D1-MSNs) in NAc core,
NAc shell, and dStr, whereas GFP “/NeuN * cells (D2-MSNs)
showed no significant induction of AFosB in all striatal regions
(Fig. 1D): two-way ANOVA, NAc core: drug X cell type F(; ;,) =
16.41, p < 0.05, Bonferroni post test: p < 0.01; NAc shell: drug X
cell type F(, ,,, = 12.41, p < 0.05, Bonferroni post test: p < 0.001;
dStr: drug X cell type F, ,,, = 12.07, p < 0.05, Bonferroni post
test: p < 0.01. Consistent with these findings, we observed in
D2-GFP mice no significant induction of AFosB in GFP "/
NeuN " neurons (D2-MSNs) but a significant induction of
AFosB in GFP ~/NeuN ¥ (D1-MSNs) in all striatal regions after
cocaine treatment (Fig. 1D): two-way ANOVA, NAc core: drug X
cell type F, ;) = 15.76, p < 0.01, Bonferroni post test: p <
0.0001; NAc shell: drug X cell type: F(, ;,, = 20.33, p < 0.05,
Bonferroni post test: p << 0.01; dStr: drug X cell type: F, ,,) =
35.96, p < 0.01, Bonferroni post test: p < 0.001. We examined the
kinetics of AFosB induction in MSNs after 1, 3, or 7 d of cocaine
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Figure 2.  Chronic haloperidol selectively induces AFosB in D2-MSNs in striatal regions. A, Time course of 21 d treatment of
haloperidol (2 mg/kg, in the drinking water) or water. B, Inmunohistochemistry of NAc shell of D7-GFP and D2-GFP mice after
haloperidol or water treatment. Immunolabeling for GFP (green), AFosB (red), or NeuN (blue) shows induction of AFosB in
GFP ~/NeuN ™ neurons in D7-GFP NAc shell or GFP */NeuN ™ neurons in D2-GFP NA shell. Scale bar, 50 wm. €, Haloperidol
treatment significantly induces AFosB in GFP ~/NeuN * neurons (D2-MSNs) in D7-GFP mice but not in GFP * /NeuN * neurons
(D1-MSNs) in the same mouse. Two-way ANOVA, NAc core: drug X cell type: F; 1) = 23.29, p << 0.05, Bonferroni post test: *p <
0.01; NAcshell: drug: drug X cell type: F; ;) = 30.14, p << 0.05, Bonferroni post test: *p < 0.01; dStr: drug X cell type: F; 1,
= 37.63, p < 0.001, Bonferroni post test: ***p << 0.0001. A significant induction of AFosB by haloperidol is also observed in
GFP */NeuN ™ (D2-MSNs) but not GFP ~/NeuN ™ neurons (D1-MSNs) in D2-GFP mice. Two-way ANOVA, NAc core: drug X cell
type: F; 1) = 2430, p < 0.05, Bonferroni post test: #p <<0.05; NAcshell: drug X cell type: Fa.12 = 26.07,p < 0.01, Bonferroni
post test: **p << 0.001; dStr: drug X cell type: F; 1,y = 21.36, p < 0.01, Bonferroni post test: *p << 0.01.

(20 mg/kg, i.p) injections. We observed a significant induction of
AFosB in D1-MSNs with 3 or 7 d of cocaine treatment compared
with saline treatment in all striatal regions (Fig. 1F): representa-
tive graph from dStr; two-way ANOVA, cell type X day F, ,5y =
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17.87, p < 0.01, Bonferroni post test: p <
0.01, p < 0.001. This is consistent with the
time course of AFosB accumulation in
striatum seen earlier by Western blotting
(Hope etal., 1994) and confirms the selec-
tive induction of AFosB solely in DI-
MSNs throughout a course of cocaine
exposure.

We next examined AFosB induc-
tion by immunohistochemistry in MSN
subtypes after chronic exposure to hal-
operidol (Fig. 2). Prior work suggested
indirectly that chronic haloperidol might
induce AFosB preferentially in D2-MSNs
(Hiroi and Graybiel, 1996; Atkins et al.,
1999), although this has heretofore not
been examined directly. D1-GFP and D2-
GFP mice received haloperidol (2 mg/kg)
in the drinking water, pH 6.0, whereas
DI-GFP and D2-GFP control mice re-
ceived regular drinking water, pH 6.0, for
21 d (3 weeks) and brains were collected
on day 22 (Fig. 2A). As with cocaine, we
know that all FosB-like immunoreactivity
in striatum at this time point represents
AFosB, not full-length FosB (Atkins et al.,
1999). We found that DI-GFP mice re-
ceiving haloperidol displayed no signifi-
cant induction of AFosB in GFP™/
NeuN ™" neurons (D1-MSNs) in NAc
core, NAc shell, or dStr; however, a signif-
icant increase in AFosB was observed in
GFP ~/NeuN " neurons (D2-MSNs) in all
striatal regions (Fig. 2B,C): two-way
ANOVA, NAc core: drug X cell type:
F110) = 23.29, p < 0.05, Bonferroni post
test: p < 0.01; NAc shell: drug: drug X cell
type: F(, 1) = 30.14, p < 0.05, Bonferroni
post test: p < 0.01; dStr: drug X cell type:
F(1.10) = 37.63, p < 0.001, Bonferroni post
test: p < 0.0001. This was confirmed by
examination of D2-GFP mice: we ob-
served a significant induction of AFosB in
GFP */NeuN " neurons (D2-MSNs) in all
three striatal regions, but no significant
change in AFosB in GFP ~/NeuN " (D1-
MSNs) after haloperidol treatment (Fig.
2B,C): two-way ANOVA, NAc core:
drug X cell type: F; 1,y = 24.30, p < 0.05,
Bonferroni post test: p < 0.05; NAc shell:
drug X cell type: F; 1,y = 26.07, p < 0.01,
Bonferroni post test: p < 0.001; dStr:
drug X cell type: F; ;,y = 21.36, p < 0.01,
Bonferroni post test: p < 0.01. Given that
we observed a similar pattern of AFosB
induction in D1-MSNs by repeated co-
caine exposure in both DI-GFP (GFP "/
NeuN ") and D2-GFP (GFP /NeuN ™)
mice, and by repeated haloperidol in D2-

