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Behavioral/Cognitive

Unexpected Events Induce Motor Slowing via a Brain
Mechanism for Action-Stopping with Global Suppressive
Effects

Jan R. Wessel and Adam R. Aron
Psychology Department, University of California, San Diego, La Jolla, California 92103

When an unexpected event occurs in everyday life (e.g., a car honking), one experiences a slowing down of ongoing action (e.g., of walking
into the street). Motor slowing following unexpected events is a ubiquitous phenomenon, both in laboratory experiments as well as such
everyday situations, yet the underlying mechanism is unknown. We hypothesized that unexpected events recruit the same inhibition
network in the brain as does complete cancellation of an action (i.e., action-stopping). Using electroencephalography and independent
component analysis in humans, we show that a brain signature of successful outright action-stopping also exhibits activity following
unexpected events, and more so in blocks with greater motor slowing. Further, using transcranial magnetic stimulation to measure
corticospinal excitability, we show that an unexpected event has a global motor suppressive effect, just like outright action-stopping.
Thus, unexpected events recruit a common mechanism with outright action-stopping, moreover with global suppressive effects. These
findings imply that we can now leverage the considerable extant knowledge of the neural architecture and functional properties of the
stopping system to better understand the processing of unexpected events, including perhaps how they induce distraction via global

suppression.

Introduction
Slowing down ongoing behavior after unexpected events could
buy time for the cognitive system to assess whether an ongoing
action is still appropriate given a changed set of circumstances. In
the laboratory, motor slowing following unexpected events is a
ubiquitous finding. It occurs after unexpected perceptual events
(hereafter referred to as “novels”; Barcelo et al., 2006; Parmentier
et al., 2008; Vachon et al., 2012), action errors (Rabbitt, 1966;
Laming, 1979; Debener et al., 2005; Jentzsch and Dudschig, 2009;
Eichele et al., 2010; King et al., 2010; Logan and Crump, 2010),
unexpected action effects (Gentsch et al., 2009; Wessel et al.,
2012), and reward prediction errors (Cavanagh et al., 2010).
Given the pervasiveness of such motor slowing, there is consid-
erable interest in the underlying mechanism(s) (Marco-Pallarés
et al., 2008; Notebaert et al., 2009; Danielmeier and Ullsperger,
2011; Parmentier et al., 2011). Here we test whether unexpected
events recruit a brain network that underlies the rapid outright
stopping of action.

Rapidly stopping a response recruits a brain network compris-
ing prefrontal and basal ganglia regions (Mars et al., 2009; Neu-
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bert et al., 2010; Forstmann et al., 2012; for review, see Chambers
etal., 2009; Chikazoe, 2010; Ridderinkhof et al., 2011). In human
scalp-electroencephalography (EEG), activity of this network is
reflected in medial frontal delta-band (Nigbur et al., 2011;
Schmiedt-Fehr and Basar-Eroglu, 2011) and theta-band activity
(Yamanaka and Yamamoto, 2010; for review, see Huster et al.,
2013), as well as the N2/p300-ERP (Kok et al., 2004; Ramautar et
al., 2006).

To test the potential role of this network in motoric slowing
after novels, we used a verbal reaction-time (RT) task (hereafter
the “novelty task”) in which novel sounds induce RT-slowing (cf.
Parmentier et al., 2008, 2011). We measured EEG during a stop-
signal task (SST) and the novelty task. Focusing on the stop-
signal data, we used independent component analysis (ICA;
Jutten and Herault, 1991) to separate the scalp-EEG signal into
statistically independent components (IC; Onton et al., 2006).
For each subject, we localized a frontocentral IC with increased
activity for successful versus failed stopping. Then, for the novelty
task, we tested whether the same ICs had increased activity fol-
lowing novels, and whether the level of activity related to the level
of novelty-induced slowing (this IC-based method has been pre-
viously used to demonstrate that identical EEG signatures are
active on seemingly different psychological events; Gentsch et al.,
2009; Roger et al., 2010; Wessel et al., 2012).

Finally, if slowing after novels is explained by the same system
underlying outright stopping, novels should induce global motor
suppression, just as outright stopping does (Badry et al., 2009; Cai
et al., 2012; Majid et al., 2012; Wessel et al., 2013). As for those
studies of outright stopping, we used transcranial magnetic stim-
ulation (TMS) to measure corticospinal excitability (CSE) of the
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hand (which was resting and not task related) while subjects per-
formed the verbal novelty task. We predicted that CSE of the
hand would be reduced following novels, indicating global
suppression.

Materials and Methods

Experiment 1: behavioral

Participants. Twenty-four right-handed undergraduate students from
the University of California, San Diego (UCSD), participated in the be-
havioral experiment in exchange for course credit; 20 were female. Mean
age was 19.8 years (SEM: 0.34 years). Participants signed written in-
formed consent, and the experiments were performed in accordance
with the Declaration of Helsinki. The study was approved by the local
ethics committee at UCSD (UCSD IRB #070617).

Experimental paradigm. A schematic of the paradigm can be found in
Figure 1A. Each trial began with a central fixation cross, followed by a
sound, then followed by a letter. Participants were instructed to respond
as fast and accurately as possible according to one of two letters appearing
on the screen (T or K, p = 0.5) by speaking the letter into a microphone.
They were instructed that the letter would be preceded by a sound 500 ms
before the letter (i.e., the stimulus onset asynchrony between the sound
onset and letter onset was 500 ms). The duration of the sound was 200
ms. On 80% of all trials (standards), the sound was a 600 Hz sine wave.
On 20% of trials (novels), one of 90 unique birdsong segments was
presented instead. The participants were not informed of the presence of
different sounds before the experiment. Birdsong segments were
trimmed and normalized to match the sine wave stimuli in both ampli-
tude envelope and duration. Letters were on the screen for one second. If
participants did not respond within that time window, a “too slow!”
message was displayed for 1 s. Overall trial duration was 3200 ms, plus a
variable jitter (drawn from a uniform distribution containing the values
100, 200, 300, 400, and 500 ms). Trials were presented in a pseudoran-
dom order: one constraint was that there could never be two novel trials
in a row, and another constraint was that the first three trials had to be
standards. Participants performed 450 trials equally divided into six
blocks of 75 trials (15 of which were novel trials and 60 of which were
standard trials).

Procedure and hardware. Participants sat in front of a 17 inch iMac
personal computer (Apple) running MATLAB 2009b (MathWorks) and
Psychtoolbox 3 (Brainard, 1997) for stimulus display. Participants rested
their chins in a chin rest, and responses were recorded using a Logitech
USB Microphone (Logitech International) placed in front of them. RTs
were calculated in real time using a custom-made algorithm using the
Psychtoolbox sound recording capabilities. At the beginning of the ex-
periment, the microphone was gauged to the participants’ voice ampli-
tude level (in units of root mean square (RMS) power). RT was calculated
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Analysis. Data were preprocessed by a human rater who checked each
individual trial for the following: (1) accurate detection of speech onset
by the on-line RMS algorithm and (2) accuracy of the participants’ re-
sponses using a custom-designed MATLAB tool. Errors (e.g., saying T
instead of K), partial errors (e.g., starting to say T instead of K but cor-
recting before finishing speaking the initial letter), and misses (no re-
sponse) were very rare (they accounted for <1% of all trials in every
participant) and were omitted from further analyses. Trials in which RT
estimates were inaccurately classified by the automated algorithm were
rectified manually (if a clear speech onset was discernible) or discarded
(in case of extraordinary amounts of noise, <5% of trials in all partici-
pants). RTs were then averaged per trial type (standard vs novel) and
block (1 through 6) and subjected to a repeated-measures ANOVA using
those two factors as independent variables. Individual comparisons be-
tween cells were calculated using paired sample ¢ tests. In case of viola-
tions of the homoscedasticity assumption, degrees of freedom were
corrected accordingly. All p values in the entire manuscript are two-sided
unless otherwise specified.
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Task schematics. 4, Verbal reaction time task. B, SST. Note that on stop-trials, the letter turned red.

Experiment 2: EEG
Participants. Fifteen right-handed undergraduate and graduate students
from the UCSD participated in the EEG experiment for an hourly rate of
$15. One participant had to be excluded because of a problem with the
audio recording hardware, and another one had to be excluded because
of excessive noise in the EEG recording (because of high resistances on
the reference electrode that affected the entire recording), leaving a sam-
ple size of 13 (7 female). Mean age was 22.54 years (SEM: 1.25). Partic-
ipants signed written informed consent, and the experiments were
performed in accordance with the Declaration of Helsinki. The study was
approved by the local ethics committee at UCSD (UCSD IRB #101176).
None of the participants was in Experiment 1 or Experiment 3.
Experimental paradigm. The novelty task was performed exactly as
described above. In addition, we used a basic version of the stop-signal
paradigm (Logan et al., 1984) in the verbal domain. Here, participants
were again instructed to respond as fast and accurately as possible ac-
cording to a letter appearing on the screen (T or K, p = 0.5) after an initial
fixation period (1000 ms). Participants again had 1000 ms to respond (a
“too slow!” message was displayed in case this time was exceeded). How-
ever, they were instructed that on a subset of trials, a visual stop signal
would inform them to attempt to stop their response. The stop signal
consisted of the letter turning from white to red color after a variable time
interval (the stop-signal delay, SSD). Stop signals appeared on 25% of
trials, with an initial delay of 200 ms, which was adapted on a trial-by-trial
basis to achieve a probability of successful stopping of 0.5. To this end,
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the SSD was prolonged by 50 ms after each successful stop trial, and
shortened by 50 ms after each failed stop trial. Individual SSD staircases
were used for T and K. Stop trials were presented pseudorandomly inter-
spersed with go trials, with the constraint that no more than three stop
trials could occur in a row. Overall trial duration was 2500 ms. Partici-
pants performed a total of 400 trials, divided into 10 blocks. Participants
were instructed that stopping successfully in case of a stop trial and going
quickly in case of a go trial (no stop signal) were equally important. In the
breaks between the blocks, the participants were informed of their RT.
Additionally, the experimenter was presented with information about
the stopping success rate and the mean SSD of the last block to be able to
instruct participants to adapt their behavior to not overly favor cautious
over quick responding (or vice versa).

Procedure and hardware. The sound recordings and preprocessing was
done for both the novelty task and the SST as described for Experiment 1.
We recorded EEG data using a 64-channel BioSemi system (BioSemi
Instrumentation) at 512 Hz sampling rate with eight additional elec-
trodes placed on the bilateral mastoids and canthus, as well as below and
above each eye. Recordings were performed in a copper-shielded, sound-
attenuated chamber (with a pair of speakers and the recording micro-
phone being the only two line-powered devices in the chamber). Stimuli
were presented on a NEC MultiSync FB2141SB CRT monitor (NEC)
placed in a Faraday cage. The data were on-line referenced to the BioSemi
CMS-DRL reference. All offsets from the reference were kept <25 uV.
Participants performed the novelty task first and the SST second. This
was done so not to bias them toward using the stopping system in the
novelty task in any way.