MSNs in DI-GFP (GFP /NeuN ") and D2-GFP (GFP™/
NeuN ") mice, the remainder of our experiments used D2-GFP
mice to examine AFosB induction in D1-MSNs (GFP ~/NeuN *)
and D2-MSNs (GFP */NeuN ") after other chronic stimuli.
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As a control, we examined levels of A
CREB expression in the cocaine and halo-
peridol conditions to determine whether
our findings could be generalized to other
transcription factors (Fig. 3). We ob-
served no significant difference in CREB o
expression between control and drug- LL
treated mice. Further, we observed no dif- O)
ference in CREB levels between D2-MSNs &
and D1-MSNs (Fig. 3B, C). Q

Cocaine Saline

Distinct patterns of AFosB induction in
MSN subtypes by drugs of abuse

Because previous studies have demon-
strated that other drugs of abuse can po-
tently induce AFosB in striatal subregions
(Perrottietal., 2008), we examined AFosB
in MSN subtypes after chronic exposure
to opiates, EtOH, or A(9)-THC. We first
examined whether chronic morphine ex-
posure induces AFosB in specific MSN
subtypes across striatal regions. D2-GFP
mice received two subcutaneous implants

D2-GFP
H'20

Haloperidol

B [ saline
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of a sham or morphine (25 mg) pellet on Bl Cocaine
days 1 and 3, and brains were collected on c - =
day 5 (Fig. 4A) when AFosB, but not FosB, Sgp, NAcCore 2 80 Nic;Shell 2 ast
is induced (Zachariou et al., 2006). In E - N &0 %
striking contrast to cocaine, both MSN § § 8
subt}fpes displayed a 51gn1ﬁca.nt (and ap- 40 g4 S
proximately comparable) increase in @ 29 £ 29 Q
AFosB in NAc core, NAc shell, and dStr in 5 " & " & o
the morphine group compared with sham B D2-MSN D1-MSN & D2-MSN D1-MSN = D2-MSN D1-MSN
controls, with no differential cell subtype C OH:0
induction of AFosB seen across all striatal Il Haloperidol
regions (Fig. 4A): two-way ANOVA; NAc & ik G = —_—— c
core: drug F(, 4 = 75.01, p < 0.0001, 2 80 ¢ Gore £ 80 c>he £ 80 dstr
Bonferroni post test: p < 0.01 (D2-MSN), 2 60 % 60 = 60
p < 0.001 (DI1-MSN); NAc shell: drug 8 8 8
F 14 = 62.87, p < 0.0001, Bonferroni e S S40
post test: p < 0.01 (D2-MSN), p < 0.05 a 20 & 20 820
(D1-MSN); dStr: drug F; 14, = 60.11,p < & 0 5 . & .
0.001, Bonferroni post test: p < 0.01 (D2- ®  D2-MSN D1-MSN ® = D2-MSN D1-MSN X  D2-MSN D1-MSN
MSN), p < 0.05 (D1-MSN).
We next investigated the pattern of in- Figure 3.  Chronic cocaine or haloperidol does not induce CREB in MSN subtypes. A, Immunostaining for CREB and GFP in

duction of AFosB in MSN subtypes after
chronic exposure to EtOH. D2-GFP mice
were given a two bottle choice test for 10%
FtOH (bottle A) and water (bottle B), whereas D2-GFP controls
received water in both bottles (bottles A and B), for 10 d and brains
were collected on day 11 (Fig. 4B). Mice that received the 10% EtOH
bottle consumed significantly more EtOH compared with water,
whereas mice receiving water in both bottles demonstrated no dif-
ference in liquid consumption (Fig. 4B): preference for bottle A wa-
ter group: 50.00 * 4.551%, EtOH group: 84.44 = 8.511%; Student’s
t test, p < 0.05. Chronic EtOH administration resulted in a signifi-
cant induction of AFosB selectively in D1-MSNs in NAc core, NAc
shell, and dStr, with no change in D2-MSNs (Fig. 4B): two-way
ANOVA, NAc core: drug X cell type: F(, 1,y = 24.58, p < 0.05,
Bonferroni post test: p < 0.05; NAc shell: drug X cell type: F; 14 =
36.51,p < 0.01, Bonferroni post test: p < 0.01; dStr: drug X cell type:
F1,14) = 29.03, p < 0.01, Bonferroni post test: p < 0.01.

D2-GFP mice were also treated with A(9)-THC (10 mg/kg,
i.p.) twice daily for 7 d, and brains were collected 24 h after the last

striatum of D2-GFP mice after chronic cocaine or chronic haloperidol (Fig. Tand 2 legends for drug treatments). Scale bar, 50 m.
B, €, Cocaine or haloperidol does not significantly induce CREB protein levels in D1-MSNs or D2-MSNs.

injection. Similar to the cocaine and EtOH conditions, we
observed a significant increase in AFosB selectively in D1-
MSNss in all striatal regions in mice receiving chronic A(9)-
THC (Fig. 3E): two-way ANOVA, NAc core: drug X cell type
F( ) = 26.37, p < 0.01, Bonferroni post test: p < 0.01; NAc
shell: drug X cell type: F, 5y = 44.49, p < 0.05, Bonferroni
post test: p < 0.001; dStr: drug X cell type F, 4y = 29.30, p <
0.05, Bonferroni post test: p < 0.01.