RT analysis. For the novelty task this was done as described for Exper-
iment 1. RT analysis for the SST was done in a similar manner, with the
initial audio preprocessing identical to the novelty task. RTs were aver-
aged for go-trials and failed stop-trials separately. Stop-signal reaction
times (SSRT) were computed using the mean method (Verbruggen and
Logan, 2009). This relies on a valid race model of going and stopping,
which assumes that failed stop-trial RTs are faster than correct go-trial
RTs. This was tested on the group level by using a ¢ test, and on the
individual level by comparing median go to median failed-stop RTs.
Also, the efficacy of the SSD staircasing algorithm was assessed by testing
whether any participant’s stopping probability deviated from 0.5 across
blocks. To this end, the stopping success rate was quantified block by
block for each of the 10 blocks, and these values were then tested against
0.5 using a Wilcoxon signed rank test. All subjects fulfilled both these
criteria and were hence included in the analyses.

EEG preprocessing. Data were preprocessed using custom routines in
MATLAB 2012a (MathWorks). ICA and dipole fitting (DIPFIT 2.2) were
performed using functions from the EEGLAB toolbox (Version 9; Delo-
rme and Makeig, 2004). On import into MATLAB, the data were re-
referenced to the arithmetic average of the mastoid electrodes. The
continuous time series were filtered using symmetric two-way least-
squares finite impulse-response (FIR) filters with a low-pass cutoff of 0.5
Hz and a high-pass cutoff of 50 Hz. The time series were then visually
inspected for channels with obvious nonstereotypic artifacts (e.g., spuri-
ous drift or other noise); such channels were excluded from further pro-
cessing. The remaining channel data were visually inspected for segments
with nonstereotyped artifact activity (e.g., from gross movement or spu-
rious muscle activity). Such segments were removed from further anal-
ysis. Segments with stereotyped artifact activity (e.g., blinks and
saccades) were retained in the data, as ICA is ideally suited to isolate these
artifacts from the EEG (Jung et al., 2000a,b). After artifact removal, the
data were re-referenced to the common average, and subjected to a tem-
poral infomax ICA decomposition algorithm (Bell and Sejnowski, 1995;
with extension toward sub-Gaussian sources, Lee et al., 1999) as imple-
mented in EEGLAB. The resulting component matrix was screened for
components representing stereotypic artifacts (blinks, saccades, and
electrode artifacts) using outlier statistics (procedure as described previ-
ously; Wessel et al., 2012). Such components were removed. The remain-
ing components were fitted with individual inverse dipole-solutions
using the DIPFIT 2.2 algorithm as implemented in EEGLAB. As compo-
nents whose equivalent dipole solutions are nondipolar usually represent
nonbrain signals (as defined by a residual variance of their equivalent
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dipole solution of >15%; Delorme et al., 2012), such components were
also removed. The automatic classifications based on these criteria were
visually screened for inaccurate classifications and manually rectified if
necessary. The remaining nonartifact components were subjected to fur-
ther analyses.

EEG analysis. To extract event-related spectral perturbation (ERSP)
and event-related potentials (ERPs), the preprocessed component data
were subsequently cut into segments ranging from —500 to 1000 ms
around the respective events for each task (successful stop-trials, failed
stop-trials, and go-trials in the SST; novel, and standard sounds in the
novelty task). Activity was then averaged with respect to the events in
question. To generate ERSP data, the entire time series was filtered using
two-way least-squares FIR filters with low and high cutoffs either accord-
ing to the frequency band in question (0.5-4 Hz for delta, 4—8 Hz for
theta, and 812 Hz for alpha), or using 50 linearly spaced individual
frequencies ranging from 1 to 50 Hz (0.5 Hz) for full-spectrum ERSPs.
The data were then transformed into frequency space using a Hilbert
transform, whose absolute value represents an analytic signal for the
frequency band in question. All data were converted from arbitrary units
into percentage change from baseline, by subtracting the average activity
from 500 ms preceding the event in question (baseline) to the event itself
from the signal within each segment, and subsequently dividing by the
baseline (and multiplying by 100).

IC selection. To select brain components that represent the stopping
network usually found in the SST, we defined selection criteria based on
previous literature using EEG data of the SST (for review, see Huster et
al.,2013). No clear-cut, singular signature has yet been determined; how-
ever, studies have consistently reported medial frontal delta and/or theta
activity as potential markers of stopping-network activity (Yamanaka
and Yamamoto, 2010; Nigbur et al., 2011; Schmiedt-Fehr and Basar-
Eroglu, 2011). Hence, we modified a previously published automated IC
selection algorithm (COMPASS; Wessel and Ullsperger, 2011) to screen
components automatically, using the previously established knowledge
about EEG signatures of stopping in the SST. To be able to qualify as a
stopping component, an IC needed to show both: (1) a frontocentral
radial topography (maximum IC weight at electrodes Cz, FCz, FC1, FC2,
or Fz; topographical criterion), as well as (2) significantly stronger activ-
ity for successful compared with failed stop-trials in the theta and/or
delta frequency bands (functional criterion).

“Significantly stronger activity” was operationalized such that candi-
date components had to have a stretch of data of at least a 100 ms dura-
tion within the first 500 ms following the stop-signal onset during which
activity was greater for successful compared with failed stop-trials at p <
0.01 (false discovery rate (FDR) corrected; Benjamini and Hochberg,
1995).

Using these—fairly agnostic, yet clear-cut—selection criteria, at least one
component was found in every participant, with one exception. In that
participant, visual inspection revealed a component that fulfilled the
necessary functional criterion of successful > failed stopping for at least
100 ms at p < 0.01, yet its topographical activity maximum was slightly
too anterior (electrode site AFz). Instead of rejecting this participant, this
component was selected manually and the participant was included.
However, excluding this participant did not qualitatively alter any of the
significances presented in the following. Of the 13 participants, 3 had two
components that met the two criteria. In these cases (which are probably
the result of overfitting of the IC model), the IC activities were averaged
in these participants for all subsequent analyses. A group average of
stop-task-related activity can be found in Figure 2. Individual IC topog-
raphies for each participant can be found in the results section.

Stopping-related activity in the novelty task. We then investigated activ-
ity in these stopping-related components on the different types of trials in
the novelty task. To test whether activity in the brain network for suc-
cessful outright action-stopping was increased on novel compared with
standard trials, we tested the full-spectrum ERSP on novel versus stan-
dard trials in only the successful-stopping-related ICs (as identified by
the rationale explained above). Full-spectrum ERSPs were tested for sig-
nificant differences using ¢ tests for each time point and each frequency
individually, and corrected using the FDR procedure (p < 0.05, two-
sided; all unless otherwise specified). For purposes of consistency with
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the ERP literature (which operates in channel
space), we also back-projected these compo-
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iment for an hourly rate of $15. Mean age was
22.21 years (SEM: 0.95). Participants signed
written informed consent and underwent TMS
safety screening. The experiments were per-
formed in accordance with the Declaration of Helsinki. The study was
approved by the local ethics committee at UCSD (UCSD IRB #071912).
None of the participants was in Experiments 1 or 2.

Experimental paradigm. The novelty task was performed exactly as
described above, except now TMS was performed in the sound-to-letter
interval, while electromyography (EMG) was recorded (see below for
details) from the hand, which was task irrelevant and at rest. For the SST,
several studies now show that successfully stopping an action not only
reduces motor-evoked potential (MEP) amplitudes of the effector that
needs to be stopped, but also reduces MEP amplitudes in effectors that
are not engaged in the task at all, and are actually at rest (Badry et al.,
2009; Cai et al., 2012; Majid et al., 2012; Wessel et al., 2013). This “global”
reduction of MEP during stopping occurs not only in relation to trials
without successful stopping, but also compared with an intertrial interval
(ITI) baseline in which all effectors are at rest. This indicates true sup-
pression, as opposed to mere relative differences in excitation. Here, we
investigate whether the stopping system (which is shown in Experiment
2 to be active following unexpected events), exerts its suppressive influ-
ence in a global fashion following unexpected events, similar to a global
stop. Using the same logic as for the SST, we measured MEPs from the
hand, which was irrelevant to the verbal novelty task, and which was
resting comfortably on the table next to the participant.

We note that TMS introduced a second auditory stimulus (the ““click”
from the TMS stimulator) that followed the sound before the onset of the
imperative letter stimulus on each trial. Unlike the sound, the auditory
signal from the TMS stimulator was the same every trial. It has been
shown that in paradigms like the novelty task used here, inserting a
stereotypic additional signal between the sound and the imperative stim-
ulus reduces (or abolishes) novelty-induced slowing effects (Parmentier
et al., 2008). Hence, we expected diminished (or abolished) behavioral
slowing effects in this paradigm compared with the two earlier experi-
ments. However, even if that is the case, the experiment was identical to
the two previous experiments until the TMS measurement was obtained
in each trial. Consequently, the TMS measurement will probe the same
mechanism as the EEG experiment, yet RT, as well as measurements of
RT-TMS relationships, might be affected by a reduction in novelty-
induced slowing caused by the presence of the TMS stimulation.

weights. Since sign of the weight matrix is arbitrary, all weight matrices were flipped to show positive activity at electrode F(z. B,
ERP projection at electrode F(z. C, Delta-band (0.5—4 Hz) power. D, Theta-band (4 — 8 Hz) power.

EMG recording. Surface EMG was recorded from the first dorsal in-
terosseous muscle of the right hand via Ag-AgCl HydroGel electrodes
(Lead-Lok). A ground electrode was placed over the distal end of the
ulna. The signal was amplified using a Grass QP511 Quad AC Amplifier
(Grass Technologies), with a recording bandpass filter between 30 and
1000 Hz (60 Hz notch). The amplified data were sampled using a CED
Micro 1401 MK-II acquisition system (sampling rate: 2000 Hz) and re-
corded using CED Signal software (Version 4; Cambridge Electronic
Design).