We next examined whether the observed pattern of AFosB
induction in MSN subtypes by investigator administration of
cocaine or opiates occurs in contingent paradigms in which mice
volitionally self-administer the drug. First, D2-GFP mice were
trained to self-administer cocaine (0.5 mg/kg/infusion) on an
FR1 schedule for 2 h a day for 3 weeks and brains were collected
24 h after the last infusion (Fig. 4D), when AFosB, but not FosB,
is known to be induced (Larson et al., 2010). Mice spent signifi-
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Figure4. Drugsofabuseinduce AFosB in MSN subtypes in striatal regions. A, Chronic morphine treatment (25 mg pellets on days 1and 3) in D2-GFP mice results in significantinduction of AFosB
in both MSN subtypes in NAc core, NAc shell, and dStr compared with sham-treated D2-GFP mice. Two-way ANOVA, NAc core: drug F; 1, = 75.01, p << 0.0001, Bonferroni post test: *p << 0.01
(D2-MSN), **p << 0.001 (D1-MSN); NAc shell: drug F;, ,,y = 62.87, p < 0.0001, Bonferroni post test: *p << 0.0 (D2-MSN), #p << 0.05 (D1-MSN); dStr: drug Fiq.14) = 60.11,p < 0.001, Bonferroni
post test: *p << 0.01 (D2-MSN), *p << 0.05 (D1-MSN). B, D2-GFP mice that demonstrated a preference for 10% EtOH, in the drinking water over 10 d with mice examined 24 h after the last session,
exhibited a significant increase in AFosBin D1-MSNs in all striatal regions compared with D2-GFP mice receiving only water. Two-way ANOVA, NAc core: drug X cell type: F; 1, = 24.58,p < 0.05,
Bonferroni post test: p << 0.05; NAc shell: drug X cell type: Fiq.14) = 36.51,p < 0.01, Bonferroni post test: *p << 0.01; dStr: drug X cell type: F; 1, = 29.03, p < 0.01, Bonferroni post test: *p
< 0.01. €, Chronic A(9)-THC (10 mg/kg, i.p.), twice a day for 7 d with mice examined 24 h after the last treatment, in D2-GFP mice, resulted in a significant induction of AFosB in D1-MSNs in all
striatal regions compared with D2-GFP mice that received vehicle only. Two-way ANOVA, NAc core: drug X cell type: F; 5 = 26.37, p < 0.01, Bonferroni post test: *p << 0.01; NAcshell: drug <
cell type: F; 5 = 44.49, p < 0.05, Bonferroni post test: **p << 0.001; dStr: drug X cell type: £, 5 = 29.30, p < 0.05, Bonferroni post test: *p << 0.01). D, Cocaine self-administration (50
11g/kg/infusion, 2 h/d), using an FR1 schedule for 3 weeks with mice examined 24 h after the last session, in D2-GFP mice, resulted in significant induction of AFosB in D1-MSNs across all striatal
regions. Two-way ANOVA, NAc core: drug X cell type: F; 1, = 21.75, p << 0.05, Bonferroni post test: *p < 0.01; NAcshell: drug X cell type: F; ;) = 26.52, p < 0.01, Bonferroni post test: *p <<
0.01; dStr: drug X celltype £, ) = 33.68, p << 0.001, Bonferroni post test: **p << 0.001. The average daily dose of cocaine was 19.1 mg/kg, and mice spent more time on the active versus inactive
lever. Student’s t test, *p << 0.01. E, Heroin self-administration (30 eg/kg/infusion, 3 h/d), using an FR1 schedule for 2 weeks with mice examined 24 h after the last session, in D2-GFP mice, resulted
in significant induction of AFosB in both D2-MSNs and D1-MSNs across all striatal regions. Two-way ANOVA, NAc core: drug £ ,) = 68.88, p << 0.001, Bonferroni post test: *p << 0.01 (D2-MSN),
#p < 0.05 (D1-MSN); NAc shell: drug Fia.12) = 80.08, p << 0.0001, Bonferroni post test: *p << 0.01 (D2-MSN), **p << 0.001 (D1-MSN); dStr: drug F, 1,) = 63.36, p < 0.001, Bonferroni post test:
#p < 0.05 (D2-MSN), *p < 0.05 (D1-MSN). The average daily dose of heroin was 0.459 mg/kg, and mice spent more time on the active versus inactive lever. Student’s t test, p < 0.05.

cantly more time pressing the active versus inactive lever (Fig. 4D;
Student’s f test, p < 0.01). The average daily dose of cocaine was
19.1 mg/kg intravenously (Fig. 4D), similar to the 20 mg/kg in-
traperitoneal dose used above (Fig. 1). As with noncontingent
cocaine exposure (Fig. 1), we found that cocaine self-
administration caused a significant induction of AFosB only in
D1-MSNs in all striatal regions compared with saline exposure
(Fig. 4D): two-way ANOVA, NAc core: drug X cell type F; 14, =
21.75, p < 0.05, Bonferroni post test: p < 0.01; NAc shell: drug X
cell type: F(; 1,4y = 26.52, p < 0.01, Bonferroni post test: p < 0.01;

dStr: drug X cell type F(, ;4 = 33.68, p < 0.001, Bonferroni post
test: p < 0.001. Likewise, similarly to noncontingent opiate (mor-
phine) exposure (Fig. 4A), we found that D2-GFP mice that self-
administered heroin (30 pg/kg per infusion), on an FR1 schedule
3 h a day for 2 weeks examined 24 h after the last drug exposure,
displayed significant AFosB induction in both D2-MSNs and D1-
MSNss in all striatal regions (Fig. 4E): two-way ANOVA, NAc
core: drug F(, ;,, = 68.88, p < 0.001, Bonferroni post test: p <
0.01 (D2-MSN), p < 0.05 (D1-MSN); NAc shell: drug F; ;,) =
80.08, p < 0.0001, Bonferroni post test: p < 0.01 (D2-MSN), p <
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0.001 (D1-MSN); dStr: drug F, ., =
63.36, p < 0.001, Bonferroni post test: p <
0.05 (D2-MSN), p < 0.05 (D1-MSN). The
average daily dose for heroin was 0.459
mg/kg, and mice spent significantly more
time pressing the active versus inactive le-
ver (Student’s f test, p < 0.05) (Fig. 4E).

Environmental enrichment and
appetitive stimuli induce AFosB in both
D1-MSNs and D2-MSNs

Because previous studies demonstrated
that natural rewards induce AFosB in stri-
atal regions (Werme et al., 2002; Teegar-
den and Bale, 2007; Wallace et al., 2008;
Solinas et al., 2009; Vialou et al., 2011),
with induction by wheel running selective
for D1-MSNs (Werme et al., 2002), we
examined whether induction by other
natural rewards demonstrated cellular
specificity. We first used a juvenile enrich-
ment paradigm in which D2-GFP mice
were housed in an enriched environment
from weaning (3 weeks) for a 4 week pe-
riod (Fig. 5A). This approach was previ-
ously shown to induce AFosB in mouse
NAc and dStr (Solinas et al., 2009; Leh-
mann and Herkenham, 2011). Compared
with normal housing conditions, the
enriched environment significantly in-
creased AFosB in all striatal regions but
did not do so in a cell type-specific man-
ner, with comparable induction seen in
D1-MSNs and D2-MSNs (Fig. 5A): two-
way ANOVA, NAc core: environment
F112) = 89.13, p < 0.0001, Bonferroni
post test: p < 0.0001 (D2-MSN), p <
0.0001 (D1-MSN); NAc shell: environ-
ment F(, ;,) = 80.50, p < 0.0001, Bon-
ferroni post test: p < 0.001 (D2-MSN),
p < 0.001 (D1-MSN); dStr: environ-
ment F, ,,, = 56.42, p < 0.01, Bonfer-
roni post test: p < 0.05 (D2-MSN), p <
0.05 (D1-MSN).