TMS procedure. CSE was measured using MEPs elicited by TMS. TMS
was performed using a Magstim 200-2 system (Magstim) with a 70 mm
figure-of-eight coil. Hotspotting was performed to identify the hand
stimulation locus and correct intensity. The coil was first placed 5 cm
lateral and 2 cm anterior to the vertex and repositioned to where the
largest MEPs were observed consistently. Resting motor threshold
(RMT) was then defined as the minimum intensity required to induce
MEPs of amplitudes exceeding 0.1 mV peak-to-peak in 5 of 10 consecu-
tive probes (Rossini et al., 1994). TMS intensity for the experimental
stimulation was then adjusted to 110-120% of RMT (mean intensity =
58% of maximum output; min = 44%, max = 72%). An EMG sweep was
started 150 ms before every TMS pulse to obtain an estimate of baseline
EMG activity for later artifact correction. TMS was time locked to one of
three times (150, 175, and 200 ms) following the onset of the sound on
each trial. These values were generated from our prior experience of
when MEP suppression is expected during outright verbal action-
stopping in the SST (Cai et al., 2012). Stimulation time points alternated
in a fixed sequence, for both trial types separately. Also, to obtain an
estimate of baseline CSE, we stimulated in the ITI on 30 trials (5 per
block).

EMG analysis. MEPs were identified from EMG using in-house
software developed in MATLAB. Trials were excluded if (1) the RMS
power of the EMG trace 150 ms before the TMS pulse exceeded 0.01
mV (since such prestimulus noise can contaminate the MEP measure-
ment), (2) the MEP amplitude on a given trial exceeded *1 mV
(which is beyond the resolution of the amplifier and leads to satura-
tion), or (3) the MEP amplitude did not exceed 0.01 mV (trials in
which no MEP was elicited, mostly due to coil misplacement or miss-
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limited to the first block. Error bars denote SEM.

ing stimulation due to, e.g., coil overheating). MEP amplitude was
quantified using a peak-to-peak rationale, measuring the difference
between maximum positive and negative amplitudes within a time
period of 10-50 ms following the pulse. Both automated artifact
rejection and MEP quantification were visually checked for accuracy
on each individual trial for every dataset by a rater who was blind to
the respective trial type. Exclusions were rare. We removed an average
of 10.71 trials (SEM: 6.02) from each participant based on all criteria
combined. MEP amplitudes were normalized by the individual par-
ticipants’ baseline MEP (resulting in numbers >1 in case of relative
excitation compared with baseline and numbers smaller than one
indicating suppression). Those values were averaged for each trial
type and time point individually, and tested against each other using
a2 X 3 ANOVA (factors TRIAL TYPE and TIME POINT) and indi-
vidual t tests in case of a significant interaction.

Results
Experiment 1: behavioral
As expected, RT was significantly slower for novel compared with
standard trials, as indicated by a main effect of TRIAL TYPE
(F1,23) = 28.8, p < 0.0001). RT also decreased as a function of
BLOCK (F(5 115 = 9.02, p < 0.0001). There was also a significant
BLOCK X TRIAL TYPE interaction (F s ;,5, = 5.96, p < 0.0001),
indicating that the difference between novels and standards wore
off over time. Individual comparisons revealed that there was
significant novelty-induced slowing for Blocks 1, 2, 3, 4, and 6
(Block 1: t(,3, = 6.84, p < 0.0001, d = 0.54; Block 2: t(,5, = 4.72,
P < 0.0001, d = 0.44; Block 3: t,5) = 3.45, p < 0.01, d = 0.25;
Block 4: £ 53, = 3.51,p < 0.01,d = 0.26,d = 0.16; Block 6: £,5, =
2.57,p < 0.05,d = 0.2). RT results can be found in Figure 3A.
The results clearly establish a post-novel slowing effect for this
verbal paradigm. This is consistent with many prior studies (Par-
mentier et al., 2008, 2011; Ljungberg and Parmentier, 2012). This
sets the stage to examine if motor slowing in this paradigm can be
explained by a brain network for outright action-stopping.

Experiment 2: EEG

Behavioral

In the SST, mean RT was 557 ms on go-trials and 496 ms on failed-
stop trials (¢.,,) = 14.99, p < 0.0001). Error rates (0.11%, SEM: 0.04)
and miss rates (0.48%, SEM: 0.17) were low. Average SSRT was 256
ms (SEM: 6), mean SSD was 301 ms (SEM: 13.4), and the average
stopping success rate was 0.52 (SEM: 0.49). Hence, the RTs met the
requirements of the race model at the group level. On the individual
level, each participant’s median RT on go-trials was longer than the
failed-stop trial RT, with none of the participants showing success

B EXPERIMENT 2 (EEG)

3 4
Block

Behavioral results from the novelty task. A, Experiment 1. B, Experiment 2 (EEG). Note that the sample size in
Experiment 1 s significantly larger than the sample size of Experiment 2, which is why significant RT slowing in Experiment 2 is
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rates significantly different from 0.5. Hence,
all participants’ datasets fulfilled the re-
quirements of the race model.

In the novelty task, as in Experiment 1,
RT was numerically slower for novel com-
pared with standard trials; however,
the main effect of TRIAL TYPE did not
reach significance (F; ;) = 1.6, p = 0.23).
Again, RT decreased as a function of
BLOCK (Fs 40, = 2.88, p = 0.02). Impor-
6 tantly, there was a significant BLOCK X
TRIAL TYPE interaction (Fs49) = 7.61,
p < 0.0001), indicating that the difference
between novels and standards wore off
over time. Individual comparisons re-
vealed that there was significant novelty-
induced slowing for Block 1 (,,, = 5.37,
p < 0.001, d = 0.75), but not the other
blocks (all ps > 0.25). RT results can be
found in Figure 3B.

Notably, overall RT was shorter in Experiment 2 compared
with Experiment 1. We attribute this to the likely greater motiva-
tion of subjects in Experiment 2. The participant sample in Ex-
periment 1 consisted of UCSD undergraduates who were
recruited via automated software and who were participating for
course credit. In contrast, the sample in Experiment 2 consisted
of participants who were recruited through flyers and e-mail, and
also via a pre-existing database of motivated participants willing
to undergo EEG, and who were being paid for participation. Im-
portantly, however, despite the faster overall RTs of participants
in Experiment 2, the decisive within-group difference between
novel and standard trials was unaffected by these overall differ-
ences in base RT. Indeed, Block 1 for Experiment 1 had an effect
size of d = 0.54, and this was d = 0.75 for Experiment 2. Thus the
effect size of the difference between novel and standard trials was
even greater in Experiment 2, despite the faster overall RTs. The
fact that significance values are smaller for Experiment 2 thus
relates to the much smaller sample size compared with Experi-
ment 1 (N =13 vs N = 24).

EEG

Full-spectrum ERSPs (Fig. 4A) show increased activity in the
successful-stopping-related ICs on novels versus standard trials
in the delta, theta, and alpha frequency ranges (critical p value
after FDR correction: 0.006). In the sound-to-letter interval (500
ms following the sound), the following between condition differ-
ences were significant: delta (0.5-4 Hz) in the time range from 0
to 500 ms following the tone, theta (4.5-8 Hz) from 186 to 500
ms post-tone, and alpha (8.5-12.5 Hz) from 129 to 368 ms. Strik-
ingly, every participant showed significantly increased activity in
the stopping network on novels compared with standard trials in
one of the three frequency bands (p < 0.01; Fig. 5). The ERP
projection at FCz also shows significant differences, with the
novel trials showing a greater P3 wave in the time range from 232
to 357 ms following the tone (Fig. 4B; critical p value after FDR
correction: 0.003).

In addition, we compared the activity within this system be-
tween the first and the last block. Slowing following novel trials
was greatest in the first block (which, in the EEG dataset, was in
fact the only block that showed significant slowing), and smallest
in the final block, and hence, greater novel-related activity in the
tone-letter interval would indicate a direct relation between the
neural signature and the degree of motor slowing. This was in-
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deed the case for the successful-stopping-related ICs: the full-
spectrum ERSP (Fig. 6A) reveals significantly increased activity in
the delta band (p < 0.05 one-sided, FDR corrected to a two-sided
critical p of 0.0004) from 35 to 147 ms (Fig. 6). The P3a-ERP at
FCz, which showed significant differences between novels and
standards in the overall comparison (see above) also showed sig-
nificant differences with respect to this contrast (Fig. 6B): in the
first block, where slowing was significant, the novel-standard P3a
difference was significantly more positive compared with the last
block in the time range from 252 to 262 ms, 277 to 291 ms, and
304 to 318 ms (however, none of these stretches survive FDR
correction for multiple comparisons).

Together, we used ICA of EEG data to show that the brain
network that explains successful action-stopping in the SST is
also more active following novels compared with standard trials
in the novelty task. Successful-stopping-related ICs showed in-
creased activity on novels compared with standards in the delta,
theta, and alpha bands, and also showed an increased P3a-ERP.
Furthermore, the degree of early delta activity (35-147 ms) re-
lated to the degree of motor slowing, as the delta-band difference
between novels and standard trials was significantly greater in
blocks of the experiment in which significant slowing was ob-
served compared with the last block, in which slowing was absent.
The same thing was true (to a lesser extent) for the P3a-ERP as
well. Hence, we show that the brain network for successful stop-
ping in an SST also explains slowing after novel trials. Based on
these findings, we made a specific further prediction regarding
the nature of motor slowing after novelty: since the brain network
for outright action-stopping operates in a global, noneffector-
specific manner (Badry et al., 2009; Cai et al., 2012; Majid et al.,
2012; Wessel et al., 2013), such global motor suppression should
also occur for motor slowing following novelty. To test this hy-
pothesis, we collected TMS data during the novelty task, compar-

ing CSE of the task-unrelated hand between novels and
standards. We predicted reduced CSE of the task-unrelated hand
for novels compared with standards.

Experiment 3: TMS

Behavior

As in Experiments 1 and 2, RT was numerically slower for novel
compared with standard trials; however, the main effect of
TRIAL TYPE did not reach significance (F(, ;3 = 1.61, p = 0.23).
Again, RT decreased as a function of BLOCK (F s 55 = 4.94, p <
0.001). There was no significant BLOCK X TRIAL TYPE inter-
action (Fs g5y = 1.46, p = 0.21). Planned comparisons revealed
that despite the potentially counteracting effects of the stereo-
typic TMS sound, there was significant novelty-induced slowing
for Block 1 (t,5) = 5.37, p < 0.001, d = 0.75), but not the other
blocks (all ps > 0.25).