We next examined AFosB expression
in MSN subtypes after chronic appetitive
stimuli. We first tested the effects of
chronic sucrose drinking, which was pre-
viously demonstrated to induce AFosB in
rat NAc (Wallace et al., 2008). D2-GFP
mice were given a two bottle choice test
for 10% sucrose (bottle A) and water (bot-
tle B), whereas D2-GFP controls received
water in both bottles (bottle A and B) for
10 d and brains were collected on day 11
(Fig. 5B). Mice that received 10% sucrose
consumed significantly more sucrose,
whereas mice receiving water in both bot-
tles demonstrated no difference in liquid
consumption (Fig. 5B): preference for
bottle A, water: 50.00 = 4.749%, sucrose:
89.66 £ 4.473%; Student’s f test, p <
0.001. We found that chronic sucrose
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Figure 5.  Environmental enrichment and appetitive stimuli induce AFosB in both MSN subtypes. A, D2-GFP mice that
were housed in an enriched environment beginning at P21 for 4 weeks exhibit induction of AFosB in both MSN subtypes
across all striatal regions compared with D2-GFP mice in normal housing conditions. Two-way ANOVA, NAc core: environ-
ment F; ;5 = 89.13 p < 0.0001, Bonferroni post test: ***p << 0.0001 (D2-MSN), ***p <<'0.0001 (D1-MSN); NAc shell:
environment F; 1,) = 80.50, p < 0.0001, Bonferroni post test: **p << 0.001 (D2-MSN), **p < 0.001 (D1-MSN); dStr:
environment F; ;,) = 56.42, p < 0.01, Bonferroni post test: #p < 0.05 (D2-MSN), *p < 0.05 (D1-MSN). B, D2-GFP mice
that exhibit a preference for 10% sucrose, in the drinking water over 10 d with mice examined 24 h after the last session,
display a significant induction of AFosB in both MSN subtypes across all striatal regions compared with D2-GFP mice
receiving water only. Two-way ANOVA, NAc core: treatment F; ;,, = 76.15, p << 0.0001, Bonferroni post test: *p < 0.01
(D2-MSN), *p << 0.01 (D1-MSN); NAC shell: treatment £, ) = 63.35, p << 0.001, Bonferroni post test: p < 0.05
(D2-MSN), *p < 0.01 (D1-MSN); dStr: treatment ., ;,) = 63.36, p < 0.001, Bonferroni post test: *p << 0.01 (D2-MSN), i)
<C0.05 (D1-MSN). Mice given the sucrose and water choice drank significantly more sucrose (bottle A) compared with mice
with two water choices. Student’s t test, **p << 0.001. €, D2-GFP mice that underwent calorie restriction, receiving only
60% of ad libitum calories daily for 10 d, followed by 24 h of free access to regular chow, displayed induction of AFosB in
both MSN subtypes across all striatal regions compared with D2-GFP mice receiving free access to regular chow. Two-way
ANOVA, NAc core: treatment ., ;,) = 67.94p << 0.0001, Bonferroni post test: *p << 0.01 (D2-MSN), *p << 0.01 (D1-MSN);
NAcshell: treatment F; 1, = 67.84, p <0.0001, Bonferroni post test: **p << 0.001 (D2-MSN), *p << 0.01 (D1-MSN); dStr:
treatment F; ;,) = 82.70, p < 0.0001, Bonferroni post test: **p << 0.001 (D2-MSN), **p << 0.001 (D1-MSN).
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Figure 6.  Chronic social defeat stress and chronic fluoxetine cause AFosB induction in distinct MSN subtypes in striatum. A,

D2-GFP that are susceptible to a 10 d course of social defeat stress exhibit AFosB induction in D2-MSNs in all striatal regions, 48 h
after the last defeat episode and 24 h after the social interaction test, compared with control mice or mice that are resilient to 10d
of social defeat stress. Resilient D2-GFP mice exhibit induction of AFosBin D1-MSNsin all striatal regions, 48 h after the last defeat
episode, compared with control or susceptible mice. Two-way ANOVA, NAc core: group X cell type F; 55, = 20.11, p < 0.05,
Bonferroni post test: D2-MSN/susceptible “p < 0.05, D1-MSN/resilient; “p < 0.05; NAC shell: group X cell type £, 50 = 27.79,
p <<0.01, Bonferroni post test: D2-MSN/susceptible; **p << 0.001, D1-MSN/resilient; *p << 0.01; dStr: group X celltype F; 50y =
19.76, p < 0.01, Bonferroni post test: D2-MSN/susceptible; *p < 0.05, D1-MSN/resilient; *p < 0.01. B, D2-GFP mice receiving
chronic treatment of the fluoxetine (20 mg/kg, i.p.), for 2 weeks with mice examined 24 h after the last treatment, exhibit a
significantinduction of AFosBin D1-MSNsin all striatal regions. Two-way ANOVA, NAc core: drug X celltype F; 55 = 14.59,p <
0.05, Bonferroni post test: *p << 0.01; NAcshell: drug X cell type: F; ;o) = 26.14, p < 0.05, Bonferroni post test: *p << 0.01; dStr:

drug X cell type F; 1) = 8.19, p < 0.05, Bonferroni post test: **p << 0.001.

consumption induced AFosB in NAc core, NAc shell, and dStr
and that this occurred in both MSN subtypes (Fig. 5B): two-way
ANOVA, NAc core: treatment F(; ;,y = 76.15 p < 0.0001, Bon-
ferroni post test: p < 0.01 (D2-MSN), p < 0.01 (D1-MSN); NAc
shell: treatment F, ,,) = 63.35, p < 0.001, Bonferroni post test:
p < 0.05 (D2-MSN), p < 0.01 (D1-MSN); dStr: treatment
F(1.12) = 63.36, p < 0.001, Bonferroni post test: p < 0.01 (D2-
MSN), p < 0.05 (D1-MSN).