CSE

There was no main effect of TRIAL TYPE (F 5y = 1.68,p =
0.22) or TIME POINT (F 556, = 1.44, p = 0.26). However,
importantly, there was a significant TRIAL TYPE X TIME
POINT interaction (F(,,,5) = 4.3, p = 0.02; Fig. 7). Individual
comparisons show that on the first time point (150 ms), CSE
was indeed significantly suppressed on novels compared with
standard trials (¢,5) = 3.18, p < 0.01,d = 0.7; significant using
Bonferroni correction at 0.05). Also, activity on novels was
suppressed below baseline (i.e., 1) at this time point (t = 2.2,
p <0.05,d = 0.87). Additionally, the same analysis as for the
EEG, i.e., comparing the amount of CSE suppression in Block
1 (which showed behavioral RT slowing on novels compared
with standards) to Block 6 (no slowing), showed that relative
TMS suppression on novel compared with standard trials was
greater in Block 1 than in Block 6 (0.22 vs 0.004 mV, ¢t = 2.17,
p <0.05,d = 0.87).
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We used TMS of a task-unrelated muscle in the hand to dem-
onstrate that CSE is globally suppressed after a novel trial in the
novelty task, which was in fact the case at 150 ms following the
onset of the novel tone (but not after 175 ms or 200 ms). Further-
more, the amount of global suppression on novel trials at the 150
ms time point was greater for time periods in the experiment
during which novels caused a lot of motor slowing, compared
with periods in which they did not. This parallels the finding from
the EEG study, in which delta-band activity in the successful-
stopping-related components showed the same effect.

Discussion
We show that motor slowing following unexpected events (nov-
els) is explained by activity of a brain network for outright action-
stopping. We isolated the brain signature for action-stopping by
identifying an independent EEG signal component whose activ-
ity was greater for successful than failed stopping. We then exam-
ined activity patterns within this component in a verbal RT task
in which occasional novel trials induced motor slowing. There
was increased activity in the stopping component on novel com-
pared with standard trials, and moreover this corresponded with
the amount of motor slowing. Further, using TMS we show that
CSE of the hand (which was task-irrelevant) was reduced follow-
ing novel compared with standard trials, and also compared with
an ITI baseline (indicating true suppression). Furthermore, the
suppression was increased during stages of the experiment in
which slowing was greater compared with stages in which slowing
was reduced. Thus, a common mechanism is recruited by unex-
pected events and by outright stopping of action. This has sub-
stantial implications for a unified neural systems theory of
unexpected events (including perhaps novelty, action errors, and
prediction errors) in terms of an underlying global inhibition
network. As unexpected events are well known to have non-
motor (cognitive) effects, i.e., distractibility, our current results
open the possibility that this is mediated via global inhibition.
Although our results only concern one kind of unexpected
event-novel tones preceding verbal choice responses—several
lines of evidence suggest a unitary mechanism for different kinds
of unexpected events that evoke motor slowing. First, a recent
study used both functional magnetic resonance imaging (fMRI)
and EEG to show that the brain system that is active following
action errors is also active following novels, and that both of those
induced motor slowing (Wessel et al., 2012). Second, many EEG
studies demonstrate similar signatures as the ones here (i.e., fron-
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tocentral theta and delta signals) following several different kinds
of events, including action errors (Luu et al., 2004; Trujillo and
Allen, 2007; Cohen, 2011; van Driel et al., 2012) and prediction
errors (Cavanagh et al., 2010). However, only one study directly
related this EEG activity to the degree of motor slowing (Ca-
vanagh et al., 2010). Third, an EEG study likened brain activity
for outright stopping to activity for motor slowing following ac-
tion errors (Marco-Pallarés et al., 2008). Together, these studies
argue that there is a common mechanism underlying motor
slowing following many different kinds of unexpected events.
Our current results suggest this common underlying mechanism
could be the global inhibition network for action-stopping.

How unexpected events produce motor slowing

By linking unexpected events to the brain’s stopping system, our
results speak to controversies about how unexpected events pro-
duce motor slowing. One such debate is whether such slowing is
automatic (involuntary), reactive (stimulus-driven), and possi-
bly related to orienting (Notebaert et al., 2009), or whether it is
a strategic (voluntary), planned (controlled) adjustment, es-
pecially in the case of post-error slowing (Brewer and Smith,
1984). Another debate concerns whether such slowing hap-
pens with or without awareness (Rabbitt, 2002; Endrass et al.,
2007; Logan and Crump, 2010; Danielmeier and Ullsperger,
2011; Wessel et al., 2011).

The well known versatility of the stopping system could help
resolve these debates. For example, nodes of the stopping net-
work, such as the right inferior frontal cortex, the pre-
supplementary motor area, and the subthalamic nucleus (STN)
can be recruited automatically (Lenartowicz et al., 2011), reac-
tively (for review, see Levy and Wagner, 2011), proactively (i.e., as
a strategic brake; Jahfari et al., 2010; Swann et al., 2013; Zandbelt
etal., 2013), and without awareness (van Gaal et al., 2010). These
manifold ways in which regions of the stopping network are re-
cruited mimics the diverse properties ascribed to unexpectancy-
related motor slowing (automatic vs strategic, aware vs unaware).
Our current findings motivate a parsimonious explanation: the
stopping system universally produces motor slowing following
many kinds of unexpected events.