Finally, we examined AFosB expression in MSN subtypes after
calorie restriction because this condition, which increases loco-
motor activity and motivational state, was previously shown to
enhance AFosB levels in mouse NAc (Vialou et al., 2011). D2-
GFP mice went through a calorie-restricted protocol, in which

Time in Interaction
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they received 60% of ad libitum calories
daily for 10 d and brains were collected on
day 11 (Fig. 5C). Calorie restriction in-

1 Control
Susceptible
[ Unsusceptible

1907 creased AFosB levels in NAc core and NAc
S 75- shell as previously demonstrated (Vialou
fm” etal., 2011) and also increased AFosB lev-
@ 504 . els in dStr. However, we observed no dif-
S 25 ferential induction in D1-MSNs versus

D2-MSNs (Fig. 5C): two-way ANOVA,
0- NAc core: treatment F; ,,, = 67.94 p <
0.0001, Bonferroni post test: p < 0.01
dstr (D2-MSN), p < 0.01 (D1-MSN); NAc
# shell: treatment F, ,,, = 67.84, p <

0.0001, Bonferroni post test: p < 0.001
(D2-MSN), p < 0.01 (D1-MSN); dStr:
treatment F(, ,,, = 82.70, p < 0.0001,
Bonferroni post test: p < 0.001 (D2-
MSN), p < 0.001 (DI-MSN).

D2-MSN D1-MSN

Chronic social defeat stress and
antidepressant treatment cause
differential induction of AFosB in MSN
subtypes
We previously demonstrated that AFosB
is increased in NAc of mice after chronic
social defeat stress (Vialou et al., 2010).
Although this induction was observed in
both susceptible mice (those that show
deleterious sequelae of the stress) as well
as in mice that are resilient (those that es-
cape most of these deleterious effects),
AFosB induction was greater in the resil-
ient subgroup and was shown directly to
mediate a state of resilience. In the present
study, we found striking cellular specificity
for AFosB induction in these two pheno-
typic groups. D2-GFP mice were sub-
jected to 10 d of social defeat stress and
separated into susceptible and resilient
populations based on a measure of social
interaction (Fig. 6A), which correlates
highly with other behavioral symptoms
(Krishnan et al., 2007). Mice that devel-
oped susceptible behaviors after social
defeat stress displayed a significant in-
duction of AFosB in D2-MSNs in NAc
core, NAc shell, and dStr compared with
control and resilient mice, with no induc-
tion apparent in D1-MSNs. In striking
contrast, resilient mice displayed signifi-
cant AFosB induction in D1-MSNs across all striatal regions
compared with susceptible and control mice, with no induction
apparent in D2-MSNs (Fig. 6A; two-way ANOVA, NAc core:
group X cell type F(, ,, = 20.11, p < 0.05, Bonferroni post test:
D2-MSN/susceptible p < 0.05, D1-MSN/resilient p < 0.05; NAc
shell: group X cell type F; 55, = 27.79, p < 0.01, Bonferroni post
test: D2-MSN/susceptible p < 0.001, D1-MSN/resilient p < 0.01;
dStr: group X cell type F, 54, = 19.76, p < 0.01, Bonferroni post
test: D2-MSN/susceptible p < 0.05, D1-MSN/resilient p < 0.01).
Chronic treatment with the SSRI antidepressant, fluoxetine,
reverses the depression-like behaviors exhibited by susceptible
mice after chronic social defeat stress (Berton et al., 2006). More-
over, such treatment induces AFosB in NAc of susceptible as well
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as control mice, and we have shown that such induction is re-
quired for fluoxetine’s beneficial behavioral effects (Vialou et al.,
2010). We thus examined the cellular specificity of AFosB induc-
tion after chronic fluoxetine administration. D2-GFP mice re-
ceived fluoxetine (20 mg/kg, i.p.) for 14 d, and brains were
collected on day 15 (Fig. 6B). We observed a significant induction
of AFosB in D1-MSNs, but not in D2-MSNs, in fluoxetine-
treated mice compared with vehicle controls (Fig. 6B; two-way
ANOVA, NAc core: drug X cell type F(, ;) = 14.59, p < 0.05,
Bonferroni post test: p < 0.01; NAc shell: drug X cell type:
F 10y = 26.14, p < 0.05, Bonferroni post test: p < 0.01; dStr:
drug X cell type F(; o, = 8.19, p < 0.05, Bonferroni post test:
p < 0.001).

In vivo optogenetic manipulation of NAc afferent brain
regions causes distinct patterns of AFosB induction in striatal
regions and MSN subtypes

Given that dopaminergic and glutamatergic afferent inputs to
NAc can facilitate reward seeking and alter depression-like be-
haviors (Tsai et al., 2009; Covington et al., 2010; Adamantidis et
al., 2011; Witten et al., 2011; Britt et al., 2012; Lammel et al., 2012;
Stuber etal., 2012; Chaudhury et al., 2013; Kumar et al., 2013; Tye
etal., 2013), we examined AFosB induction in striatal MSN sub-
types after manipulating activity of several key afferent brain re-
gions. We virally expressed ChR2 in each of several regions and
activated them with blue light (473 nm) as described previously
(Gradinaru et al., 2010; Yizhar et al., 2011). Because a recent
study demonstrated that phasic stimulation with blue light, after
non-cell-selective expression of ChR2 in VTA, resulted in the
same behavioral phenotype as selective ChR2 phasic stimulation
of VTA dopamine neurons (Chaudhury et al., 2013), we ex-
pressed ChR2 using AAV-hsyn-ChR2-EYFP in VTA of D2-GFP
mice; control mice were injected with AAV-hsyn-EYFP. VTA
sections were coimmunostained with tyrosine hydroxylase and
GFP to visualize ChR2-EYFP expression (Fig. 7C). D2-GFP mice
expressing ChR2-EFYP or EYFP alone in VTA received 5 d of 10
min of blue light phasic stimulation of the VTA as described
previously (Koo et al., 2012; Chaudhury et al., 2013) (Fig. 7A),
and brains were collected 24 h after the last stimulation. There
was no desensitization of the ability of ChR2 to activate VTA
dopamine neurons after 5 d of stimulation (Fig. 7B). We found
that repeated phasic stimulation of VTA neurons expressing
ChR2-EYFP increases AFosB in both MSN subtypes in NAc core,
but only in D1-MSNs in NAc shell (Fig. 7C; two-way ANOVA,
NAc core: optogenetic stimuli F(; 15y = 51.97, p < 0.0001, Bon-
ferroni post test: p < 0.001; (both MSN subtypes) NAc shell:
optogenetic stimuli X cell type: F(, ;) = 13.82, p < 0.05, Bonfer-
roni post test: p < 0.01). We observed no induction of AFosB in
dStr after blue light phasic stimulation to VTA-expressing ChR2-
EYFP compared with EYFP controls. These results should be
interpreted with caution, as we did not selectively target VTA
dopamine neurons for optical stimulation, and recent studies
have demonstrated nondopaminergic projection neurons in
VTA as well as considerable heterogeneity of the VTA, which can
lead to divergent behavioral responses depending on firing pa-
rameters and subpopulations of neurons affected (Tsai et al.,
2009; Lammel et al., 2011, 2012; Witten et al., 2011; Kim et al.,
2012, 2013; Tan et al,, 2012; van Zessen et al., 2012; Stamatakis
and Stuber, 2012; Chaudhury et al., 2013; Tye et al., 2013).

We next used AAV-CaMKII-ChR2-mCherry and AAV-
CaMKII-mCherry vectors to express ChR2-mCherry, or mCherry
alone as a control, in mPFC, amygdala, or vHippo of D2-GFP mice
(Fig. 7D-F). ChR2 and mCherry expression mediated by the

Lobo et al.  AFosB Induction in Striatal Medium Spiny Neuron Subtypes

CaMKII-ChR2 virus has previously been demonstrated to colocalize
with CaMKII expression, which predominantly labels glutamatergic
neurons (Gradinaru et al., 2009; Warden et al., 2012). We activated
cells expressing ChR2 in these regions with 20 Hz blue light for 10
min a day for 5 d, and brains were collected 24 h after the last stim-
ulation (Fig. 7A). This stimulation pattern elicited ~27-33 Hz firing,
mainly due to observed doublet spiking. No apparent desensitiza-
tion of ChR2 occurred with 5 d of stimulation; however, we observed
aslightincrease in firing from 1 to 5 d (32-33 Hz) of stimulation. We
found that optogenetic activation of mPFC neurons resulted in
AFosB induction in D1-MSNs in NAc core, whereas AFosB induc-
tion occurred in both MSN subtypes in NAc shell (Fig. 7D; two-way
ANOVA, NAc core: optogenetic stimuli X cell type F, ,,, = 10.31,
p < 0.05, Bonferroni post test: p < 0.01; NAc shell: optogenetic
stimuli F(, ;4 = 57.17, p < 0.001, Bonferroni post test: p < 0.05
(D2-MSN), p < 0.01 (D1-MSN)). No change in AFosB levels was
observed in dStr after mPFC activation. In contrast, optogenetic
activation of amygdala neurons induced AFosB in both MSN sub-
types in NAc core, and selectively in D1-MSNs in NAc shell, with no
change occurring in dStr (Fig. 7E; two-way ANOVA, NAc core: op-
togenetic stimuli F(, ,,) = 78.92, p < 0.0001, Bonferroni post test:
p < 0.001 (D2-MSN), p < 0.0001 (D1-MSN); NAc shell: optoge-
netic stimuli X cell type: F, ;) = 30.31, p < 0.0001, Bonferroni post
test: p < 0.0001). Finally, optogenetic activation of vHippo neurons
caused significant AFosB induction only in D1-MSNs in both NAc
core and NAc shell, with again no change observed in dStr (Fig. 7F;
two-way ANOVA, NAc core: optogenetic stimuli X cell type
F 100 = 18.30, p < 0.05, Bonferroni post test: p < 0.01; NAc
shell: optogenetic stimuli X cell type: F(, ;o) = 22.69, p < 0.05,
Bonferroni post test: p < 0.01).

Discussion

The present study examines AFosB induction in D1-MSNs and
D2-MSNss in striatal regions after several chronic stimuli (Table
1). We first establish the feasibility of using D1-GFP and D2-GFP
reporter lines to demonstrate selective AFosB induction in D1-
MSNs after chronic cocaine and in D2-MSNss after chronic halo-
peridol. The cocaine findings are consistent with previous studies
(Moratalla et al., 1996; Lee et al., 2006) and the established role
for AFosB in D1-MSNs in promoting cocaine reward (Kelz et al.,
1999; Colby et al., 2003; Grueter et al., 2013). We previously
showed that investigator- and self-administered cocaine induces
AFosB to an equivalent extent in NAc (Winstanley et al., 2007;
Perrotti et al., 2008), and importantly we show here that both
modes of cocaine intake induce AFosB selectively in D1-MSNs in
all three striatal regions. Our findings are consistent with previ-
ous studies demonstrating that acute cocaine induces other im-
mediate early genes and phosphorylation of several intracellular
signaling proteins only in D1-MSNs (Bateup et al., 2008; Bertran-
Gonzalez et al., 2008). Likewise, the opposite pattern of AFosB
induction after chronic haloperidol is consistent with the block-
ade of this induction by D2-like receptor agonists (Atkins et al.,
1999), and with acute haloperidol’s selective induction of imme-
diate early genes and phosphorylation of several signaling pro-
teins in D2-MSNs (Bateup et al., 2008; Bertran-Gonzalez et al.,
2008).