Why unexpected events produce distractibility

It is striking that our current results show reduced CSE of the
hand following novels in the verbal novelty task. This result
echoes the finding that CSE is reduced for the hand following
outright stopping of the voice (Cai et al., 2012). We interpret CSE
reduction as a signature of global inhibition of the entire motor
system. We suppose this is mediated via the STN of the basal
ganglia, which is important for outright stopping (Kithn et al.,
2004; van den Wildenberg et al., 2006; Neubert et al., 2010; Mi-
rabella etal., 2012; Ray et al., 2012; Alegre et al., 2013), and which
is purported to exert a massive effect on basal ganglia output
(Hazrati and Parent, 1992; Gillies and Willshaw, 1998). We fur-
ther suppose that the STN is also recruited by unexpected events.
Consistent with this, fMRI reveals activation of a midbrain area
(perhaps consistent with the STN) for both novels and action
errors (Wessel et al., 2012), and a study in patients reported ori-
enting signals in the STN (Bockovd et al., 2011).

It is an interesting possibility that the STN could have such a
widespread influence on basal ganglia output as to even effect
non-motor representations (Gillies and Willshaw, 1998; Frank et
al., 2007; Haynes and Haber, 2013). If so, this would provide a
mechanistic basis for why unexpected events lead to disruptions
of ongoing cognitive processing (Escera et al., 1998; Schroger and
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Wolff, 1998; de Fockert et al., 2004). While such effects are often
explained by attentional reorienting, as indexed by an enlarged
P3a-ERP (Courchesne et al., 1975; Ranganath and Rainer, 2003;
Polich, 2007), our study provides an elaboration; this attentional
reorienting could be underpinned by a global inhibitory signal
induced by the unexpected event, which then affects ongoing
cognitive processing. The timing of the different physiological
signatures of novelty processing in our current study supports
this hypothesis: While the delta-EEG effects that vary with the
degree of slowing reach significance almost immediately follow-
ing the tones (0 ms for the overall novel vs standard comparison;
35 ms for the slowing vs lesser slowing comparison), P3a differ-
ences are significant only in later stretches of time (232 ms/252
ms). Situated chronologically between these two EEG phenom-
ena is the CSE suppression, which is significant at 150 ms follow-
ing sound onset, but no longer significant at 175 ms or 200 ms.
This could mean that the early delta-EEG differences are a signa-
ture of the triggering of motor inhibition, which is then imple-
mented globally via the STN (resulting in MEP suppression of the
task-irrelevant hand), which then in turn influences the reorient-
ing of attention (resulting in the differences in P3a-ERP).

Motor inhibition or infrequent signal detection?

An alternative interpretation of our EEG findings is that since
both the SST and the novelty task involve the detection of an
infrequent signal, this infrequent signal detection could be the
decisive variable that drives the EEG component, rather than
motor inhibition per se. Yet several considerations speak against
this. First, the selection criterion that we used to extract the com-
ponents from the SST was explicitly based on successful stopping.
Specifically, each individual brain component in the EEG study
showed significantly increased activity for successful compared
with failed stopping, even though an (infrequent) stop signal
appeared in both cases. Second, the components we describe also
show an enlarged p300-ERP component in the SST (Fig. 2). This
frontocentral p300 has recently been shown to increase signifi-
cantly when stopping is incentivized, regardless of stop-signal
frequency, i.e., it is not simply driven by the infrequency of the
signal (Greenhouse and Wessel, 2013). Thirdly, it has been dem-
onstrated behaviorally that the decisive factor that leads to motor
slowing in this novelty task is not the infrequency of the novel
trials, but instead their unexpectedness (“surprise,” Parmentier
et al., 2011). However, in the SST, stop signals are not unex-
pected. Thus, the EEG signature we observed here is probably not
simply infrequency for the novel trials, and it is probably not
simply unexpectedness for the stop-signal trails; we propose it
instead reflects the common requirement for motor inhibition.
In addition to our EEG findings, we show with TMS that there is
a reduction of CSE on novel trials in the verbal task. Reductions
of MEP amplitude are often taken to index true motor suppres-
sion, either compared with an evolving motor tendency/CSE in-
crease during motor preparation (Coxon et al., 2006; van den
Wildenberg et al., 2010), or compared with an ITI baseline when
quantifying global motor stopping in the SST (Cai et al., 2012;
Majid et al., 2012). Hence, in our study, the CSE reduction is also
very likely indicative of true motor suppression; this further ar-
gues against a mere infrequent signal detection explanation of
our findings.

While the above points strongly suggest that the common
mechanism we identified is motor inhibition rather than infre-
quent signal detection, we acknowledge that these two processes
are likely tightly integrated. Specifically, we suppose that the
brain system for salience detection is tightly integrated with the
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brain system for motor inhibition to enable adaptive behaviors.
Further, we suppose that any event that triggers the salience sys-
tem might also automatically engage the inhibition system,
whether the event is merely infrequent (oddball; Schroger and
Wolff, 1998; Sharp etal., 2010; Chatham et al., 2012) or otherwise
salient (Seeley et al., 2007; Ullsperger et al., 2010), making it
difficult to explicitly experimentally disentangle motor inhibition
and salience detection. Our contribution here is to show that a
brain system for successful stopping in the SST also explains mo-
tor slowing after unexpected events that do not require an out-
right stop. For all the reasons we give above, we argue that the
inhibition function of that network is the most parsimonious expla-
nation for the effects, while acknowledging that salience detection
and motor inhibition are likely tightly integrated.

Conclusion

We demonstrate that the neural system that is recruited when
humans attempt to stop their actions outright is also recruited
when unexpected events occur, and explains the slowing of
motor responding induced by such events. This points to a ubiq-
uitous (and flexible) system for motor inhibition—it can be vol-
untarily recruited to stop actions outright (as in the SST), and it
can also be automatically recruited by unexpected events.
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