As with cocaine, we found that chronic exposure to two other
drugs of abuse, EtOH and A(9)-THC, induces AFosB selectively
in D1-MSNs across all striatal regions. We previously demon-
strated that EtOH induces AFosB in NAc core, NAc shell, and
dStr, but that A(9)-THC significantly upregulates AFosB in NAc
core, with a trend seen in the other regions (Perrotti et al., 2008).
We similarly observed here the largest A(9)-THC induction of
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Figure7.  Optogenetic activation of brain regions that innervate the NAc causes distinct patterns of AFosB induction in MSN subtypes and striatal regions. A, Optogenetic stimulation paradigm
for all conditions. Brains were harvested 24 h after 5 d of optogenetic stimulation. B, Slice physiology recordings of VTA dopamine neurons expressing AAV-hSyn-ChR2-EYFP or mPFC neurons
expressing AAV-hSyn-ChR2-mCherry with 1d of stimulation or 5 d of stimulation. Slices received either phasic 20 Hz, 40 ms blue light (473 nm) pulses (VTA) or 20 Hz blue light pulses (mPFC) C, VTA
targeting with AAV-hSyn-ChR2-EYFP or AAV-hSyn-EYFP in D2-GFP mice. We observed an overlap in tyrosine hydroxylase (TH, a marker for dopamine neurons) immunolabeling (red) with ChR2-EYFP
expressing neurons (green). Scale bar, 100 wm. Optical stimulation of VTA neurons expressing AAV-hSyn-ChR2-EYFP, for 10 min a day over a 5 d period with mice examined 24 h later, caused a
significant induction of AFosB in both MSN subtypes in NAc core but only in D1-MSNs in NAc shell. This stimulation parameter caused no induction of AFosB in dStr. Two-way ANOVA, NAc core:
optogeneticstimulif; ;5 = 51.97,p < 0.0001, Bonferroni post test: **p << 0.001; (both MSN subtypes) NAc shell: optogenetic stimuli X cell type: F; ;¢ = 13.82, p << 0.05, Bonferroni post test:
*p < 0.01. D, AAV-CaMKII-ChR2-mCherry or AAV-CaMKII-mCherry as a control was expressed in mPFC of D2-GFP mice. Scale bar, 500 m. Optical stimulation of mPFC neurons expressing ChR2 for
5dwith mice examined 24 h later resulted in AFosBinductionin D1-MSNsin NAc core, whereas AFosB induction occurred in both MSN subtypes in NAc shell. No induction was seen in dStr. Two-way
ANQVA, NAc core: optogenetic stimuli X cell type F; 1, = 10.31,p << 0.05, Bonferroni post test: *p < 0.01; NAc shell: optogenetic stimuli F; ,,) = 57.17, p << 0.001, Bonferroni post test: p<
0.05 (D2-MSN), *p << 0.01 (D1-MSN). E, AAV-CaMKII-ChR2-mCherry or AAV-CaMKII-mCherry was expressed in amygdala of D2-GFP mice. Scale bar, 500 wm. (Figure legend continues.)
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Table 1. AFosB induction in striatal MSN subtypes after chronic pharmacological, emotional, and optogenetic stimuli”

NAc core NAc shell dStr

Treatment D1-MSN D2-MSN D1-MSN D2-MSN D1-MSN D2-MSN
Cocaine 7 d (20 mg/kg) + — ++ _ 4+ _
Haloperidol 21 d (2 mg/kg) — +++ — +4+++ — 4t
Morphine 2 pellets over 5 d (25 mg each) ++ +++ ++ ++++ ++ +++
Ethanol 10 d (10% two bottle choice) ++ — + — + _
A(9)-THC7 d, twice daily (10 mg/kg) ++ — ++ — +4 —
Cocaine SA 21 d (0.5 mg/kg/infusion) ++ — +4++ — ++ _
Heroin SA 14 d (30 wg/kg/infusion) + ++ ++ +++ ++ ++
Juvenile enrichment 28 d (PND21-PND50) +++ +++ ++ ++ ++ ++
Sucrose 10 d (10% two bottle choice) ++ ++ ++ ++ ++ ++
Calorie restriction 10 d (60% restriction) ++ ++ ++ +++ +4++ +4
Defeat: susceptible 10 d social defeat stress — ++ — ++ _ 44
Defeat: resilient 10 d social defeat stress ++ — ++ — ++ —
Fluoxetine 14 d (20 mg/kg) ++ — ++ _ 44 _
VTA ChR2 5 d (20 Hz phasic) ++ ++ ++ — — —
PFCChR25d (20 Hz) ++ — ++ ++ — _
Amygdala ChR2 5d (20 Hz) +++ +4++ +++++ _ _ _
vHippo ChR2 5d (20 Hz) ++ — ++ — — _

“Scale of AFosB fold-induction compared with control conditions: +,1.0-1.5; ++,1.5-2.0; + + +,2.0-2.5; + ++ +, 2.5-3.0; + + + + +, 3.0-3.5. SA, Self-administration; PND, postnatal day.

AFosB in NAc core in D1-MSNs; our ability to demonstrate in-
duction in other striatal regions is likely due to the cell-specific
analysis used. Interestingly, chronic morphine and heroin self-
administration, unlike the other drugs of abuse, induced AFosB
in both MSN subtypes to a comparable extent across all striatal
regions. A recent study demonstrated that acute morphine in-
duces c-Fos in D1-MSNs, whereas naloxone-precipitated with-
drawal after chronic morphine induces c-Fos in D2-MSNs
(Enoksson et al., 2012). Although we did not observe signs of
opiate withdrawal in our study, it is conceivable that more subtle
withdrawal occurring with morphine or heroin administration at
the time point studied is responsible for the AFosB induction in
D2-MSNs seen here. We showed earlier that AFosB in D1-MSNs,
but not D2-MSNs, increases rewarding responses to morphine
(Zachariou et al., 2006). It would now be interesting to test the
possibility that AFosB induction in D2-MSNs contributes to the
aversive effects of opiate withdrawal. Likewise, the potential con-
tribution of drug withdrawal and craving to AFosB induction
seen with all drugs should be investigated.

Previous studies demonstrate that environmental enrichment
during development induces AFosB in NAc and dStr (Solinas et
al., 2009; Lehmann and Herkenham, 2011). Our data demon-
strate that this accumulation occurs equally in D1-MSNs and
D2-MSNs across all striatal regions. The enrichment paradigm
was previously shown to blunt rewarding and locomotor re-
sponses to cocaine (Solinas et al., 2009); however, this behavioral
phenotype is likely not a consequence of AFosB accumulation
because AFosB induction in D1-MSNs alone enhances behav-

<«

(Figure legend continued.)  Optical stimulation of amygdala neurons expressing ChR2, for 5d
with mice examined 24 h later, induced AFosB in both MSN subtypes in the NAc core, and in
D1-MSNs in NAc shell, but no change occurred in dStr. Two-way ANOVA, NAc core: optogenetic
stimuli £ 1) = 78.92, p << 0.0001, Bonferroni post test: **p << 0.001 (D2-MSN), ***p <
0.0001 (D1-MSN); NAc shell: optogenetic stimuli X cell type: F; ;) = 3031, p << 0.0001,
Bonferroni post test: ***p << 0.0001. F, AAV-CaMKII-ChR2-mCherry or AAV-CaMKIl-mCherry
was expressed in vHippo of D2-GFP mice. Scale bar, 500 wm. Optical stimulation of vHippo
neurons expressing ChR2, for 5 d with mice examined 24 h later, caused significant AFosB
inductionin D1-MSNs in both NAc core and NAcshell, with no change observed in dStr. Two-way
ANQVA, NAc core: optogenetic stimuli X cell type F; ;o = 18.30, p << 0.05, Bonferroni post
test: *p < 0.01; NAcshell: optogenetic stimuli X cell type: f; 1) = 22.69, p < 0.05, Bonfer-
roni post test: *p << 0.01.

ioral responses to cocaine, whereas such induction in D2-MSNs
has no discernible effect (Kelz et al., 1999; Colby et al., 2003;
Grueter et al., 2013). Chronic sucrose consumption was previ-
ously shown to increase AFosB in NAc, and overexpression of
AFosB, either in DI-MSNs alone or in both subtypes, in NAc
enhances sucrose consumption (Olausson et al., 2006; Wallace et
al., 2008). Here, we observed comparable AFosB induction in
both MSN subtypes in NAc and dStr after sucrose drinking. Fi-
nally, we demonstrated earlier that induction of AFosB in NAc
mediates certain adaptive responses to calorie restriction through
enhanced motivation for high fat food and reduced energy ex-
penditure (Vialouetal., 2011). Overall, these results demonstrate
that AFosB accumulation in NAc and dStr occurs in both D1-
MSNs and D2-MSNs in response to several natural rewards. This
finding is surprising given the observation that AFosB accumu-
lates in D1-MSNs only after another natural reward, chronic
wheel running, and that overexpression of AFosB in D1-MSNs
enhanced wheel running whereas AFosB overexpression in D2-
MSNs diminished wheel running (Werme et al., 2002). However,
wheel running may activate distinct motor pathways, which are
responsible for its different pattern of AFosB induction. In any
event, results with the other natural rewards suggest that they
differentially control AFosB in striatum compared with more
potent drug rewards, such as cocaine, EtOH, and A(9)-THC.
AFosB induction in both MSN subtypes under these natural re-
warding conditions is consistent with a recent study demonstrat-
ing that action initiation for a food reward activates both MSN
subtypes (Cui et al., 2013).

Chronic social defeat stress induces AFosB in NAc shell of
susceptible and resilient mice but in NAc core only in resilient
mice (Vialou et al., 2010). Further, AFosB overexpression in D1-
MSNs promotes resilience after chronic social defeat stress.
Chronic treatment with fluoxetine also causes AFosB accumula-
tion in NAc of stress naive mice and in susceptible mice after
chronic social defeat stress, and AFosB overexpression was shown
to mediate antidepressant-like behavioral responses under the
latter conditions (Vialou et al., 2010). Finally, a previous study
demonstrated AFosB induction in both MSN subtypes after
chronic restraint stress (Perrotti et al., 2004). Results of the pres-
ent study, where we show AFosB induction selectively in D1-
MSNss in resilient and fluoxetine-treated mice, but selectively in
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D2-MSNs in susceptible mice, provide important insight into
these earlier findings and support the hypothesis that AFosB in
D1-MSNs mediates resilience and antidepressant action, whereas
AFosB in D2-MSNs might mediate susceptibility. Further work is
now needed to test this hypothesis.

Recent work using optogenetics demonstrates the potent role
of dopaminergic and glutamatergic afferents to NAc in modulat-
ing reward and stress responses (see Results). We make use of
these optogenetic tools to examine AFosB induction in D1-MSNs
and D2-MSNs after repeated activation of NAc afferent regions.
We found that phasic stimulation of VTA neurons, or activation
of mainly glutamatergic neurons in amygdala, induces AFosB in
D1-MSNsin NAc shell and in both MSN subtypes in NAc core. In
contrast, activation of mPFC neurons results in the opposite pat-
tern of AFosB induction, with increased levels in D1-MSNs in
NAc core but induction in both MSN subtypes in NAc shell.
Finally, optogenetic activation of vHippo neurons causes AFosB
accumulation only in D1-MSNs in NAc core and shell. The
vHippo findings are consistent with recent studies demonstrating
that hippocampal inputs are much weaker onto D2-MSNs com-
pared with D1-MSNs (MacAskill et al., 2012) and that these in-
puts control cocaine-induced locomotion (Britt et al., 2012).
Moreover, our demonstration of AFosB induction predomi-
nantly in D1-MSNs with all inputs is consistent with previous
studies showing that AFosB in D1-MSNs enhances rewarding
responses to drugs of abuse as well as studies showing that opto-
genetic stimulation of VTA dopamine neurons or of mPFC,
amygdala, or vHippo terminals in NAc promote reward (Kelz et
al., 1999; Zachariou et al., 2006; Tsai et al., 2009; Witten et al.,
2011; Britt et al., 2012; Grueter et al., 2013).

Finally, it is likely that there are selective neuronal ensembles
within these two MSN subtypes that are differentially activated by
positive or negative stimuli. This could account for our observa-
tion of AFosB induction in D2-MSNs in certain rewarding con-
ditions (opiates and natural rewards) as well as aversive (social
defeat) conditions. Striatum is very heterogeneous beyond MSN
subtypes, including patch and matrix compartments in both dor-
sal and ventral striatum (Gerfen, 1992; Watabe-Uchida et al.,
2012). Further, previous studies demonstrate activation of a very
small percentage of striatal neuronal ensembles by psychostimu-
lants, with enhanced induction of the FosB gene in these activated
neurons (Guez-Barber et al., 2011; Liu et al., 2013), although it is
unknown whether these activated neurons are D1-MSNs or D2-
MSNs. The function of AFosB in core versus shell in mediating
rewarding and aversive behaviors is likewise unknown. AFosB
overexpression in D1-MSNs increased silent synapses in both
core and shell, but expression in D2-MSNs decreased silent syn-
apses in shell only (Grueter et al., 2013). Further, AFosB induc-
tion in core versus shell is likely mediated through different
mechanisms, as we found cocaine-mediated CaMKII« stabiliza-
tion of AFosB in shell but not core leading to greater AFosB
accumulation in shell (Robison et al., 2013). Future studies that
selectively target MSN subtypes in core versus shell, activated
neuronal ensembles, or patch versus matrix compartments will
help define the behavioral role of AFosB within these heteroge-
neous regions.

Opverall, these circuit-mediated cell type-selective induction
patterns of AFosB in NAc suggest that rewarding and stressful
stimuli differentially engage distinct NAc afferents to encode spe-
cific features of these stimuli. Our results not only provide com-
prehensive insight into the induction of AFosB in striatal MSN
subtypes by chronic stimuli but also illustrate the utility in using
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AFosB as a molecular marker to understand the lasting effects of
specific neural circuits in influencing NAc function.
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